首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emission spectra of the photolabile Ca2+ chelators DM-nitrophen, nitr-5, and diazo-2 were studied alone, and in the presence of indo-1, to investigate potential interactions that would make the simultaneous manipulation and ratiometric measurement of the intracellular Ca2+ concentration difficult. Neither diazo-2 nor its photoproduct were found to be significantly fluorescent, and consequently concentrations of diazo-2 up to 20 times that of indo-1 did not distort the emission spectra of indo-1. DM-nitrophen was scarcely fluorescent, but its fluorescence did increase upon photolysis. In contrast to diazo-2 and DM-nitrophen, nitr-5 itself was found to be quite fluorescent, and this fluorescence was significantly increased upon photolysis. Thus, combined use of nitr-5 and indo-1 poses the most difficulty. The emission spectra of all the investigated compounds were used to define experimental conditions and calibration procedures that make possible simultaneous measurement and manipulation of the intracellular Ca2+ concentration.  相似文献   

2.
D A Williams 《Cell calcium》1990,11(9):589-597
Laser-scanning confocal microscopy has been used to visualise the fluorescence of a visible wavelength Ca2(+)-sensitive fluorophore, Fluo-3 in isolated cardiac myocytes. A protocol for the derivation of quantitative information from this single wavelength indicator is presented. This paradigm involves co-loading cells with two Ca2(+)-sensitive fluorescent indicators, Fluo-3 and Fura-2. Wide-field ratiometric measurements of Fura-2 fluorescence provided a baseline [Ca2+] upon which changes in Fluo-3 fluorescence could be directly expressed as [Ca2+] changes. The Ca2+ changes occurring in spontaneously active cardiac cells are presented as an example of the method. Although fluorescence energy transfer between Fura-2 and Fluo-3 was detectable in some in vitro mixtures of the two fluorophores, this process was not evident in co-loaded cardiac cells under the loading conditions employed.  相似文献   

3.
Nitrophenyl-EGTA and DM-nitrophen are Ca2+ cages that release Ca2+ when cleaved upon illumination with near-ultraviolet light. Laser photolysis of nitrophenyl-EGTA produced transient intermediates that decayed biexponentially with rates of 500,000 s-1 and 100,000 s-1 in the presence of saturating Ca2+ and 290,000 s-1 and 68,000 s-1 in the absence of Ca2+ at pH 7.2 and 25 degrees C. Laser photolysis of nitrophenyl-EGTA in the presence of Ca2+ and the Ca2+ indicator Ca-orange-5N produced a monotonic increase in the indicator fluorescence, which had a rate of 68,000 s-1 at pH 7.2 and 25 degrees C. Irradiation of DM-nitrophen produced similar results with somewhat slower kinetics. The transient intermediates decayed with rates of 80,000 s-1 and 11,000 s-1 in the presence of Ca2+ and 59,000 s-1 and 3,600 s-1 in the absence of Ca2+ at pH 7.2 and 25 degrees C. The rate of increase in Ca(2+)-indicator fluorescence produced upon photolysis of the DM-nitrophen: Ca2+ complex was 38,000 s-1 at pH 7.2 and 25 degrees C. In contrast, pulses in Ca2+ concentration were generated when the chelator concentrations were more than the total Ca2+ concentration. Photoreleased Ca2+ concentration stabilized under these circumstances to a steady state within 1-2 ms.  相似文献   

4.
Accurate measurement of elevated intracellular calcium levels requires indicators with low calcium affinity and high selectivity. We examined fluorescence spectral properties and ionic specificity of three low-affinity, ratiometric indicators structurally related to Fura-2: mag-Fura-2 (furaptra), Fura-2FF, and BTC. The indicators differed in respect to their excitation wavelengths, affinity for Ca2+ (Kd approximately 20 microM, 6 microM and 12 microM respectively) and selectivity over Mg2+ (Kd approximately 2 mM for mag-Fura-2, > 10 mM for Fura-2FF and BTC). Among the tested indicators, BTC was limited by a modest dynamic range upon Ca2+ binding, susceptibility to photodamage, and sensitivity to alterations in pH. All three indicators bound other metal ions including Zn2+, Cd2+ and Gd3+. Interestingly, only in the case of BTC were spectral differences apparent between Ca2+ and other metal ions. For example, the presence of Zn2+ increased BTC fluorescence 6-fold at the Ca2+ isosbestic point, suggesting that this dye may be used as a fluorescent Zn2+ indicator. Fura-2FF has high specificity, wide dynamic range, and low pH sensitivity, and is an optimal low-affinity Ca2+ indicator for most imaging applications. BTC may be useful if experimental conditions require visible wavelength excitation or sensitivity to other metal ions including Zn2+.  相似文献   

5.
We report efficient two-photon and UV-laser flash photolysis of dimethoxynitrophenyl-EGTA-4 (DMNPE-4), a newly-developed photolabile Ca(2+)-specific chelator. This compound exhibits good two-photon absorption at 705 nm, has a low Mg2+ affinity (approximately 7 mM), a Kd for Ca2+ of 19 nM, a quantum yield of 0.20 and changes its Ca2+ affinity by 21,000-fold upon photolysis. Two-photon excitation photolysis (TPP) experiments were performed with a Ti:Sapphire laser in solutions containing DMNPE-4 with either 0 or 10 mM Mg2+ and compared to that of the widely used Ca2+ cage, DM-nitrophen (Kd for Ca2+ 5 nM, Kd for Mg2+ 2.5 microM, quantum yield 0.18, affinity change 600,000-fold). The resulting Ca2+ signals were recorded with the fluorescent Ca2+ indicator fluo-3 and a laser-scanning confocal microscope in the line-scan mode. In vitro, photolysis of DMNPE-4:Ca2+ produced Ca(2+)-release signals that had comparable amplitudes and time courses in the presence and absence of Mg2+. However, photorelease of Ca2+ from DM-nitrophen was obviated by the presence of Mg2+. In patch-clamped isolated cardiac myocytes, equivalent TPP results were obtained in analogous experiments. Single-photon excitation of DMNPE-4 by Nd:YAG laser flashes produced Na-Ca exchange currents of comparable amplitude in the absence and presence of Mg2+. However, only very small currents were observed in DM-nitrophen solution containing 10 mM Mg2+. In conclusion, both DMNPE-4 and DM-nitrophen undergo TPP, however, only DMNPE-4 exhibits efficient release of Ca2+ in the presence of Mg2+.  相似文献   

6.
Light-induced Ca2+ release from the Ca2+ complex of Nitr-5 altered the FTIR spectra of sarcoplasmic reticulum vesicles and purified Ca(2+)-ATPase preparations. The principal changes seen in difference spectra obtained after and before illumination in the presence of Nitr-5.Ca2+ consisted of an increase in absorbance at 1663 and 1676 cm-1 and a decrease in absorbance at 1653 cm-1. The light-induced changes in FTIR spectra were prevented by vanadate or EGTA, indicating that they were associated with the formation of Ca2E1 enzyme intermediate. Other light-induced changes in the FTIR spectra at 1600-1250 cm-1 were not clearly related to the sarcoplasmic reticulum, and were attributed to photolysis of Nitr-5. The difference absorbance bands are narrow, suggesting that they originate from changes in side chain vibrations, although some changes in secondary structures may also contribute.  相似文献   

7.
Although in erythrocytes calcium is thought to be important in homeostasis, measurements of this ion concentration are generally seen as rather problematic because of the auto-fluorescence or absorption properties of the intracellular milieu. Here, we describe experiments to assess the usability of popular calcium indicators such as Fura-2, Indo-1 and Fluo-4. In our experiments, Fluo-4 turned out to be the preferable indicator because (i) its excitation and emission properties were least influenced by haemoglobin and (ii) it was the only dye for which excitation light did not lead to significant auto-fluorescence of the erythrocytes. From these results, we conclude that the use of indicators such as Fura-2 together with red blood cells has to be revisited critically. We thus utilized Fluo-4 in erythrocytes to demonstrate a robust but heterogeneous calcium increase in these cells upon stimulation by prostaglandin E(2) and lysophosphatidic acid. For the latter stimulus, we recorded emission spectra of individual erythrocytes to confirm largely unaltered Fluo-4 emission. Our results emphasize that in erythrocytes measurements of intracellular calcium are reliably possible with Fluo-4 and that other indicators, especially those requiring UV-excitation, appear less favourable.  相似文献   

8.
Korkotian E  Segal M 《Cell calcium》2006,40(5-6):441-449
The extent of diffusion of a locally evoked calcium surge in dendrites of cultured hippocampal neurons was studied by flash photolysis of caged EGTA. Cells were transfected with pDsRed for visualization, preincubated with caged NP-EGTA (AM) and Fluo-4 (AM) at room temperature and imaged in a PASCAL confocal microscope. Pulses of UV laser light within an active sphere of about 1 micro m(2) produced a rise of Fluo-4 fluorescence transients in dendrites which peaked at 1 ms and decayed exponentially with a fast (8-10 ms) time constant. A slower decay component was uncovered following incubation with thapsigargin. Lateral diffusion of [Ca(2+)]i did not vary significantly among different size dendrites being symmetric and reaching about 3-3.5 micro mm at a diffusion rate of 0.8 micro mm/ms on both sides of the photolysis center. Fluo-4 was also replaced by the membrane-bound Fluo-NOMO (AM) or by the 'heavy' Calcium Green dextran (CGd) loaded through a patch pipette. Similar rates of diffusion were found in these cases, indicating that the diffusion is not of the dye complexed to calcium but of genuine free calcium ions. Interestingly, presence of a dendritic spine at the focus of photolysis significantly reduced [Ca(2+)]i spread while the focal transient remained unaffected. Finally, [Ca(2+)]i diffused about twice as far from the photolysis sphere in glass tubes of a similar diameter to that of a dendrite, indicating that intrinsic calcium uptake mechanisms in the dendrite determine the diffusion of calcium away from its original site of rise.  相似文献   

9.
《Cell calcium》2007,41(5-6):441-449
The extent of diffusion of a locally evoked calcium surge in dendrites of cultured hippocampal neurons was studied by flash photolysis of caged EGTA. Cells were transfected with pDsRed for visualization, preincubated with caged NP-EGTA (AM) and Fluo-4 (AM) at room temperature and imaged in a PASCAL confocal microscope. Pulses of UV laser light within an active sphere of about 1 μm2 produced a rise of Fluo-4 fluorescence transients in dendrites which peaked at 1 ms and decayed exponentially with a fast (8–10 ms) time constant. A slower decay component was uncovered following incubation with thapsigargin. Lateral diffusion of [Ca2+]i did not vary significantly among different size dendrites being symmetric and reaching about 3–3.5 μm at a diffusion rate of 0.8 μm/ms on both sides of the photolysis center. Fluo-4 was also replaced by the membrane-bound Fluo-NOMO (AM) or by the ‘heavy’ Calcium Green dextran (CGd) loaded through a patch pipette. Similar rates of diffusion were found in these cases, indicating that the diffusion is not of the dye complexed to calcium but of genuine free calcium ions. Interestingly, presence of a dendritic spine at the focus of photolysis significantly reduced [Ca2+]i spread while the focal transient remained unaffected. Finally, [Ca2+]i diffused about twice as far from the photolysis sphere in glass tubes of a similar diameter to that of a dendrite, indicating that intrinsic calcium uptake mechanisms in the dendrite determine the diffusion of calcium away from its original site of rise.  相似文献   

10.
Aging of oocytes, being not fertilized after ovulation for a prolonged time, considerably affects normal development of the fertilized oocyte. We examined effects of the aging on a series of highly repetitive Ca2+ transients commonly seen in fertilized mouse oocytes (Ca2+ oscillations). Frequency of Ca2+ oscillations in the aged oocyte [20 hrs after induction of superovulation by i.p. human chorionic gonadotropin (hCG)] was significantly higher (34.1 ± 5.8 1/hr) than the fresh oocyte (14 hr post-hCG, 21.8 ± 7.9 1/hr). Rates of rise and fall of individual Ca2+ transient in the aged oocyte were significantly slower than the fresh oocyte, whereas durations of individual Ca2+ transients were similar. When extracellular Ca2+ was raised from 2.04 mM to 5.00 mM, aged oocytes showed significant prolongation of the duration of individual Ca2+ transient, that resulted in a sustained elevation of intracellular Ca2+ ([Ca2+]i) in 33% of the aged oocyte. Transient increase in [Ca2+]i by photolysis of a caged Ca2+, Nitr-5, injected into cytoplasm was completely restored in the fresh oocyte [fluorescence intensity of [Ca2+]i indicator dye Fluo-3 (F480) returned to 97 ± 2% of the control level, time constant = 37 ± 9 sec]. In contrast, in the aged oocyte, restoration of F480 following Nitr-5 photolysis was incomplete (115 ± 12% of the control) and slow (time constant = 64 ± 23 sec). Because inhibition of the Ca2+ pump of the endoplasmic reticulum (ER) by 5 μM thapsigargin almost completely inhibited restoration of F480 following Nitr-5 photolysis in the fresh oocyte, we conclude that the aging-related changes in Ca2+ oscillations may be accounted for by dysfunction of intracellular Ca2+ regulation, presumably of the Ca2+ pump of the ER. Mol. Reprod. Dev. 48:383–390, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The objective of this investigation was to gain a deeper understanding of the intracellular events that precede photolysis of cells. A model system, consisting of malignant melanoma cells pretreated with the calcium sensitive fluorescent dye, Fluo-3, was used to examine the intracellular calcium dynamics in single-cell photolysis experiments. Exposure of the cells to 632 nm laser light in the presence of photosensitizer, tin chlorin e6, resulted in a rise in intracellular calcium. The increase in intracellular calcium was blocked using a variety of calcium channel blocking agents, including verapamil, nifedipine, and nickel. Treatment with the channel blockers was also effective in either decreasing or eliminating cell death despite the presence of lethal doses of photosensitizer and irradiation. These results show that intracellular calcium rises prior to plasma membrane lysis, and that this early rise in intracellular calcium is necessary for membrane rupture.  相似文献   

12.
We employed the fluorescent calcium indicator Fura-2, loaded into intact retinas of the bullfrog Rana catesbeiana, to measure free calcium concentrations in the rod outer-segment cytosol. We determined that traditional methods of calculation yielded erroneous values of calcium. This error results from the presence of at least two distinct pools of Fura-2 in rod outer segments. Application of manganese quenches each pool, but quenching occurs at different rates. Using this fact, we show that the pools can be isolated by brief exposure to manganese and examined separately. One of these pools has the same fluorescent properties as the free salt of Fura-2 we use in our in vitro calibrations. The other source of fluorescence has more unusual properties. Although insensitive to calcium concentrations in the physiological range, it contributes significant anomalous fluorescence when cytosolic free calcium concentrations are elevated by application of IBMX. Nevertheless, the experimentally isolated, classic pool of Fura-2 is well behaved and allows us to calculate calcium concentrations relative to the Kd of Fura-2 by the usual ratio method. We show that when rods are exposed to saturating light, the free calcium concentration in their outer segments falls to a level not significantly different from zero within 20-30 s.  相似文献   

13.
1321N1 astrocytoma cells loaded with Fura-2 were found to continuously transport Fura-2 to the extracellular medium. To correct for extracellular Fura-2 fluorescence a protocol was developed in which Mn2+ was added to duplicate cuvettes of cells to quench extracellular Fura-2 at the beginning and end of the experimental time course. Since the export of Fura-2 was linear with time, two separate quench determinations allowed the amount of fluorescence from extracellular Fura-2 fluorescence to be estimated at every point in the time course and subtracted from the data. The uncorrected and Mn2+-corrected basal cytoplasmic calcium concentrations averaged 153 nM and 72 nM, respectively. The peak intracellular calcium concentrations following muscarinic stimulation with 300 microM carbachol averaged 1159 nM (uncorrected) and 889 nM (Mn2+-corrected). Probenecid (2.5 mM) was found to block the export of Fura-2 from these cells and did not change the basal calcium concentration or the muscarinic calcium response.  相似文献   

14.
Fluorescent indicators are widely used in the measurements of cytosolic calcium in many cell types for many purposes because they are relatively easy to use. Notwithstanding, they have some defects to prevent accurate measurements under certain conditions, such as significant dye leakage and UV-quenching effect. Menadione, a representative quinone derivative with antiaggregating effect, is also UV-absorbent. To investigate whether menadione can affect the change of cytosolic calcium in platelets by agonist, we measured the change of cytosolic calcium level using calcium green-1. Since this dye has not been used previously in platelets, we determined that the optimal loading of calcium green-1 to platelets was achieved using 3 microM dye incubated for 60 min at 37 degrees C. Our study compared the use of calcium green-1 with fura-2 and fluo-3 (two widely used dyes) in measurements of cytosolic calcium. Fura-2 is UV-excited, so when menadione was treated in fura-2-loaded cells, it had a quenching effect. Fluo-3, the other visible fluorescent indicator, leaked from platelets very rapidly and required the use of anion channel blockers which are known to affect physiological response of platelets. Our study demonstrated that changes in cytosolic calcium levels can be accurately measured without these problems by using calcium green-1. We therefore were able to demonstrate that menadione inhibited calcium increase by thrombin in a dose-dependent manner similar to menadione's antiaggregating effect in platelets.  相似文献   

15.
The subject of this work was to study the reasons of the variability of the calcium response amplitudes in individual neurons of the hippocampal cell culture to agonists of ionotropic glutamate receptors and the regularities of the calcium response amplitude distribution. Changes of [Ca2+] i in the neurons in response to the NMDA-, AMPA-, and KA-receptor agonists were recorded using fluorescence probe Fura-2. The calcium response amplitudes (expressed as the ratio of fluorescence intensities of Fura-2 upon excitation at wave-lengths 340 and 380 nm) to short-term application of glutamate receptor agonists N-methyl-D-aspartate (NMDA), domoic acid (DA), α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), and (S)-(−)-5-fluorowillardiine (FW) were measured. Calcium responses of individual cells differed in shape and amplitude but always reproduced upon the second application of the agonist. To elucidate the nature of calcium response variability, we compared distributions of calcium response amplitudes to the NMDA-, KA-, and AMPA-receptor agonists in cultures of various ages in the presence of receptor desensitization inhibitors and different agonist concentrations. An even increase from 0.05 to 1.6 was characteristic for distributions of calcium response amplitudes. Nevertheless, in 1–3% neurons of the cell culture, calcium response amplitudes reached much higher values. The efficiency of the ligands usually increased in the following order: FW ≈ NMDA > DA. However, this regularity varied with age and depended on the presence of the receptor desensitization inhibitor. In the process of growth and differentiation of neurons in culture from 1 to 14 day in vitro, calcium response amplitude to AMPA- and KA-receptor agonists increased. Desensitization inhibitors transformed the response from pulse-like with a sharp peak into stepwise and increased the amplitude of calcium responses but did not abolish the character of even amplitude distribution. The effect of AMPA- and KA-receptor desensitization inhibitor decreased with calcium response amplitude growth in the control and approached zero in neurons with initially maximal amplitude. KA- and AMPA-receptor agonists at high concentrations possessed a property of desensitization inhibitors and transformed a transient response into a continuous one that lasted throughout the application time. Thus, the amplitude and shape of the calcium response to glutamate receptor agonists is a characteristic parameter of an individual cell.  相似文献   

16.
Fluo-3, one member of a family of new fluorescent Ca2+ indicators excitable at wavelengths in the visible (Minta, A., Kao, J. P. Y., and Tsien, R. Y. (1989) J. Biol. Chem. 264, 8171-8178), has been tested in living cells. We demonstrate that fluo-3 can be loaded into fibroblasts and lymphocytes by incubation with the pentaacetoxymethyl ester of the dye and that the ester is hydrolyzed intracellularly to yield genuine fluo-3 capable of indicating changes in [Ca2+]i induced by agonist stimulation. Fluo-3 can also be microinjected into fibroblasts along with photolabile compounds such as nitr-5 and caged inositol trisphosphate for photorelease experiments. Fluo-3 permits continuous monitoring of [Ca2+]i without interference with use of UV-sensitive caged compounds. A procedure for combined use of ionophore and heavy metal ions in end-of-experiment calibration of fluo-3 intensities to give [Ca2+]i is also described.  相似文献   

17.
Assessment of Fura-2 for measurements of cytosolic free calcium   总被引:21,自引:0,他引:21  
Fura-2 has become the most popular fluorescent probe with which to monitor dynamic changes in cytosolic free calcium in intact living cells. In this paper, we describe many of the currently recognized limitations to the use of Fura-2 in living cells and certain approaches which can circumvent some of these problems. Many of these problems are cell type specific, and include: (a) incomplete hydrolysis of Fura-2 acetoxymethyl ester bonds by cytosolic esterases, and the potential presence of either esterase resistant methyl ester complexes on the Fura-2/AM molecule or other as yet unidentified contaminants in commercial preparations of Fura-2/AM; (b) sequestration of Fura-2 in non-cytoplasmic compartments (i.e. cytoplasmic organelles); (c) dye loss (either active or passive) from labeled cells; (d) quenching of Fura-2 fluorescence by heavy metals; (e) photobleaching and photochemical formation of fluorescent non-Ca2+ sensitive Fura-2 species; (f) shifts in the absorption and emission spectra, as well as the Kd for Ca2+ of Fura-2 as a function of either polarity, viscosity, ionic strength or temperature of the probe environment; and (g) accurate calibration of the Fura-2 signal inside cells. Solutions to these problems include: (a) labeling of cells with Fura-2 pentapotassium salt (by scrape loading, microinjection or ATP permeabilization) to circumvent the problems of ester hydrolysis; (b) labeling of cells at low temperatures or after a 4 degrees C pre-chill to prevent intracellular organelle sequestration; (c) performance of experiments at lower than physiological temperatures (i.e. 15-33 degrees C) and use of ratio quantitation to remedy inaccuracies caused by dye leakage; (d) addition of N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) to chelate heavy metals; (e) use of low levels of excitation energy and high sensitivity detectors to minimize photobleaching or formation of fluorescent non-Ca2+ sensitive forms of Fura-2; and (f) the use of 340 nm and 365 nm (instead of 340 nm and 380 nm) for ratio imaging, which diminishes the potential contributions of artifacts of polarity, viscosity and ionic strength on calculated calcium concentrations, provides a measure of dye leakage from the cells, rate of Fura-2 photobleaching, and can be used to perform in situ calibration of Fura-2 fluorescence in intact cells; however, use of this wavelength pair diminishes the dynamic range of the ratio and thus makes it more sensitive to noise involved in photon detection. Failure to consider these potential problems may result in erroneous estimates of cytosolic free calcium.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Metal ions are often used to block calcium channels in various tissues, including synaptosomes. In the present study, Fura-2 was used to determine the effectiveness of various metal ions as calcium channel blockers in rat brain synaptosomes in vitro. In buffer solutions, La3+ and Cd2+ increased the Fura-2 fluorescence in a manner similar to Ca2+. Ni2+ and Mn2+ appeared to be fluorescence quenching cations, and Sr2+ and Co2+ had little effect on the fluorescence of Fura-2. In suspensions of synaptosomes under resting conditions, Cd2+, Ni2+ and Mn2+ were found to be not suitable for use in synaptosome studies. On the other hand, La3+ and Co2+ had little effect on the Fura-2 fluorescence of resting synaptosomes, and under depolarizing conditions, La3+ and Co2+ decreased the Fura-2 fluorescence. These resuls, therefore, suggest that La3+ and Co2+ may be suitable as calcium channel blockers in synaptosome studies.  相似文献   

19.
Calcium imaging is a common technique that is useful for measuring calcium signals in cultured cells. Calcium imaging techniques take advantage of calcium indicator dyes, which are BAPTA-based organic molecules that change their spectral properties in response to the binding of Ca2+ ions. Calcium indicator dyes fall into two categories, ratio-metric dyes like Fura-2 and Indo-1 and single-wavelength dyes like Fluo-4. Ratio-metric dyes change either their excitation or their emission spectra in response to calcium, allowing the concentration of intracellular calcium to be determined from the ratio of fluorescence emission or excitation at distinct wavelengths. The main advantage of using ratio-metric dyes over single wavelength probes is that the ratio signal is independent of the dye concentration, illumination intensity, and optical path length allowing the concentration of intracellular calcium to be determined independently of these artifacts. One of the most common calcium indicators is Fura-2, which has an emission peak at 505 nM and changes its excitation peak from 340 nm to 380 nm in response to calcium binding. Here we describe the use of Fura-2 to measure intracellular calcium elevations in neurons and other excitable cells.Download video file.(73M, flv)  相似文献   

20.
Mitochondrial damage is the main source of cellular injury upon ischemia-reperfusion, and calcium loading has been implicated in this phenomenon. The use of optical probes for calcium monitoring of the intact heart is hampered by internal filter effects of intracellular hemoproteins, endogenous fluorescence, and their sensitivity to pH. We describe here a method for measurement of intracellular free calcium in isolated myoglobin-deficient perfused mouse hearts under conditions of large intracellular pH fluctuations by simultaneous fluorescence monitoring of the calcium-probe Fura-2 and the pH probe BCECF through dual wavelength excitation of both probes. In myoglobin-containing mouse heart endogenous chromophores interfere with Fura-2 fluorometry. It is shown that a paradoxical decrease in Fura-2 fluorescence occurs during ischemia in isolated mouse hearts. Simultaneous recording of BCECF fluorescence (calibrated against pH measurement with phosphorus NMR) and data reduction based on continual recalculation of the apparent dissociation constant of the calcium-probe complex revealed that a marked increase in intracellular free calcium occurs, and that the Fura-2 fluorescence decrease was caused by an increase in dissociation constant due to intracellular acidification. Intracellular free calcium rose almost linearly during a 20-min period of ischemia and returned to basal values rapidly upon the commencement of perfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号