共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of nectin in formation of E-cadherin-based adherens junctions in keratinocytes: analysis with the N-cadherin dominant negative mutant 下载免费PDF全文
Tanaka Y Nakanishi H Kakunaga S Okabe N Kawakatsu T Shimizu K Takai Y 《Molecular biology of the cell》2003,14(4):1597-1609
E-cadherin is a Ca(2+)-dependent cell-cell adhesion molecule at adherens junctions (AJs) of epithelial cells. A fragment of N-cadherin lacking its extracellular region serves as a dominant negative mutant (DN) and inhibits cell-cell adhesion activity of E-cadherin, but its mode of action remains to be elucidated. Nectin is a Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecule at AJs and is associated with E-cadherin through their respective peripheral membrane proteins, afadin and catenins, which connect nectin and cadherin to the actin cytoskeleton, respectively. We showed here that overexpression of nectin capable of binding afadin, but not a mutant incapable of binding afadin, reduced the inhibitory effect of N-cadherin DN on the cell-cell adhesion activity of E-cadherin in keratinocytes. Overexpressed nectin recruited N-cadherin DN to the nectin-based cell-cell adhesion sites in an afadin-dependent manner. Moreover, overexpression of nectin enhanced the E-cadherin-based cell-cell adhesion activity. These results suggest that N-cadherin DN competitively inhibits the association of the endogenous nectin-afadin system with the endogenous E-cadherin-catenin system and thereby reduces the cell-cell adhesion activity of E-cadherin. Thus, nectin plays a role in the formation of E-cadherin-based AJs in keratinocytes. 相似文献
2.
Yamada A Irie K Hirota T Ooshio T Fukuhara A Takai Y 《The Journal of biological chemistry》2005,280(7):6016-6027
E-cadherin and nectins are major cell-cell adhesion molecules at adherens junctions (AJs) in epithelial cells. When Madin-Darby canine kidney (MDCK) cells stably expressing nectin-1 (nectin-1-MDCK cells) are cultured at normal Ca(2+), E-cadherin and nectin-1 are concentrated at the cell-cell contact sites. When these cells are cultured at low Ca(2+), E-cadherin disappears from the cell-cell contact sites, but nectin-1 persists there. When these cells are re-cultured at normal Ca(2+), E-cadherin is recruited to the nectin-based cell-cell contact sites. We found here that this recruitment was dependent on protein synthesis, because a protein synthesis inhibitor, cycloheximide, prevented the accumulation of E-cadherin. When nectin-1-MDCK cells, precultured at low Ca(2+) in the presence of a proteasome inhibitor, ALLN (N-acetyl-Leu-Leu-norleucinal), were re-cultured at normal Ca(2+), E-cadherin was recruited to the nectin-based cell-cell contact sites but the level of E-cadherin was reduced. Similar results were obtained when wild-type MDCK cells were used instead of nectin-1-MDCK cells. These results suggest that degradation of one or more protein factors and de novo synthesis of the same or different protein factor(s) are needed for the formation of the E-cadherin-based AJs. We biochemically identified the annexin II-S100A10 complex as such a candidate. Depletion of plasma membrane cholesterol, which abolished the localization of the annexin II-S100A10 complex at the plasma membrane, inhibited the re-concentration of E-cadherin at the nectin-based cell-cell contact sites in the Ca(2+) switch experiment. Knockdown of annexin II by RNA interference also inhibited the re-concentration of E-cadherin. These results indicate that the annexin II-S100A10 complex is involved in the formation of the E-cadherin-based AJs in MDCK cells. 相似文献
3.
A new isolation procedure for cell-to-cell adherens junctions has been developed using rat liver. From the bile canaliculi-enriched fraction obtained by homogenization of the liver and sucrose gradient centrifugation, the fraction rich in adherens junction was recovered by detergent treatment followed by sucrose gradient centrifugation. Light and electron microscopy revealed that this final fraction was mainly composed of the belt-like adherens junctions with their associated short actin filaments. Biochemical and immunological analyses have shown that vinculin is highly enriched in this fraction. Considering that vinculin is known to be localized in the cell-to-cell adherens junctions, we can conclude that we have succeeded in isolating the cell-to-cell adherens junctions. Furthermore, the constituents of the undercoat (dense layer underlying the membrane) of adherens junctions were selectively extracted from the fraction rich in junctions. Upon SDS electrophoresis of this extract, 10 polypeptides including vinculin, alpha-actinin, and actin were dominant. The results obtained are discussed with special reference to the molecular organization of the undercoats of cell-to-cell adherens junctions. 相似文献
4.
Requirement of ZO-1 for the formation of belt-like adherens junctions during epithelial cell polarization 下载免费PDF全文
The molecular mechanisms of how primordial adherens junctions (AJs) evolve into spatially separated belt-like AJs and tight junctions (TJs) during epithelial polarization are not well understood. Previously, we reported the establishment of ZO-1/ZO-2-deficient cultured epithelial cells (1[ko]/2[kd] cells), which lacked TJs completely. In the present study, we found that the formation of belt-like AJs was significantly delayed in 1(ko)/2(kd) cells during epithelial polarization. The activation of Rac1 upon primordial AJ formation is severely impaired in 1(ko)/2(kd) cells. Our data indicate that ZO-1 plays crucial roles not only in TJ formation, but also in the conversion from "fibroblastic" AJs to belt-like "polarized epithelial" AJs through Rac1 activation. Furthermore, to examine whether ZO-1 itself mediate belt-like AJ and TJ formation, respectively, we performed a mutational analysis of ZO-1. The requirement for ZO-1 differs between belt-like AJ and TJ formation. We propose that ZO-1 is directly involved in the establishment of two distinct junctional domains, belt-like AJs and TJs, during epithelial polarization. 相似文献
5.
Myofibroblast development is characterized by specific cell-cell adherens junctions 总被引:8,自引:0,他引:8 下载免费PDF全文
Hinz B Pittet P Smith-Clerc J Chaponnier C Meister JJ 《Molecular biology of the cell》2004,15(9):4310-4320
Myofibroblasts of wound granulation tissue, in contrast to dermal fibroblasts, join stress fibers at sites of cadherin-type intercellular adherens junctions (AJs). However, the function of myofibroblast AJs, their molecular composition, and the mechanisms of their formation are largely unknown. We demonstrate that fibroblasts change cadherin expression from N-cadherin in early wounds to OB-cadherin in contractile wounds, populated with alpha-smooth muscle actin (alpha-SMA)-positive myofibroblasts. A similar shift occurs during myofibroblast differentiation in culture and seems to be responsible for the homotypic segregation of alpha-SMA-positive and -negative fibroblasts in suspension. AJs of plated myofibroblasts are reinforced by alpha-SMA-mediated contractile activity, resulting in high mechanical resistance as demonstrated by subjecting cell pairs to hydrodynamic forces in a flow chamber. A peptide that inhibits alpha-SMA-mediated contractile force causes the reorganization of large stripe-like AJs to belt-like contacts as shown for enhanced green fluorescent protein-alpha-catenin-transfected cells and is associated with a reduced mechanical resistance. Anti-OB-cadherin but not anti-N-cadherin peptides reduce the contraction of myofibroblast-populated collagen gels, suggesting that AJs are instrumental for myofibroblast contractile activity. 相似文献
6.
Honda T Shimizu K Fukuhara A Irie K Takai Y 《Biochemical and biophysical research communications》2003,306(1):104-109
Cadherins are key Ca(2+)-dependent cell-cell adhesion molecules at adherens junctions (AJs) in fibroblasts and epithelial cells, whereas claudins are key Ca(2+)-independent cell-cell adhesion molecules at tight junctions (TJs) in epithelial cells. The formation and maintenance of TJs are dependent on the formation and maintenance of AJs. Nectins are Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules which comprise a family of four members, nectin-1, -2, -3, and -4, and are involved in the formation of AJs in cooperation with cadherins, and the subsequent formation of TJs. We show here that the velocity of the formation of the E-cadherin-based AJs is increased by overexpression of nectin-1 and is reduced by addition of the nectin-1 inhibitors to the medium in L cells stably expressing E-cadherin and Madin-Darby canine kidney cells. Moreover, the velocity of the formation of the claudin-based TJs is increased by overexpression of nectin-1 and is reduced by addition of the nectin-1 inhibitors to the medium in Madin-Darby canine kidney cells. These results indicate that nectins regulate the velocity of the formation of the E-cadherin-based AJs and the subsequent formation of the claudin-based TJs. 相似文献
7.
We describe here the subcellular distributions of three junctional proteins in different adherens-type contacts. The proteins examined include vinculin, talin, and a recently described 135-kD protein (Volk, T., and B. Geiger, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 10:2249-2260). Immunofluorescent localization of the three proteins indicated that while vinculin was ubiquitously present in all adherens junctions, the other two showed selective and mutually exclusive association with either cell-substrate or cell-cell adhesions. Talin was abundant in focal contacts and in dense plaques of smooth muscle, but was essentially absent from intercellular junctions such as intercalated disks or adherens junctions of lens fibers. The 135-kD protein, on the other hand, was present in the latter two loci and was apparently absent from membrane-bound plaques of gizzard or from focal contacts. Radioimmunoassay of tissue extracts and immunolabeling of cultured chick lens cells indicated that the selective presence of talin and of the 135-kD protein in different cell contacts is spatially regulated within individual cells. On the basis of these findings it was concluded that adherens junctions are molecularly heterogeneous and consist of at least two major subgroups. Contacts with noncellular substrates contain talin and vinculin but not the 135-kD protein, whereas their intercellular counterparts contain the latter two proteins and are devoid of talin. The significance of these results and their possible relationships to contact-induced regulation of cell behavior are discussed. 相似文献
8.
Lorenzo Alibardi 《Acta zoologica》2011,92(1):89-100
Alibardi, L. 2011. Cell junctions during morphogenesis of feathers: general ultrastructure with emphasis on adherens junctions. —Acta Zoologica (Stockholm) 92 : 89–100. The present ultrastructural and immunocytochemical study analyzes the cell junctions joining barb/barbule cells versus cell junctions connecting supportive cells in forming feathers. Differently from the epidermis or the sheath, desmosomes are not the prevalent junctions among feather cells. Numerous adherens junctions, some gap junctions and fewer tight junctions are present among differentiating barb/barbule cells during early stages of their differentiation. Adherens junctions are frequent also among differentiating supportive cells and show weak immunolabeling for both N‐cadherin and neural‐cell adhesion molecule (N‐CAM). Differentiating barb and barbule cells do not show labeled junctions for N‐cadherin and N‐CAM. The labeling occurs at patches in the cytoplasm of supportive cells but is more frequently seen in the external cytoplasm and along the extra‐cellular space (glycocalix) covering the plasma membrane of supportive cells. Labeling for N‐cadherin is also found in medium‐dense 0.1‐ to 0.3‐μm granules present in supportive cells and sometimes is associated with coarse filaments or periderm granules. The study indicates that adherens junctions form most of the transitional connections among supportive cells before their degeneration. Keratinizing barb and barbule cells loose the labeling for adherens junctions (N‐CAM and N‐chaderin) while their adhesion is strengthened by the incorporation of cell junctions in the corneous mass forming the barbules. 相似文献
9.
10.
Molecular architecture of adherens junctions. 总被引:28,自引:0,他引:28
A Nagafuchi 《Current opinion in cell biology》2001,13(5):600-603
Adherens junctions are composed of a cadherin-catenin complex and its associated proteins. Recently, an increasing number of novel members of adherens junctions, including membrane and PDZ proteins, have been reported. Interactions among these components in adherens junctions seem to be dynamically regulated during the formation of adherens junction complexes in epithelial cells. 相似文献
11.
Although Snail is essential for disassembly of adherens junctions during epithelial–mesenchymal transitions (EMTs), loss of adherens junctions in Drosophila melanogaster gastrula is delayed until mesoderm is internalized, despite the early expression of Snail in that primordium. By combining live imaging and quantitative image analysis, we track the behavior of E-cadherin–rich junction clusters, demonstrating that in the early stages of gastrulation most subapical clusters in mesoderm not only persist, but move apically and enhance in density and total intensity. All three phenomena depend on myosin II and are temporally correlated with the pulses of actomyosin accumulation that drive initial cell shape changes during gastrulation. When contractile myosin is absent, the normal Snail expression in mesoderm, or ectopic Snail expression in ectoderm, is sufficient to drive early disassembly of junctions. In both cases, junctional disassembly can be blocked by simultaneous induction of myosin contractility. Our findings provide in vivo evidence for mechanosensitivity of cell–cell junctions and imply that myosin-mediated tension can prevent Snail-driven EMT. 相似文献
12.
Kwan-Lih Hsu Han-Jou Fan Yung-Chia Chen Yuahn-Sieh Huang Chia-Huei Chen Jiahn-Chun Wu Seu-Mei Wang 《The international journal of biochemistry & cell biology》2009,41(7):1536-1546
Oleic acid (OA) affects assembly of gap junctions in neonatal cardiomyocytes. Adherens junction (AJ) regulates the stability of gap junction integrity; however, the effect of OA on AJ remains largely unexplored. The distribution of N-cadherin and catenins at cell–cell junction was decreased by OA. OA induced activation of protein kinase C(PKC)-α and -? and Src family kinase, and all three kinases were involved in the oleic acid-induced disassembly of the adherens junction, since it was blocked by pretreatment with Gö6976 (a PKCα inhibitor), ?V1–2 (a PKC? inhibitor), or PP2 (a Src family kinase inhibitor). Src family kinase appeared to be the downstream of PKC-α and -?, as blockade of either PKC-α or -? activity prevented the OA-induced activation of Src family kinase. Immunoprecipitation analyses showed that OA activated Fyn and Fer. OA promoted the association of p120 catenin/β-catenin with Fyn and Fer and caused increased tyrosine phosphorylation of p120 catenin and β-catenin, resulting in decreased binding of the former to N-cadherin and of the latter to α-catenin. Pretreatment with PP2 abrogated this OA-induced tyrosine phosphorylation of p120 catenin and β-catenin and restored the association of N-cadherin with p120 catenin and that of β-catenin with α-catenin. In conclusion, these results show that OA activates the PKC-Fyn signaling pathway, leading to the disassembly of the AJ. Therefore, inhibitors of PKC-α/-? and Src family kinase are potential candidates as cardioprotection agents against OA-induced heart injury during ischemia-reperfusion. 相似文献
13.
The morphogenic function of E-cadherin-mediated adherens junctions in epithelial ovarian carcinoma formation and progression 总被引:1,自引:0,他引:1
Wu C Cipollone J Maines-Bandiera S Tan C Karsan A Auersperg N Roskelley CD 《Differentiation; research in biological diversity》2008,76(2):193-205
Abstract E-cadherin expression is unusually regulated in epithelial ovarian carcinoma. It is not expressed in poorly cohesive ovarian surface epithelial (OSE) target cells, but is expressed in cohesive pre-malignant lesions and in highly cohesive, well-differentiated tumors where it is membrane associated, presumably in adherens junctions. E-cadherin expression is subsequently suppressed, or its function is disrupted, in late-stage invasive tumors. Here, we observed that increased E-cadherin expression in ovarian carcinoma cells was associated with increased E-cadherin promoter activity, increased adherens junction formation, decreased β-catenin signaling-dependent LEF-1 activity, and the generation of cohesive spheroids in basement membrane gel culture. Forced expression of wild-type E-cadherin in immortalized OSE cells initiated adherens junction formation, decreased LEF-1 activity, decreased the mesenchymal migration that is a characteristic of OSE cells that have been maintained in monolayer culture, and induced the formation of cohesive spheroids in basement membrane gels. Conversely, forced expression of a dominant-negative E-cadherin mutant in ovarian carcinoma cells disrupted adherens junctions, increased mesenchymal cell migration, and prevented spheroidal morphogenesis without altering LEF-1 signaling. Therefore, in addition to suppressing late-stage tumor progression, E-cadherin-mediated adherens junctions may also contribute to the initial emergence of a cohesive morphogenic phenotype that is a hallmark of differentiated epithelial ovarian carcinoma. 相似文献
14.
Extracellular calcium concentration has been shown to control the stratification of cultured keratinocytes, presumably by regulation of formation of desmosomes. Previous studies have shown that keratinocytes cultured in medium containing 0.1 mM Ca++ form loose colonies without desmosomes. If the Ca++ is raised to 1 mM, desmosomes are assembled and the distribution of keratin filaments is altered. We have examined the disposition of vinculin and actin in keratinocytes under similar conditions. Using immunofluorescence microscopy we show that raising [Ca++] in the medium dramatically alters the distribution of vinculin and actin and results in the formation of adherens-type junctions within 15 min after switching to high calcium medium. Borders of cells at the edge of colonies, which are not proximal to other cells, are not affected, while cells in the interior of the colony form junctions around their periphery. Attachment plaques in keratinocytes grown in low calcium medium are located at the ventral plane of the cell, but junctions formed after switching to high calcium are not, as demonstrated by interference reflection microscopy. In cells colabeled with antibodies against vinculin and desmoplakin, vinculin-containing adherens junctions were visible before desmosomal junctions when cells were switched to high calcium. Although newly formed vinculin-containing structures in high calcium cells, like desmosomes, colocalize with phase-dense structures, superimposition of video fluorescence images using digitized fluorescence microscopy indicates that adherens junctions and desmosomes are discrete structures. Adherens junctions, like desmosomes, may play an essential role in controlling stratification of keratinocytes. 相似文献
15.
Peter F. Truesdell Ralph A. Zirngibl Waheed Sangrar Peter A. Greer 《Experimental cell research》2009,315(17):2929-208
The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase implicated in vesicular trafficking and cytokine and growth factor signaling in hematopoietic, neuronal, vascular endothelial and epithelial lineages. Genetic evidence has suggested a tumor suppressor role for Fps/Fes in breast and colon. Here we used fps/fes knockout mice to investigate potential roles for this kinase in development and function of the mammary gland. Fps/Fes expression was induced during pregnancy and lactation, and its kinase activity was dramatically enhanced. Milk protein and fat composition from nursing fps/fes-null mothers was normal; however, pups reared by them gained weight more slowly than pups reared by wild-type mothers. Fps/Fes displayed a predominantly dispersed punctate intracellular distribution which was consistent with vesicles within the luminal epithelial cells of lactating breast, while a small fraction co-localized with β-catenin and E-cadherin on their basolateral surfaces. Fps/Fes was found to be a component of the E-cadherin adherens junction (AJ) complex; however, the phosphotyrosine status of β-catenin and core AJ components in fps/fes-null breast tissue was unaltered, and epithelial cell AJs and gland morphology were intact. We conclude that Fps/Fes is not essential for the maintenance of epithelial cell AJs in the lactating breast but may instead play important roles in vesicular trafficking and milk secretion. 相似文献
16.
17.
18.
19.
Hogan C Serpente N Cogram P Hosking CR Bialucha CU Feller SM Braga VM Birchmeier W Fujita Y 《Molecular and cellular biology》2004,24(15):6690-6700
In epithelial tissues, cells are linked to their neighbors through specialized cell-cell adhesion proteins. E-cadherin is one of the most important membrane proteins for the establishment of intimate cell-cell contacts, but the molecular mechanism by which it is recruited to contact sites is largely unknown. We report here that the cytoplasmic domain of E-cadherin interacts with C3G, a guanine nucleotide exchange factor for Rap1. In epithelial cell cultures, ligation of the extracellular domain of E-cadherin enhances Rap1 activity, which in turn is necessary for the proper targeting of E-cadherin molecules to maturing cell-cell contacts. Furthermore, our data suggest that Cdc42 functions downstream of Rap1 in this process. We conclude that Rap1 plays a vital role in the establishment of E-cadherin-based cell-cell adhesion. 相似文献
20.
The transcellular entry of Escherichia coli K1 through human brain microvascular endothelial cells (HBMEC) is responsible for tight junction disruption, leading to brain oedema in neonatal meningitis. Previous studies demonstrated that outer membrane protein A (OmpA) of E. coli K1 interacts with its receptor, Ecgp96, to induce PKC‐α phosphorylation, adherens junction (AJ) disassembly (by dislodging β‐catenin from VE‐cadherin), and remodelling of actin in HBMEC. We report here that IQGAP1 mediates β‐catenin dissociation from AJs to promote actin polymerization required for E. coli K1 invasion of HBMEC. Overexpression of C‐terminal truncated IQGAP1 (IQΔC) that cannot bind β‐catenin prevents both AJ disruption and E. coli K1 entry. Of note, phospho‐PKC‐α interacts with the C‐terminal portion of Ecgp96 as well as with VE‐cadherin after IQGAP1‐mediated AJ disassembly. HBMEC overexpressing either C‐terminal truncated Ecgp96 (Ecgp96Δ200) or IQΔC upon infection with E. coli showed no interaction ofphospho‐PKC‐α with Ecgp96. These data indicate that the binding of OmpA to Ecgp96 induces PKC‐α phosphorylation and association of phospho‐PKC‐α with Ecgp96, and then signals IQGAP1 to detach β‐catenin from AJs. Subsequently, IQGAP1/β‐catenin bound actin translocates to the site of E. coli K1 attachment to promote invasion. 相似文献