首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the development of 20 sensory organs in the embryonic Drosophila head, which give rise to 7 sensory nerves of the peripheral nervous system (PNS), and 4 ganglia of the stomatogastric nervous system (SNS). Using these neural elements and the optic lobes as well as expression domains of the segment polarity gene engrailed in the wild-type head of Drosophila embryos as markers we examined the phenotype of different mutants which lack various and distinct portions of the embryonic head. In the mutants, distinct neural elements and engrailed expression domains, serving as segmental markers, are deleted. These mutants also affect the optic lobes to various degrees. Our results suggest that the optic lobes are of segmental origin and that they derive from the ocular segment anteriorly adjacent to the antennal segment of the developing head.  相似文献   

2.
Summary The structure of cereal sensilla, the cereal nerve and the central projections of the cereal sensory nerve of a notopteran (Grylloblatta sp.) are described and compared with other orthopteroid insects in which the cereal sensory system and central connections are well known. The cereal sensilla are similar to those of gryllids and blattids, but the gross structure of the cerci and distribution of cereal sensilla more closely resemble those of the Thysanura. The elements of the cereal sensory nerves and the central nervous system are similar to those of other orthopteroid insects, but extracellular material is present in greater quantity, and more extensive glial bundling of axons occurs in both the cereal nerve and central connectives. Glial structure, extracellular material and large multicristate mitochondria may be adaptations to life near 0° C. The form of central projections of the cereal nerve and the configuration of the largest abdominal interneurons are unlike those of gryllids and Dictyoptera; they are similar to those of Dermaptera.  相似文献   

3.
Histamine is known to be the neurotransmitter of insect photoreceptors. Histamine-like immunoreactivity is also found in a number of interneurons in the central nervous system of various insects. Here, we demonstrate by immunohistochemical techniques that, in Drosophila melanogaster (Acalypterae), most or all mechanosensory neurons of imaginal hair sensilla selectively bind antibodies directed against histamine. The histamine-like staining includes the cell bodies of these neurons as well as their axons, which form prominent fibre bundles in peripheral nerves, and their terminal projections in the central neuropil of head and thoracic ganglia. The specificity of the immunostaining is demonstrated by investigating a Drosophila mutant unable to synthesize histamine. Other mechanosensory organs, such as campaniform sensilla or scolopidial organs, do not stain. In the calypteran flies, Musca and Calliphora, we find no comparable immunoreactivity associated with either hair sensilla or the nerves entering the central nervous system, observations in agreement with earlier studies on Calliphora. Thus, histamine seems to be a major mechanosensory transmitter candidate of the adult nervous system of Drosophila, but apparently not of Musca or Calliphora.  相似文献   

4.
This paper describes the embryonic development of some parts of the sensory peripheral nervous system in the leg anlagen of the cricket Teleogryllus commodus in normal and heat shocked embryos. The first peripheral neurons appear at the 30% stage of embryogenesis. These tibial pioneer neurons grow on a stereotyped path to the central nervous system and form a nerve which is joined by the growth cones of axons that arise later, including those from the femoral chordotonal organ, subgenual organ and tympanal organ. The development of these organs is described with respect to the increase in number of sensory receptor cells and the shape and position of the organs. At the 100% stage of embryogenesis all three organs have completed their development in terms of the number of sense cells and have achieved an adult shape. To study the function of the tibial pioneer neurons during embryogenesis a heat shock was used to prevent their development. Absence of these neurons has no effect on the development of other neurons and organs proximal to them. However, the development of distal neurons and organs guided by them is impaired. The tibial pioneer neurons grow across the segmental boundary between femur and tibia early in development, and the path they form seems to be essential for establishing the correct connections of the distal sense organs with the central nervous system.  相似文献   

5.
Using various microscopical techniques, we have studied changes in the sensory equipment and architecture of the peripheral nervous system (PNS) around the first metamorphic molt from larva to pupa in the phantom midge Chaoborus. The transparent larvae and pupae of this dipteran with ancestral features allow us to investigate sensilla and their central projections from whole-mount preparations of complete groups of segments. Each sensillum on the posterior larval and pupal segments was identified using its external shape and position, and the morphology of the abdominal ganglia and segmental nerves was investigated. In addition, retrograde fills with the carbocyanine dye DiI were used to trace the axonal paths of most of the extero- and proprioreceptors. These findings were combined to produce maps of the sensory elements of larval and pupal abdomens that were analyzed at three levels: seriality (homonomy), ontogenetic changes of individual sensilla, and homology of the PNS between different species. Comparison of different segments shows for both stages that primarily there is a homonomous basic design of the PNS, but segment-specific modifications are evident in segments 8-10. Comparison of corresponding larval and pupal segments shows that many sensilla retain their internal structure and axonal projections. However, their external cuticular parts are changed in relation to the different life habits of larvae and pupae. Furthermore, some sensilla are completely reduced during the pupal molt, especially those of the tenth segment which appears as a distinct larval structure (caenogenesis). Comparison between species indicates that despite the varying types of sensilla their basic segmental arrangement and their axonal trajectories are conserved.  相似文献   

6.
Histological and electrophysiological studies of identified long hair sensilla (LHS) have provided information on primary afferent fibre pathways in the ventral nerve cord of the Indian black scorpion, Heterometrus fulvipes.Cobalt-filling of single LHS on the metasoma showed that sensory axons enter the respective segmental ganglion, ascend ipsilaterally through the next anterior ganglia and terminate in a 4th ganglion. In each ganglion, these plurisegmental fibres give off collateral branches that terminate in the ganglionic neuropil. Fibres entering heterolateral connectives were not found.Recordings from peripheral nerves after deflections of a hair showed single or multiple spike discharges. A single spike could be recorded from ipsilateral anterior connectives of the ventral nerve cord, indicating a through-conductance of the sensory pathways. Strong deflections of a single hair activated several ipsilateral and fewer contralateral ascending interneurons and some segmentai motor neurons. Behavioral studies demonstrate the mechanoreceptive function of the LHS.The present study provides evidence in support of the notion that sensory afferents of the postabdomen in the scorpion bring about rapid, co-ordinated intersegmental movements of the multisegmented tail of the scorpion.Abbreviations CNS central nervous system - LHS long hair sensillum - TR trichobothria  相似文献   

7.
To determine the generality of developmental mechanisms involved in the construction of the insect nervous system, the embryonic development of the peripheral nervous system in the grasshopper Schistocerca gregaria was characterized at the level of identified neurons and nerve branches and then compared to that previously described from the fly Drosophila melanogaster. For this, immunocytochemistry using a neuron-specific antibody was carried out on staged grasshopper embryos. Our results show that initially a simple peripheral nerve scaffolding is established in each segment of the animal. This scaffolding consists of a pair of intersegmental nerves that are formed by identified afferent and efferent pioneer neurons and a pair of segmental nerves that are formed by afferent pioneers situated in limb buds. Subsequently, identified sets of sensory neurons differentiate in a stereotyped spatiotemporal pattern in dorsal, lateral and ventral clusters in each segment and project their axons onto these nerves. Although segment-specific differences exist, serial homologs of the developing nerves and sensory neurons can be identified. A comparison of these results with those obtained from Drosophila shows that virtually the same pattern of peripheral nerves and sensory structures is formed in both species. This indicates that the construction of the peripheral nervous system in extremely divergent modern insects relies on conserved developmental mechanisms that evolved in ancestral insects over 300 million years ago.  相似文献   

8.
Summary In spiders the bulk of the central nervous system (CNS) consists of fused segmental ganglia traversed by longitudinal tracts, which have precise relationships with sensory neuropils and which contain the fibers of large plurisegmental interneurons. The responses of these interneurons to various mechanical stimuli were studied electrophysiologically, and their unilateral or bilateral structure was revealed by intracellular staining. Unilateral interneurons visit all the neuromeres on one side of the CNS. They receive mechanosensory input either from a single leg or from all ipsilateral legs via sensory neurons that invade leg neuromeres and project into specific longitudinal tracts. The anatomical organization of unilateral interneurons suggests that their axons impart their information to all ipsilateral leg neuromeres. Bilateral interneurons are of two kinds, symmetric and asymmetric neurons. The latter respond to stimulation of all legs on one side of the body, having their dendrites amongst sensory tracts of the same side of the CNS. Anatomical evidence suggests that their terminals invade all four contralateral leg neuromeres. Bilaterally symmetrical plurisegmental interneurons have dendritic arborizations in both halves of the fused ventral ganglia. They respond to the stimulation of any of the 8 legs. A third class of cells, the ascending neurons have unilateral or bilateral dendritic arborizations in the fused ventral ganglia and show blebbed axons in postero-ventral regions of the brain. Their response characteristics are similar to those of other plurisegmental interneurons. Descending neurons have opposite structural polarity, arising in the brain and terminating in segmental regions of the fused ventral ganglia. Descending neurons show strong responses to visual stimulation. Approximately 50% of all the recorded neurons respond exclusively to stimulation of a single type of mechanoreceptor (either tactile hairs, or trichobothria, or slit sensilla), while the rest respond to stimulation of a variety of sensilla. However, these functional differences are not obviously reflected by the anatomy. The functional significance of plurisegmental interneurons is discussed with respect to sensory convergence and the coordination of motor output to the legs. A comparison between the response properties of certain plurisegmental interneurons and their parent longitudinal tracts suggests that the tracts themselves do not reflect a modality-specific organization.Abbreviations BPI bilateral plurisegmental interneuron - CNS central nervous system - FVG fused ventral ganglia - LT longitudinal tract - PI plurisegmental interneuron - PSTH peristimulus timehistogram - UPI unilateral plurisegmental interneuron  相似文献   

9.
Previous studies have indicated that the formation of stereotyped segmental nerves in leech embryos depends on the interactions between CNS projections and ingrowing afferents from peripheral neurons. Especially, CNS-ablation experiments have suggested that CNS-derived guidance cues are required for the correct navigation of several groups of peripheral sensory neurons. In order to directly test this hypothesis we have performed transplantations of CNS ganglia into ectopic sites in segments from which the resident ganglia have been removed. We find that the transplanted ganglia extend numerous axons distributed roughly equally in all directions. When these CNS projections reach and make contact with peripheral sensory axons they are used as guides for peripheral neurons to grow toward and into the ectopic ganglia even when this means following novel pathways that cross the midline and/or segmental boundaries. The peripheral sensory axons turn and grow toward the ectopic ganglia only when in physical contact with CNS axons, suggesting that diffusible chemoattractants are not a factor. These results demonstrate that the guidance cues provided by ectopic CNS projections are both necessary and sufficient to steer peripheral sensory neuron axons into the CNS.  相似文献   

10.
Summary The stereotyped segmental and dorso-ventral organization of the peripheral nervous system (PNS) of Drosophila embryos allows the identification of all the neurons in the body wall. Distinct classes of neurons are distinguishable according to their location, the targets they innervate, the particular shape of their dendrites and their cell size. Those neurons innervating external sensory structures (es) and chordotonal organs (ch) have single dendrites and have been previously described (Ghysen et al. 1986; Dambly-Chaudiere and Ghysen 1986; Campos-Ortega and Hartenstein 1985). We describe here the identity and morphological features of three other classes of neurons in the body segments which have multiple dendrites (md neurons): 1) neurons that give rise to elaborate dendritic arborisations (da neurons); 2) neurons that have bipolar dendrites (bd neurons); 3) neurons that arborize around particular tracheal branches (td neurons). The thoracic hemisegment (T2 and T3) contains 13 da, one bd, one td, 21 es and four ch neurons; the abdominal hemisegment (A1 to A7) contains 14 da, three bd, three td, 15 es and eight ch neurons. The arrangement of the segmented peripheral neurons is highly invariant and provides a favorable assay system for the genetic analysis of neurodevelopment.  相似文献   

11.
12.
Summary Mutations previously known to affect early neurogenesis inDrosophila melanogaster have been found also to affect the development of the peripheral nervous system. Anti-HRP antibody staining has shown that larval epidermal sensilla of homozygous mutant embryos occur in increased numbers, which depend on the allele considered. This increase is apparently due to the development into sensory organs of cells which in the wild-type would have developed as non-sensory epidermis. Thus, neurogenic genes act whenever developing cells have to decide between neurogenic and epidermogenic fates, both in central and peripheral nervous systems. Different regions of the ectodermal germ layer are distinguished with respect to their neurogenic abilities.  相似文献   

13.
Summary Campaniform sensilla associated with filiform hairs comprise an important receptor type of the multimodal sensory system of the cerci of crickets and cockroaches. Their axon projections were investigated using iontophoretic cobalt injection into single sensilla.In crickets (Gryllus bimaculatus, Acheta domestica), six different types of cereal campaniform sensilla projections can be distinguished on the basis of their axonal arborizations and terminations. Typically, a proportion of cereal campaniform sensilla, associated with long filiform hairs, give rise to axons that ascend as through fibres from the terminal ganglion to reach the sixth abdominal ganglion. Cereal campaniform sensilla associated with clavate hairs have projections restricted to the terminal ganglion alone.Whereas in crickets axons of cercal campaniform sensilla invade only certain segmental neuropils in the terminal ganglion, in cockroaches (Periplaneta americana) axons from cercal campaniform sensilla branch in every segmental neuropil. A proportion of cereal campaniform sensilla in this species also gives rise to through fibres to the fifth abdominal ganglion.We discuss morphological and functional interpretations of differences between crickets and cockroaches and consider the significance of this type of receptor in the context of previous studies of the cercal system.  相似文献   

14.
We have exploited the segregation of motor and sensory axons into peripheral nerve sub-compartments to examine spinal reflex interactions in anaesthetized stingrays. Single, supra-maximal electrical stimuli delivered to segmental sensory nerves elicited compound action potentials in the motor nerves of the stimulated segment and in rostral and caudal segmental motor nerves. Compound action potentials elicited in segmental motor nerves by single stimuli delivered to sensory nerves were increased severalfold by prior stimulation of adjacent sensory nerves. This facilitation of the segmental reflex produced by intense conditioning stimuli decreased as it was applied to more remote segments, to approximately the same degree in up to seven segments in the rostral and caudal direction. In contrast, an asymmetric response was revealed when test and conditioning stimuli were delivered to different nerves, neither of which was of the same segment as the recorded motor nerve: in this configuration, conditioning volleys generally inhibited the responses of motoneurons to stimuli delivered to more caudally located sensory nerves. This suggests that circuitry subserving trans-segmental interactions between spinal afferents is present in stingrays and that interneuronal connections attenuate the influence that subsequent activity in caudal primary afferents can have on the motor elements.  相似文献   

15.
16.
Chemoreception inHirudo medicinalis is thought to be mediated by ciliated cells grouped in sensory structures, the sensilla, arranged in bands on the animal's dorsal lip (Elliott, 1986; Zipseret al., 1994). Furthermore, chemical and/or thermal stimulation of the dorsal lip in reduced preparations evokes changes in the electrical activity of the cephalic nerves that connect the head with the central nervous system. However, the complete trajectory by which the sensory afferents teach the cerebral ganglia has not been demonstrated anatomically. In this study, we traced these pathways following retrograde and/or anterograde transport of carbocyanine dyes (DiI, DiA and DiD) in the cephalic nerves ofHirudo medicinalis and a closely related species,Macrobdella decora. While information regardingMacrobdella's chemoreception is scarce, the two species show some differences with regard to their chemical preferences. Dyes were applied to the sensillar structures along the dorsal lip, or to the cut ends of individual cephalic nerves in fixed preparations that included the lip and attached nerves with or without the head ganglia. After a two week incubation, specimens were mounted and imaged using a confocal microscope.The results show that the axons of the sensory neurons in the sensilla project through the four pairs of cephalic nerves. The sensillar projections are however more numerous in the dorsal nerves than they are in the ventral ones. In addition, the organization of the sensillar bands, the morphology of the pathways and the sensory structures themselves appear to be identical forHirudo andMacrobdella and therefore the behavioral differences in response to appetitive stimuli cannot be readily explained by differences in morphology.  相似文献   

17.
Anatomy of the sensory organs on the prominent body parts of the adult bed-bug Cimex hemipterus (Hemiptera: Cimicidae) and its central nervous system (CNS) was studied by light, transmission, or scanning electron microscopy. The distal tips of antenna and rostrum were found to have rich complements of sensilla. The antenna has both olfactory and gustatory sensilla. Olfactory sensilla project to the antennal lobe organized in the form of glomeruli, while the 2nd component, presumably from gustatory sensilla, projects to the suboesophageal ganglion. The ultrastructure of the sensory pegs on the rostrum of C. hemipterus does not resemble the chemosensilla of adult insects; rather they resemble the larval sensilla of Drosophila melanogaster in the maxillary organ. Earlier we believed this to be a gustatory organ. A few similar sensilla also occur on the antenna, indicating its multimodal role. Amongst the 3 types of sensory hairs located on legs, there are only a few gustatory hairs (7–10 hairs) on the tibia. The pointed and serrate mechanosensory hair types occur in abundance; the serrate type are prominently present on the lateral surface of the legs. On other parts of the body such as the thorax or abdomen, serrate hairs are most abundant. Both the distal segment of antenna and rostrum are invested by 2 nerves, where the axon counts of the 2 antennal nerves are 380 and 425, while each rostral nerve on average has 205 axons. Abundant clusters of microtubules were found in the brain, thoracio-abdominal ganglia, leg-nerves, and the space between muscles and cuticle. These conspicuous microtubule-clusters occur in interaxonal space, mainly glial cells, in the nervous system. In addition, the glial cells have osmiophilic junctions amongst themselves. A novel “hinge and joint” system, which controls the cross-section of the food canal and the salivary duct in an inversely related manner, was found in the rostrum of the bed-bug.  相似文献   

18.
Summary Retrograde CoS-impregnation was used to trace and map the course of sensory nerves and the distribution and innervation of the various proprioceptor types in all leg segments of Cupiennius salei, a Ctenid spider.1. Sensory nerve branches. In both the tibia and femur, axons of all proprioceptor types ascend in just two lateral nerves which do not merge with the main leg nerve until they reach the next proximal joint region. In the short segments — coxa, trochanter, patella, and tarsus — axons of the internal joint receptors often run separately from those of the other sensilla. Axons of the large lyriform slit sense organ at the dorsal metatarsus and of the trichobothria join with only a few hair axons and form their own nerve branches (Figs. 1, 2, 3).2. Proprioceptors. Each of the seven leg joints is supplied with at least one set of the well-known internal joint receptors, slit sensilla (single slits and lyriform organs), and long cuticular hairs. In addition, we found previously unnoticed hair plates on both sides of the coxa, near the prosoma/coxa joint; they are deflected by the articular membrane during joint movements (Fig. 4).3. Sensory cells and innervation. CoS-impregnation shows that each slit of the slit sense organs — be it a single slit or several slits in a lyriform organ — is innervated by two bipolar sensory cells (Fig. 6). We also confirm previous reports of multiple innervation in the internal joint receptors and in the long joint hairs and cuticular spines.Most of the ascending nerve branches run just beneath the cuticle for at least a short distance (Fig. 5); hence they are convenient sites for electrophysiological recordings of sensory activity even in freely walking spiders.  相似文献   

19.
Sensilla lining the inner walls of the sacculus on the third antennal segment of Drosophila melanogaster were studied by light and transmission electron microscopy. The sacculus consists of three chambers: I, II and III. Inside each chamber morphologically distinct groups of sensilla having inflexible sockets were observed. Chamber I contains no-pore sensilla basiconica (np-SB). The lumen of all np-SB are innervated by two neurons, both resembling hygroreceptors. However, a few np-SB contain one additional neuron, presumed to be thermoreceptive. Chamber II houses no-pore sensilla coeloconica (np-SC). All np-SC are innervated by three neurons. The outer dendritic segments of two of these neurons fit tightly to the wall of the lumen and resemble hygroreceptor neurons. A third, more electron-dense sensory neuron, terminates at the base of the sensillum and resembles a thermoreceptor cell. Chamber III of the sacculus is divided into ventral and dorsal compartments, each housing morphologically distinct grooved sensilla (GS). The ventral compartment contains thick GS1, and the dorsal compartment has slender sensilla GS2. Ultrastructurally, both GS1 and GS2 are doublewalled sensilla with a longitudinal slit-channel system and are innervated by two neurons. The dendritic outer segment of one ofthe two neurons innervates the lumen of the GS and branches. On morphological criteria, we infer this neuron to be olfactory. The other sensory neuron is probably thermoreceptive. Thus, the sacculus in Drosophila has sensilla that are predominantly involved in hygroreception, thermoreception, and olfaction. We have traced the sensory projections of the neurons innervating the sacculus sensilla of chamber III using cobaltous lysine or ethanolic cobalt (II) chloride. The fibres project to the antennal lobes, and at least four glomeruli (VM3, DA3 and DL2-3) are projection areas of sensory neurons from these sensilla. glomerulus DL2 is a common target for the afferent fibres of the surface sensilla coeloconica and GS, whereas the VM3, DA3 and DL3 glomeruli receive sensory fibres only from the GS.  相似文献   

20.
Summary Serotonin-immunoreactive (5-HTi) neurons were mapped in the larval central nervous system (CNS) of the dipterous flies Calliphora erythrocephala and Sarcophaga bullata. Immunocytochemistry was performed on cryostat sections, paraffin sections, and on the entire CNS (whole mounts).The CNS of larvae displays 96–98 5-HTi cell bodies. The location of the cell bodies within the segmental cerebral and ventral ganglia is consistent among individuals. The pattern of immunoreactive fibers in tracts and within neuropil regions of the CNS was resolved in detail. Some 5-HTi neurons in the CNS possess axons that run through peripheral nerves (antenno-labro-frontal nerves).The suboesophagealand thoracico-abdominal ganglia of the adult blowflies were studied for a comparison with the larval ventral ganglia. In the thoracico-abdominal ganglia of adults the same number of 5-HTi cell bodies was found as in the larvae except in the metathoracic ganglion, which in the adult contains two cell bodies less than in the larva. The immunoreactive processes within the neuropil of the adult thoracico-abdominal ganglia form more elaborate patterns than those of the larvae, but the basic organization of major fiber tracts was similar in larval and adult ganglia. Some aspects of postembryonic development are discussed in relation to the transformation of the distribution of 5-HTi neurons and their processes into the adult pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号