共查询到20条相似文献,搜索用时 15 毫秒
1.
Demetres D. Leonidas Spyros E. Zographos Katerina E. Tsitsanou Vassiliki T. Skamnaki George Stravodimos Efthimios Kyriakis 《Acta Crystallographica. Section F, Structural Biology Communications》2021,77(9):303-311
The crystal structures of free T-state and R-state glycogen phosphorylase (GP) and of R-state GP in complex with the allosteric activators IMP and AMP are reported at improved resolution. GP is a validated pharmaceutical target for the development of antihyperglycaemic agents, and the reported structures may have a significant impact on structure-based drug-design efforts. Comparisons with previously reported structures at lower resolution reveal the detailed conformation of important structural features in the allosteric transition of GP from the T-state to the R-state. The conformation of the N-terminal segment (residues 7–17), the position of which was not located in previous T-state structures, was revealed to form an α-helix (now termed α0). The conformation of this segment (which contains Ser14, phosphorylation of which leads to the activation of GP) is significantly different between the T-state and the R-state, pointing in opposite directions. In the T-state it is packed between helices α4 and α16 (residues 104–115 and 497–508, respectively), while in the R-state it is packed against helix α1 (residues 22′–38′) and towards the loop connecting helices α4′ and α5′ of the neighbouring subunit. The allosteric binding site where AMP and IMP bind is formed by the ordering of a loop (residues 313–326) which is disordered in the free structure, and adopts a conformation dictated mainly by the type of nucleotide that binds at this site. 相似文献
2.
C. M. A. A. Goos A. H. G. M. Beaumont A. M. G. Vermeesch-Markslag J. W. J. van der Stappen C. Sultan A. J. M. Vermorken 《Molecular biology reports》1987,12(4):259-264
The skin epithelium and its organelles use glycogen as well as glucose as source of energy. Therefore the characterisation of glycogen metabolism and the enzymes involved is important in the study of mechanisms regulating the normal or abnormal differentiation of skin organelles such as sebaceous glands and hair follicles.The present paper describes fluorimetric methods for the determination of glycogen and for the measurements of phosphorylase and phosphorylase kinase activity in one and the same lysate of minute tissue samples. The methods were tested for their suitability on freshly isolated human hair follicles and cultured hair follicle cells. The possible use of these techniques for studies on the pathophysiology of acne and hirsutism is discussed. 相似文献
3.
The bacterial enzyme maltodextrin phosphorylase (MalP) catalyses the phosphorolysis of an alpha-1,4-glycosidic bond in maltodextrins, removing the non-reducing glucosyl residues of linear oligosaccharides as glucose-1-phosphate (Glc1P). In contrast to the well-studied muscle glycogen phosphorylase (GP), MalP exhibits no allosteric properties and has a higher affinity for linear oligosaccharides than GP. We have used MalP as a model system to study catalysis in the crystal in the direction of maltodextrin synthesis. The 2.0A crystal structure of the MalP/Glc1P binary complex shows that the Glc1P substrate adopts a conformation seen previously with both inactive and active forms of mammalian GP, with the phosphate group not in close contact with the 5'-phosphate group of the essential pyridoxal phosphate (PLP) cofactor. In the active MalP enzyme, the residue Arg569 stabilizes the negative-charged Glc1P, whereas in the inactive form of GP this key residue is held away from the catalytic site by loop 280s and an allosteric transition of the mammalian enzyme is required for activation. The comparison between MalP structures shows that His377, through a hydrogen bond with the 6-hydroxyl group of Glc1P substrate, triggers a conformational change of the 380s loop. This mobile region folds over the catalytic site and contributes to the specific recognition of the oligosaccharide and to the synergism between substrates in promoting the formation of the MalP ternary complex. The structures solved after the diffusion of oligosaccharides (either maltotetraose, G4 or maltopentaose, G5) into MalP/Glc1P crystals show the formation of phosphate and elongation of the oligosaccharide chain. These structures, refined at 1.8A and at 2.2A, confirm that only when an oligosaccharide is bound to the catalytic site will Glc1P bend its phosphate group down so it can contact the PLP 5' phosphate group and promote catalysis. The relatively large oligosaccharide substrates can diffuse quickly into the MalP/Glc1P crystals and the enzymatic reaction can occur without significant crystal damage. These structures obtained before and after catalysis have been used as frames of a molecular movie. This movie reveals the relative positions of substrates in the catalytic channel and shows a minimal movement of the protein, involving mainly Arg569, which tracks the substrate phosphate group. 相似文献
4.
Control of phosphorylase b conformation by a modified cofactor: crystallographic studies on R-state glycogen phosphorylase reconstituted with pyridoxal 5''-diphosphate.
下载免费PDF全文

D. D. Leonidas N. G. Oikonomakos A. C. Papageorgiou K. R. Acharya D. Barford L. N. Johnson 《Protein science : a publication of the Protein Society》1992,1(9):1112-1122
Previous crystallographic studies on glycogen phosphorylase have described the different conformational states of the protein (T and R) that represent the allosteric transition and have shown how the properties of the 5'-phosphate group of the cofactor pyridoxal phosphate are influenced by these conformational states. The present work reports a study on glycogen phosphorylase b (GPb) complexed with a modified cofactor, pyridoxal 5'-diphosphate (PLPP), in place of the natural cofactor. Solution studies (Withers, S.G., Madsen, N.B., & Sykes, B.D., 1982, Biochemistry 21, 6716-6722) have shown that PLPP promotes R-state properties of the enzyme indicating that the cofactor can influence the conformational state of the protein. GPb complexed with pyridoxal 5'-diphosphate (PLPP) has been crystallized in the presence of IMP and ammonium sulfate in the monoclinic R-state crystal form and the structure refined from X-ray data to 2.8 A resolution to a crystallographic R value of 0.21. The global tertiary and quaternary structure in the vicinity of the Ser 14 and the IMP sites are nearly identical to those observed for the R-state GPb-AMP complex. At the catalytic site the second phosphate of PLPP is accommodated with essentially no change in structure from the R-state structure and is involved in interactions with the side chains of two lysine residues (Lys 568 and Lys 574) and the main chain nitrogen of Arg 569. Superposition of the T-state structure shows that were the PLPP to be incorporated into the T-state structure there would be a close contact with the 280s loop (residues 282-285) that would encourage the T to R allosteric transition. The second phosphate of the PLPP occupies a site that is distinct from other dianionic binding sites that have been observed for glucose-1-phosphate and sulfate (in the R state) and for heptulose-2-phosphate (in the T state). The results indicate mobility in the dianion recognition site, and the precise position is dependent on other linkages to the dianion. In the modified cofactor the second phosphate site is constrained by the covalent link to the first phosphate of PLPP. The observed position in the crystal suggests that it is too far from the substrate site to represent a site for catalysis. 相似文献
5.
Multiple phosphate positions in the catalytic site of glycogen phosphorylase: structure of the pyridoxal-5''-pyrophosphate coenzyme-substrate analog. 总被引:1,自引:3,他引:1
下载免费PDF全文

S. R. Sprang N. B. Madsen S. G. Withers 《Protein science : a publication of the Protein Society》1992,1(9):1100-1111
The three-dimensional structure of an R-state conformer of glycogen phosphorylase containing the coenzyme-substrate analog pyridoxal-5'-diphosphate at the catalytic site (PLPP-GPb) has been refined by X-ray crystallography to a resolution of 2.87 A. The molecule comprises four subunits of phosphorylase related by approximate 222 symmetry. Whereas the quaternary structure of R-state PLPP-GPb is similar to that of phosphorylase crystallized in the presence of ammonium sulfate (Barford, D. & Johnson, L.N., 1989, Nature 340, 609-616), the tertiary structures differ in that the two domains of the PLPP-GPb subunits are rotated apart by 5 degrees relative to the T-state conformation. Global differences among the four subunits suggest that the major domains of the phosphorylase subunit are connected by a flexible hinge. The two different positions observed for the terminal phosphate of the PLPP are interpreted as distinct phosphate subsites that may be occupied at different points along the reaction pathway. The structural basis for the unique ability of R-state dimers to form tetramers results from the orientation of subunits with respect to the dyad axis of the dimer. Residues in opposing dimers are in proper registration to form tetramers only in the R-state. 相似文献
6.
Oikonomakos NG Kosmopoulou MN Chrysina ED Leonidas DD Kostas ID Wendt KU Klabunde T Defossa E 《Protein science : a publication of the Protein Society》2005,14(7):1760-1771
Acyl ureas were discovered as a novel class of inhibitors for glycogen phosphorylase, a molecular target to control hyperglycemia in type 2 diabetics. This series is exemplified by 6-{2,6-Dichloro- 4-[3-(2-chloro-benzoyl)-ureido]-phenoxy}-hexanoic acid, which inhibits human liver glycogen phosphorylase a with an IC(50) of 2.0 microM. Here we analyze four crystal structures of acyl urea derivatives in complex with rabbit muscle glycogen phosphorylase b to elucidate the mechanism of inhibition of these inhibitors. The structures were determined and refined to 2.26 Angstroms resolution and demonstrate that the inhibitors bind at the allosteric activator site, where the physiological activator AMP binds. Acyl ureas induce conformational changes in the vicinity of the allosteric site. Our findings suggest that acyl ureas inhibit glycogen phosphorylase by direct inhibition of AMP binding and by indirect inhibition of substrate binding through stabilization of the T' state. 相似文献
7.
Stephanie S. Schweiker Wendy A. Loughlin Christopher L. Brown Gregory K. Pierens 《Journal of peptide science》2009,15(6):442-450
The first solution state structural analysis (NMR) of the C‐terminal sequence of human GL that binds to glycogen phosphorylase a (GPa), PEWPSYLGYEKLGPYY‐NH2 ( 1 ), showed it to be in a random coil conformation. This was supported by molecular dynamics simulation (modelled in solution) using NAMD 2.6. The conformational ambiguity of the peptide makes the structural arrangement of the peptide (and internal residues) strongly dependent on the environment. Thirteen tetra‐peptide fragments of the C‐terminal sequence, YEKLG‐NH2, and the corresponding tri‐ and di‐peptide sequences were used in a fragment screen against GPa. Compound 2 (H‐GPYY‐NH2) did not give an IC50 value, whereas PEWPSYLGYEKLGPYY‐NH2 ( 1 ) displayed an IC50 of 34 µM against GPa. Truncated peptides derived from 1 , (EKL‐NH2, EKLG‐NH2, and AcEKNH2) inhibited GPa (21%, 32%, 63%, respectively at 22 mM ). These studies suggest key residues within the peptide chain have additional molecular interactions with GPa. The interaction of intra‐sequence residues in combination with the terminal residues of PEWPSYLGYEKLGPYY with GPa may form the basis for the design of new inhibitors of GPa. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
8.
Changes in the activity of enzymes,participating in glycogen metabolism of alloxan diabetic rats 总被引:1,自引:0,他引:1
Henry K. Parsadanian Laura P. Ter-Tatevosian Hasmik R. Martikian Susanna H. Avakian 《Molecular and cellular biochemistry》1989,90(2):185-190
Summary Alloxan diabetes induced in white rats by intraperitoneal injection of Aloxan-monohydrate (15 mg/100 g body weight) was used to study changes in the glycogen phosphorylase a and b, phosphoprotein phosphatases and hexokinase activities under insulin deficiency conditions. Among the enzymes studied, an increase in muscle phosphorylase a activity as well as the a/b ratio have been obtained. In diabetic muscle phosphoprotein phosphatases and hexokinase activities were diminished.AMP increased the liver glycogen phosphorylase activity twice in diabetic rats whereas in normal animals the enzyme was less sensitive to this effector. The changes in liver hexokinase activity at diabetes were not connected and correlated with the altered phosphorylase and protein phosphatase activities.The logical chain of probable molecular events taking place in muscle glycogen metabolism under the conditions of insulin deficiency is offered. 相似文献
9.
Kinetic analysis of the glycogen chain growth reaction catalyzed by glycogen phosphorylase b from rabbit skeletal muscle has been carried out over a wide range of AMP concentration under the saturation of the enzyme by glycogen. Applicability of some variants of the kinetic model involving the interaction of AMP- and glucose 1-phosphate-binding sites in the dimeric enzyme molecule is considered. A kinetic model of the enzymatic reaction describing adequately the activation of the enzyme by AMP and inhibition at sufficiently high concentrations of AMP is proposed. 相似文献
10.
Chrysina ED Kosmopoulou MN Tiraidis C Kardakaris R Bischler N Leonidas DD Hadady Z Somsak L Docsa T Gergely P Oikonomakos NG 《Protein science : a publication of the Protein Society》2005,14(4):873-888
In an attempt to identify leads that would enable the design of inhibitors with enhanced affinity for glycogen phosphorylase (GP), that might control hyperglycaemia in type 2 diabetes, three new analogs of beta-D-glucopyranose, 2-(beta-D-glucopyranosyl)-5-methyl-1, 3, 4-oxadiazole, -benzothiazole, and -benzimidazole were assessed for their potency to inhibit GPb activity. The compounds showed competitive inhibition (with respect to substrate Glc-1-P) with K(i) values of 145.2 (+/-11.6), 76 (+/-4.8), and 8.6 (+/-0.7) muM, respectively. In order to establish the mechanism of this inhibition, crystallographic studies were carried out and the structures of GPb in complex with the three analogs were determined at high resolution (GPb-methyl-oxadiazole complex, 1.92 A; GPb-benzothiazole, 2.10 A; GPb-benzimidazole, 1.93 A). The complex structures revealed that the inhibitors can be accommodated in the catalytic site of T-state GPb with very little change of the tertiary structure, and provide a rationalization for understanding variations in potency of the inhibitors. In addition, benzimidazole bound at the new allosteric inhibitor or indole binding site, located at the subunit interface, in the region of the central cavity, and also at a novel binding site, located at the protein surface, far removed (approximately 32 A) from the other binding sites, that is mostly dominated by the nonpolar groups of Phe202, Tyr203, Val221, and Phe252. 相似文献
11.
Kinetic properties of tetrameric glycogen phosphorylase b in solution and in the crystalline state.
下载免费PDF全文

D. D. Leonidas N. G. Oikonomakos A. C. Papageorgiou T. G. Sotiroudis 《Protein science : a publication of the Protein Society》1992,1(9):1123-1132
R-state monoclinic P2(1) crystals of phosphorylase have been shown to be catalytically active in the presence of an oligosaccharide primer and glucose-1-phosphate in 0.9 M ammonium sulfate, 10 mM beta-glycerophosphate, 0.5 mM EDTA, and 1 mM dithiothreitol, the medium in which the crystals are grown or equilibrated for crystallographic studies (Barford, D. & Johnson, L.N., 1989, Nature 360, 609-616; Barford, D., Hu, S.-H., & Johnson, L.N., 1991, J. Mol. Biol. 218, 233-260). Kinetic data suggest that the activity of crystalline tetrameric phosphorylase is similar to that determined in solution for the enzyme tetramer. However, large differences were found in the maximal velocities for both oligosaccharide or glucose-1-phosphate substrates between the soluble dimeric and crystalline tetrameric enzyme. 相似文献
12.
A model to study glycogen supercompensation (the significant increase in glycogen content above basal level) in primary rat skeletal muscle culture was established. Glycogen was completely depleted in differentiated myotubes by 2 h of electrical stimulation or exposure to hypoxia during incubation in medium devoid of glucose. Thereafter, cells were incubated in medium containing glucose, and glycogen supercompensation was clearly observed in treated myotubes after 72 h. Peak glycogen levels were obtained after 120 h, averaging 2.5 and 4 fold above control values in the stimulated- and hypoxia-treated cells, respectively. Glycogen synthase activity increased and phosphorylase activity decreased continuously during 120 h of recovery in the treated cells. Rates of 2-deoxyglucose uptake were significantly elevated in the treated cells at 96 and 120 h, averaging 1.4–2 fold above control values. Glycogenin content increased slightly in the treated cells after 48 h (1.2 fold vs. control) and then increased considerably, achieving peak values after 120 h (2 fold vs. control). The results demonstrate two phases of glycogen supercompensation: the first phase depends primarily on activation of glycogen synthase and inactivation of phosphorylase; the second phase includes increases in glucose uptake and glycogenin level. 相似文献
13.
N. Aghajari G. Feller C. Gerday R. Haser 《Protein science : a publication of the Protein Society》1998,7(3):564-572
Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal structures of the alpha-amylase (AHA) secreted by this bacterium, in its native state to 2.0 angstroms resolution as well as in complex with Tris to 1.85 angstroms resolution. The structure of AHA, which is the first experimentally determined three-dimensional structure of a psychrophilic enzyme, resembles those of other known alpha-amylases of various origins with a surprisingly greatest similarity to mammalian alpha-amylases. AHA contains a chloride ion which activates the hydrolytic cleavage of substrate alpha-1,4-glycosidic bonds. The chloride binding site is situated approximately 5 angstroms from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation. A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine-protease like catalytic triads was found approximately 22 angstroms from the active site. We found that this triad is equally present in other chloride dependent alpha-amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted alpha-amylase. 相似文献
14.
Watson KA Chrysina ED Tsitsanou KE Zographos SE Archontis G Fleet GW Oikonomakos NG 《Proteins》2005,61(4):966-983
Glycogen phosphorylase (GP) is currently exploited as a target for inhibition of hepatic glycogenolysis under high glucose conditions. Spirohydantoin of glucopyranose and N-acetyl-beta-D-glucopyranosylamine have been identified as the most potent inhibitors of GP that bind at the catalytic site. Four spirohydantoin and three beta-D-glucopyranosylamine analogs have been designed, synthesized and tested for inhibition of GP in kinetic experiments. Depending on the functional group introduced, the K(i) values varied from 16.5 microM to 1200 microM. In order to rationalize the kinetic results, we determined the crystal structures of the analogs in complex with GP. All the inhibitors bound at the catalytic site of the enzyme, by making direct and water-mediated hydrogen bonds with the protein and by inducing minor movements of the side chains of Asp283 and Asn284, of the 280s loop that blocks access of the substrate glycogen to the catalytic site, and changes in the water structure in the vicinity of the site. The differences observed in the Ki values of the analogs can be interpreted in terms of variations in hydrogen bonding and van der Waals interactions, desolvation effects, ligand conformational entropy, and displacement of water molecules on ligand binding to the catalytic site. 相似文献
15.
The insulin-mimetic action of vanadate is well established but the exact mechanism by which it exerts this effect is still not clearly understood. The role of insulin in the regulation of hepatic glycogen metabolizing and lipogenic enzymes is well known. In our study, we have, therefore, examined the effects of vanadate on these hepatic enzymes using four different models of diabetic and insulin-resistant animals. Vanadate normalized the blood glucose levels in all animal models. In streptozotocin-induced diabetic rats, the amount of liver glycogen and the activities of the active-form of glycogen synthase, both active and inactive-forms of phosphorylase, and lipogenic enzymes like glucose 6-phosphate dehydrogenase and malic enzyme were decreased and vanadate treatment normalized all of these to near normal levels. The other three animal models (db/db mouse, sucrose-fed rats and fa/fa obese Zucker rats) were characterized by hyperinsulinemia, hypertriglyceridemia, increases in activities of lipogenic enzymes, and marginal changes in glycogen metabolizing enzymes. Vanadate treatment brought all of these values towards normal levels. It should be noted that vanadate shows differential effects in the modulation of lipogenic enzymes activities in type I and type II diabetic animals. It increases the activities of lipogenic enzymes in streptozotocin-induced diabetic animals and prevents the elevation of activities of these enzymes in hyperinsulinemic animals. The insulin-stimulated phosphorylation of insulin receptor subunit and its tyrosine kinase activity was increased in streptozotocin-induced diabetic rats after treatment with vanadate. Our results support the view that insulin receptor is one of the sites involved in the insulin-mimetic actions of vanadate. 相似文献
16.
17.
Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies 总被引:10,自引:0,他引:10
Isozyme-specific antibodies were raised against peptides from the low-homology regions of the sequences of rat glycogen phosphorylase BB and MM isozymes by immunization of rabbits and guinea pigs. Immunocytochemical double-labelling experiments on frozen sections of rat nervous tissues were performed to investigate the isozyme localization pattern. Astrocytes throughout the brain and spinal cord expressed both isozymes in perfect co-localization. Ependymal cells only expressed the BB isozyme. Most neurones were not immunoreactive. The rare neurones that contained glycogen phosphorylase only expressed the BB isozyme. Nearly all of these neurones formed part of the afferent somatosensory system. These findings stress the general importance of glycogen in neural energy metabolism and indicate a special role for the glycogen phosphorylase BB isozyme in neurones in the somatosensory system. 相似文献
18.
N. G. Oikonomakos M. Kontou S. E. Zographos K. A. Watson L. N. Johnson C. J. F. Bichard G. W. J. Fleet K. R. Acharya 《Protein science : a publication of the Protein Society》1995,4(12):2469-2477
Structure-based drug design has led to the discovery of a number of glucose analogue inhibitors of glycogen phosphorylase that have an increased affinity compared to α-D-glucose (Ki = 1.7 mM). The best inhibitor in the class of N-acyl derivatives of β-D-glucopyranosylamine, N-acetyl-β-D-glucopyranosylamine (1-GlcNAc), has been characterized by kinetic, ultracentrifugation, and crystallographic studies. 1-GlcNAc acts as a competitive inhibitor for both the b (Ki = 32 μM) and the α (Ki = 35 μM) forms of the enzyme with respect to glucose 1-phosphate and in synergism with caffeine, mimicking the binding of glucose. Sedimentation velocity experiments demonstrated that 1-GlcNAc was able to induce dissociation of tetrameric phosphorylase α and stabilization of the dimeric T-state conformation. Co-crystals of the phosphorylase b-1-GlcNAc-IMP complex were grown in space group P43212, with native-like unit cell dimensions, and the complex structure has been refined to give a crystallographic R factor of 18.1%, for data between 8 and 2.3 Å resolution. 1-GlcNAc binds tightly at the catalytic site of T-state phosphorylase b at approximately the same position as that of α-D-glucose. The ligand can be accommodated in the catalytic site with very little change in the protein structure and stabilizes the T-state conformation of the 280s loop by making several favorable contacts to Asn 284 of this loop. Structural comparisons show that the T-state phosphorylase b-1-GlcNAc-IMP complex structure is overall similar to the T-state phosphorylase b-α-D-glucose complex structure. The structure of the 1-GlcNAc complex provides a rational for the biochemical properties of the inhibitor. 相似文献
19.
Chronic caloric restriction (CR) prevents the development of obesity and maintains health, slows aging processes, and prevents or substantially delays the development of non-insulin-dependent diabetes. Because changes in energy metabolism could be involved in all of these positive effects of CR, we examined glycogen synthase (GS) and glycogen phosphorylase (GP) activities and glucose 6-phosphate (G6P) and glycogen concentrations in skeletal muscle samples before and during a euglycemic hyperinsulinemic clamp in 6 older aged monkeys in which CR had been continued for 10.4 ± 2.1 years. Basal GS activity (fractional velocity and independent) was significantly higher in the CR monkeys than has been previously shown in normal, hyperinsulinemic and diabetic monkeys. The normal effect of insulin to activate GS was absent in the CR group due to the paradoxical finding in some of these monkeys of a reduction in GS activity by insulin. Insulin also had the unexpected effect of increasing the independent activity of GP above basal activity (p<0.05). There was an inverse relationship between the change (insulin-stimulated minus basal) in GS fractional velocity and GP activity ratio (r=-0.91, p<0.005). The basal independent activities of GS and GP were also inversely correlated (r=-0.79, p<0.05). The insulin-stimulated concentration of G6P tended to be higher than the basal concentration (p<0.06) and was significantly higher than that previously shown in normal monkeys (p<0.05). We suggest that long-term calorie restriction (1) results in alterations in glycogen metabolism that may be important to the anti-diabetogenic and anti-aging effects of CR and (2) unmasks early defects which may indicate the likelihood of ultimately developing obesity and diabetes. 相似文献