首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AIMS: To investigate the effects of two prebiotics and trehalose on the production of bacteriocins. METHODS AND RESULTS: Four carbohydrates [dextrose, fructo-oligosaccharides (FOS), raffinose, and trehalose] were used as the sole carbon source in a simple broth. Five bacteriocin-producing strains of bacteria, including those producing nisin, enteriocin, and other bacteriocins, were used, and their inhibitory activities when grown on each carbohydrate were determined. The inhibitory activity assay was performed using the agar well diffusion method, and Lactobacillus sakei JCM 1,157(T) was used as the indicator strain. Effective enhancement of bacteriocin production was observed with FOS and trehalose incubation. CONCLUSIONS: The results suggest that FOS and trehalose can effectively enhance the production of the five kinds of bacteriocins evaluated in this study. SIGNIFICANCE AND IMPACT OF THE STUDY: This study offers useful information for not only a new application of FOS and trehalose, but also the potential improvement of food preservation.  相似文献   

2.
ABSTRACT

The objectives of this study were to produce dog food containing curcumin replacing synthetic antioxidants, to evaluate its beneficial effects on animal growth and health. Curcumin (100 mg/kg) was added after the extrusion process along with the other micronutrients. The final concentration of curcumin was 32.9 mg/kg. The control feed was composed of the same ingredients without curcumin. After a storage of 6 months, feed composition and pH did not differ; however, the feed with curcumin showed lower protein oxidation, lipid peroxidation and higher total antioxidant capacity. After 2 months of feed production, 12 young Beagle dogs received either curcumin-containing food (n = 6) or the control diet (n = 6). The animals were fed twice a day using individual kennels. Blood samples were taken on d 1, 35 and 42. During the first 30 d of the study, the animals had natural infectious diseases that were controlled with anti-protozoals and antibiotics. Greater numbers of red blood cells were observed in dogs fed with curcumin (d 35 and 45), and there were greater numbers of white blood cells as a consequence of increased neutrophils on d 42. At the end of the experiment, a significant reduction in the number of lymphocytes was observed in dogs that ingested curcumin (d 42), suggesting an anti-inflammatory effect, manifested as a decrease in globulin levels. In the final 15 d of the experiment, the animals were clinical healthy. Higher serum levels of glucose, urea, triglycerides and cholesterol were observed in dogs fed with curcumin. Curcumin increased the activity of several antioxidant enzymes in addition to non-protein thiols and the total antioxidant capacity in the serum, consequently reducing levels of oxygen reactive species. Curcumin supplementation of dogs did not favour growth or weight gain. Neverthless, it was concluded that curcumin improved animal health, with emphasis on the stimulation of the antioxidant system and evidence of an anti-inflammatory effect.  相似文献   

3.
In this study, the prebiotic potential of arabinoxylan oligosaccharides (AXOS) was compared with inulin in two simulators of the human intestinal microbial ecosystem. Microbial breakdown of both oligosaccharides and short-chain fatty acid production was colon compartment specific, with ascending and transverse colon being the predominant site of inulin and AXOS degradation, respectively. Lactate levels (+5.5 mM) increased in the ascending colon during AXOS supplementation, while propionate levels (+5.1 mM) increased in the transverse colon. The concomitant decrease in lactate in the transverse colon suggests that propionate was partially formed over the acrylate pathway. Furthermore, AXOS supplementation strongly decreased butyrate in the ascending colon, this in parallel with a decrease in Roseburia spp. and Bacteroides / Prevotella / Porphyromonas (−1.4 and −2.0 log CFU) levels. Inulin treatment had moderate effects on lactate, propionate and butyrate levels. Denaturing gradient gel electrophoresis analysis revealed that inulin changed microbial metabolism by modulating the microbial community composition. In contrast, AXOS primarily affected microbial metabolism by 'switching on' AXOS-degrading enzymes (xylanase, arabinofuranosidase and xylosidase), without significantly affecting microbial community composition. Our results demonstrate that AXOS has a higher potency than inulin to shift part of the sugar fermentation toward the distal colon parts. Furthermore, due to its stronger propionate-stimulating effect, AXOS is a candidate prebiotic capable of lowering cholesterol and beneficially affecting fat metabolism of the host.  相似文献   

4.
The bioavailability of soy isoflavones depends on the composition of the microflora for each subject. Bacteria act on different isoflavones with increased or reduced absorption and cause biotransformation of these compounds into metabolites with higher biological activity. S-equol is the most important metabolite and only 25–65 % of the population have the microflora that produces this compound. The presence of equol-producing bacteria in soy product consumers means that the consumption of such products for prolonged periods leads to lower cardiovascular risk, reduced incidence of prostate and breast cancer, and greater relief from symptoms related to the menopause such as hot flushes and osteoporosis.  相似文献   

5.
Nowadays, aquaculture industry still confronts several disease-related problems mainly caused by viruses, bacteria and parasites. In the last decade, the use of mannan oligosaccharides (MOS) in fish production has received increased attention due to its beneficial effects on fish performance and disease resistance. This review shows the MOS use in aquaculture with a specific emphasis on the effectiveness of the several MOS forms available in the market related to disease resistance, fish nutrition and the possible mechanisms involved. Among the main beneficial effects attributed to MOS dietary supplementation, enhanced fish performance, feed efficiency and pathogen protection by potentiation of the systemic and local immune system and the reinforcement of the epithelial barrier structure and functionality are some of the most commonly demonstrated benefits. These combined effects suggest that the reinforcement of the intestinal integrity and functionality, together with the stimulation of the innate immune system, are the primary mode of action of MOS in fish. However, the supplementation strategy related to the structure of the MOS added, the correct dose and duration, as well as fish species, size and culture conditions are determinant factors to achieve improvements in health status and growth performance.  相似文献   

6.
Pectin containing agricultural by-products are potential sources of a new class of prebiotics known as pectic oligosaccharides (POS). In general, pectin is made up of homogalacturonan (HG, α-1,4-linked galacturonic acid monomers) and rhamnogalacturonan (RG, alternate galacturonic acid and rhamnose backbone with neutral side chains). Controlled hydrolysis of pectin containing agricultural by-products like sugar beet, apple, olive and citrus by chemical, enzymatic and hydrothermal can be used to produce oligo-galacturonides (GalpOS), galacto-oligosaccharides (GalOS), rhamnogalacturonan-oligosaccharides (RGOS), etc. However, extensive research is needed to establish the role of POS, both as a prebiotic as well as therapeutic agent. This review comprehensively covers different facets of POS, including the nature and chemistry of pectin and POS, potential agricultural residual sources of pectin, pre-treatment methods for facilitating selective extraction of pectin, identification and characterization of POS, health benefits and important applications of POS in food and feed. This review has been compiled to establish a platform for future research in the purification and characterization of POS and for in vivo and in vitro studies of important POS, so that they could be commercially exploited.  相似文献   

7.
Abstract

Lignocellulosic biomass (LB) is the renewable feedstock for the production of fuel/energy, feed/food, chemicals, and materials. LB could also be the versatile source of the functional oligosaccharides, which are non-digestible food ingredients having numerous applications in food, cosmetics, pharmaceutical industries, and others. The burgeoning functional food demand is expected to be more than US$440 billion in 2022. Because of higher stability at low pH and high temperature, oligosaccharides stimulate the growth of prebiotic bifidobacteria and lactic acid bacteria. Xylooligosaccharides (XOS) are major constituents of oligosaccharides consisting of 2–7 xylose monomeric units linked via β-(1,4)-linkages. XOS can be obtained from various agro-residues by thermochemical pretreatment, enzymatic or chemoenzymatic methods. While thermochemical methods are fast, reproducible, enzymatic methods are substrate specific, costly, and produce minimum side products. Enzymatic methods are preferred for the production of food grade and pharmaceutically important oligosaccharides. XOS are potent prebiotics having antioxidant properties and enhance the bio-adsorption of calcium and improving bowel functions, etc. LB can cater to the increasing demand of oligosaccharides because of their foreseeable amount and the advancements in technology to recover oligosaccharides. This paper summarizes the methods for oligosaccharides production from LB, classification, and benefits of oligosaccharides on human health.  相似文献   

8.
Our aim was to isolate bifidobacteria and clostridia from infant faeces and to test the growth of bifidobacteria and clostridia on prebiotic oligosaccharides. Seventy breast-fed infants aged between 3 and 253 days were tested for the presence of bifidobacteria and clostridia in their faeces. Ten strains of clostridia and 10 strains of bifidobacteria were isolated from infant faecal samples. Four strains of bifidobacteria originated from culture collections and 1 strain from fermented milk product were also tested. Subsequently, bacterial isolates were tested for their growth on prebiotic oligosaccharides in, in vitro conditions. Forty-six infants exhibited high numbers of bifidobacteria (usually higher than 9 logCFU/g) in their faeces. There were undetectable amounts of bifidobacteria in faecal samples in 24 of the studied infants (34%), these babies on the other hand possessed significant amounts of clostridia in their faecal flora. Both bifidobacteria and clostridia utilized all substrates tested. Bifidobacteria grew significantly better in the medium with galactooligosaccharides. Higher growth of clostridia was observed on raffinose and lactulose. Conversely, bifidobacteria grew slightly better in the medium with stachyose, inulin, Raftilose P85 and P95. However, these differences were not significant. Our results suggest that commercially available prebiotics support the growth of infant faecal clostridia. It is therefore questionable if bifidobacteria-deficient infants should be supplemented with prebiotics.  相似文献   

9.
This paper provides an overview about the non-cancer health effects for children from relevant chemical agents in our environment. In addition, a meta-analysis was conducted on the association between sudden infant death syndrome (SIDS) and maternal smoking during pregnancy as well as postnatal exposure to environmental tobacco smoke (ETS).In children, birth deformities, neurodevelopment, reproductive outcomes and respiratory system are mainly affected by chemical exposures. According to recent systematic reviews, evidence is sufficient for cognitive impairments caused by low lead exposure levels. Evidence for neurotoxicity from prenatal methylmercury exposure is sufficient for high exposure levels and limited for low levels. Prenatal exposure to polychlorinated biphenyls (PCB) and related toxicants results in cognitive and motor deficits.Maternal smoking during pregnancy is a risk factor for preterm birth, foetal growth deficit and SIDS. The meta-analytic pooled risk estimate for SIDS based on 15 studies is 2.94 (95% confidence interval: 2.43–3.57). Postnatal exposure to ETS was found to increase the SIDS risk by a factor of 1.72 (95% CI: 1.28–2.30) based on six studies which took into account maternal smoking during pregnancy. Additionally, postnatal ETS exposure causes acute respiratory infections, ear problems, respiratory symptoms, more severe asthma, and it slows lung growth. These health effects are also of concern for postnatal exposure to ambient and indoor air pollution.Children differ from adults with respect to several aspects which are relevant for assessing their health risk. Thus, independent evaluation of toxicity in childhood populations is essential.  相似文献   

10.
11.
12.
13.
AIMS: To compare the fermentation of dietary carbohydrates with reference to their prebiotic and gas-generating capacity. METHODS AND RESULTS: Static anaerobic batch culture fermentations were carried out measuring gas generation and the prebiotic effect of five selected substrates (including various fructo-oligosaccharides, levan and maltodextrin). The largest gas producer was levan, whilst those showing no significant difference to Actilight included oligofructose and maltodextrin. Gas composition data showed that hydrogen and carbon dioxide were the two most quantitatively important gases. The substrate that appeared to have the best prebiotic effect in vitro was branched chain fructo-oligosaccharide (FOS), followed by oligofructose, Actilight and maltodextrin which each exerted a similar effect. The substrate with the least bifidogenic effect was levan. CONCLUSIONS: The composition and total gas generation data showed that there was much variation between and within donor inocula. Generally, the lower gas producers had a more selective fermentation whilst larger gas producers were less specific. SIGNIFICANCE AND IMPACT OF THE STUDY: The study of these three parameters enabled a more complete picture of carbohydrate breakdown to be drawn and hence highlighted the need for potential prebiotics to be more extensively evaluated in order to reduce negative side-effects such as gas distension.  相似文献   

14.
Sialic acids (SAs) are important functional sugars, and monomers of sialylated human milk oligosaccharides (sialylated HMOs or sialyllactoses), which are crucial for improving infant development and can facilitate infant brain development, maintain brain health, and enhance immunity. The most common form of SA is N-acetylneuraminic acid (NeuAc), and the main forms of sialyllactoses are 6′-sialyllactose (6′-SL) and 3′-sialyllactose (3′-SL). As functional food additive, the demand for NeuAc and sialyllactoses will continuously increase due to their wide and important fields of application. However, NeuAc and sialyllactoses produced by traditional extraction methods are inefficient and may cause allergen contamination, and cannot keep up with the rapidly increasing market demand. Therefore, the production of NeuAc and sialyllactoses by sustainable biotechnological methods have attracted increasing attention. In particular, the development of metabolic engineering and synthetic biology techniques and strategies have promoted efficient biosynthesis of NeuAc and sialyllactoses. In this review, we first discussed the application of NeuAc and sialyllactoses. Secondly, metabolic engineering and protein engineering-fueled progress of whole-cell catalysis and de novo synthesis of NeuAc and sialyllactoses were systematically summarized and compared. Furthermore, challenges of efficient microbial production of NeuAc and sialyllactoses as well as strategies for overcoming the challenges were discussed, such as clustered regularly interspaced short palindromic repeats interference (CRISPRi)-aided identification of key precursor transport pathways, synergistically debottleneck of kinetic and thermodynamic limits in synthetic pathways, and dynamic regulation of metabolic pathways for balancing cell growth and production. We hope this review can further facilitate the understanding of limiting factors that hampered efficient production of sialic acid and sialyllactoses, as well as contribute to the development of strategies for the construction of efficient production hosts for high-level production of sialic acid and sialyllactose based on synthetic biology tools and strategies.  相似文献   

15.
The cumulative effects of multiple stressors are becoming a priority concern for ecotoxicologists, ecologists and conservation biologists working to understand threats to ecosystems and species. In that context, parasites and pathogens are increasingly a focus of attention. Parasites interact with natural and anthropogenic stressors to increase mortality and reduce animal health in myriad ways in a wide spectrum of host and parasite taxa. The combined effects of parasites and other stressors can reduce either resistance or tolerance to infection. Recommendations are provided to guide further research.  相似文献   

16.
17.
18.
The goals of this review are to summarize the current knowledge on the application of Lactobacillus salivarius as a probiotic in animals and humans, and to address safety concerns with its use on live hosts. Overall, several strains of L. salivarius are well established probiotics with multiple applications in animal health, particularly to reduce colonization by gastrointestinal pathogens, and to a lesser extent, as a production and quality aid. In humans, L. salivarius has been used to prevent and treat a variety of chronic diseases, including asthma, cancer, atopic dermatitis and halitosis, and to a much limited extent, to prevent or treat infections. Based on the results from primary research evidence, it seems that L. salivarius does not pose a health risk to animals or humans in the doses currently used for a variety of applications; however, there is a systematic lack of studies assuring the safety of many of the strains intended for clinical use. This review provides researchers in the field with up‐to‐date information regarding applications and safety of L. salivarius. Furthermore, it helps researchers identify knowledge gaps and potential opportunities for microbiological and clinical research.  相似文献   

19.
《Biotechnology advances》2019,37(5):667-697
Infant formula milk companies try to develop fortified formula milk that mimics human milk as closely as possible, since it is well-known that breast milk has considerable implications in the development of the infant in the first years of life. Human milk is unique in terms of complex oligosaccharides content, known as human milk oligosaccharides (HMOs). Their role in the development of intestinal flora blocking the attachment of pathogens and modulating the immune system of the infant are currently recognized. Due to these biological effects, there is a great interest to introduce the main HMOs in the infant formula milk. Therefore, efficient synthetic strategies for HMOs production are required. Here we present a complete review of HMO production using either (chemo)enzymatic syntheses or cell factory approaches, focusing on the strategies that produce HMOs at least at the milligram scale. 42 HMO structures have already been produced as free sugars. Whereas short HMOs are well obtained by cell factory approaches, complex and branched HMOs are better produced by chemoenzymatic strategies. Inspite of the current advances, production strategies of some biologically relevant HMOs are still missing.  相似文献   

20.
Chitin oligosaccharides and their derivatives are involved in developmental and defence-related signalling pathways. Major advances include the structural identification of lectins involved in development that bind chitin oligosaccharides and the links between chitin oligosaccharide and hyaluronan synthesis. Also, recent advances in the understanding of the biological role of oligosaccharides are summarised in a model for multistep glycan recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号