首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We measured the short‐term direct and long‐term indirect effects of elevated CO2 on leaf dark respiration of loblolly pine (Pinus taeda) and sweetgum (Liquidambar styraciflua) in an intact forest ecosystem. Trees were exposed to ambient or ambient + 200 µmol mol?1 atmospheric CO2 using free‐air carbon dioxide enrichment (FACE) technology. After correcting for measurement artefacts, a short‐term 200 µmol mol?1 increase in CO2 reduced leaf respiration by 7–14% for sweetgum and had essentially no effect on loblolly pine. This direct suppression of respiration was independent of the CO2 concentration under which the trees were grown. Growth under elevated CO2 did not appear to have any long‐term indirect effects on leaf maintenance respiration rates or the response of respiration to changes in temperature (Q10, R0). Also, we found no relationship between mass‐based respiration rates and leaf total nitrogen concentrations. Leaf construction costs were unaffected by growth CO2 concentration, although leaf construction respiration decreased at elevated CO2 in both species for leaves at the top of the canopy. We conclude that elevated CO2 has little effect on leaf tissue respiration, and that the influence of elevated CO2 on plant respiratory carbon flux is primarily through increased biomass.  相似文献   

3.
Rising atmospheric carbon dioxide (CO2) concentration is expected to change plant tissue quality with important implications for plant–insect interactions. Taking advantage of canopy access by a crane and long‐term CO2 enrichment (530 μ mol mol?1) of a natural old‐growth forest (web‐free air carbon dioxide enrichment), we studied the responses of a generalist insect herbivore feeding in the canopy of tall trees. We found that relative growth rates (RGR) of gypsy moth (Lymantria dispar) were reduced by 30% in larvae fed on high CO2‐exposed Quercus petraea, but increased by 29% when fed on high CO2‐grown Carpinus betulus compared with control trees at ambient CO2 (370 μ mol mol?1). In Fagus sylvatica, there was a nonsignificant trend for reduced RGR under elevated CO2. Tree species‐specific changes in starch to nitrogen ratio, water, and the concentrations of proteins, condensed and hydrolyzable tannins in response to elevated CO2 were identified to correlate with altered RGR of gypsy moth larvae. Our data suggest that rising atmospheric CO2 will have strong species‐specific effects on leaf chemical composition of canopy trees in natural forests leading to contrasting responses of herbivores such as those reported here. A future change in host tree preference seems likely with far‐ranging consequences for forest community dynamics.  相似文献   

4.
The effects of atmospheric CO2 enrichment and root restriction on photosynthetic characteristics and growth of banana (Musa sp. AAA cv. Gros Michel) plants were investigated. Plants were grown aeroponically in root chambers in controlled environment glasshouse rooms at CO2 concentrations of 350 or 1 000 μmol CO2 mol-1. At each CO2 concentration, plants were grown in large (2001) root chambers that did not restrict root growth or in small (20 1) root chambers that restricted root growth. Plants grown at 350 μmol CO2 mol-1 generally had a higher carboxylation efficiency than plants grown at 1 000 μmol CO2 mol-1 although actual net CO2 assimilation (A) was higher at the higher ambient CO2 concentration due to increased intercellular CO2 concentrations (Ci resulting from CO2 enrichment. Thus, plants grown at 1 000 μmol CO2 mol-1 accumulated more leaf area and dry weight than plants grown at 350 μmol CO2 mol-1. Plants grown in the large root chambers were more photosynthetically efficient than plants grown in the small root chambers. At 350 μmol CO2 mol-1, leaf area and dry weights of plant organs were generally greater for plants in the large root chambers compared to those in the small root chambers. Atmospheric CO2 enrichment may have compensated for the effects of root restriction on plant growth since at 1 000 μmol CO2 mol-1 there was generally no effect of root chamber size on plant dry weight.  相似文献   

5.
Young beech (Fagus sylvatica) and spruce (Picea abies) trees from different provenances or genotypes were grown in competition in large model ecosystems and were exposed to two concentrations of atmospheric CO2 (370 vs 570 μmol mol?1), two levels of wet nitrogen deposition (7 vs 70 kg N ha?1 yr?1), and two native forest soils (acidic vs calcareous) for four years in open‐top chambers. The 2×2×2 factorial experimental design was fully replicated (n=4) with each CO2×N combination applied to each soil type. Exposure to atmospheric CO2 enrichment stimulated daytime net ecosystem CO2 flux (NEC) as measured during sunny days in the middle of the third growing season. Nevertheless, we observed substantial down‐regulation of NEC, with larger adjustments on acidic than on calcareous soil. NEC adjustment was associated with slightly reduced leaf area index (LAI) on the acidic soil (no response on calcareous soil), enhanced soil CO2 efflux from both substrate types, and, most importantly, with down‐regulation of CO2 uptake at the leaf scale. Downward adjustment of light‐saturated single‐leaf photosynthesis (A) and of Rubisco was more pronounced in beech than in spruce and these species‐specific differences increased over time. By year four, A adjustment (except in one specific treatment combination in each species) had become complete in beech but had disappeared in spruce. At no time did we observe a genotype or provenance effect on the downward adjustment of carbon fluxes, and nitrogen deposition rate generally had little effect as well. Overall, our results suggest that tree species and soil quality will have profound effects on ecosystem CO2 fluxes under continued atmospheric CO2 enrichment.  相似文献   

6.
For most of the past 250 000 years, atmospheric CO2 has been 30–50% lower than the current level of 360 μmol CO2 mol–1 air. Although the effects of CO2 on plant performance are well recognized, the effects of low CO2 in combination with abiotic stress remain poorly understood. In this study, a growth chamber experiment using a two-by-two factorial design of CO2 (380 μmol mol–1, 200 μmol mol–1) and temperature (25/20 °C day/night, 36/29 °C) was conducted to evaluate the interactive effects of CO2 and temperature variation on growth, tissue chemistry and leaf gas exchange of Phaseolus vulgaris. Relative to plants grown at 380 μmol mol–1 and 25/20 °C, whole plant biomass was 36% less at 380 μmol mol–1× 36/29 °C, and 37% less at 200 μmol mol–1× 25/20 °C. Most significantly, growth at 200 μmol mol–1× 36/29 °C resulted in 77% less biomass relative to plants grown at 380 μmol mol–1× 25/20 °C. The net CO2 assimilation rate of leaves grown in 200 μmol mol–1× 25/20 °C was 40% lower than in leaves from 380 μmol mol–1× 25/20 °C, but similar to leaves in 200 μmol mol–1× 36/29 °C. The leaves produced in low CO2 and high temperature respired at a rate that was double that of leaves from the 380μmol mol–1× 25/20 °C treatment. Despite this, there was little evidence that leaves at low CO2 and high temperature were carbohydrate deficient, because soluble sugars, starch and total non-structural carbohydrates of leaves from the 200μmol mol–1× 36/29 °C treatment were not significantly different in leaves from the 380μmol mol–1× 25/20 °C treatment. Similarly, there was no significant difference in percentage root carbon, leaf chlorophyll and leaf/root nitrogen between the low CO2× high temperature treatment and ambient CO2 controls. Decreased plant growth was correlated with neither leaf gas exchange nor tissue chemistry. Rather, leaf and root growth were the most affected responses, declining in equivalent proportions as total biomass production. Because of this close association, the mechanisms controlling leaf and root growth appear to have the greatest control over the response to heat stress and CO2 reduction in P. vulgaris.  相似文献   

7.
Stands of carrot (Daucus carota L.) were grown in the field within polyethylene-covered tunnels at a range of soil temperatures (from a mean of 7·5°C to 10·9°C) at either 348 (SE = 4·7) or 551 (SE = 7·7) μmol mol−1 CO2. The effect of increased atmospheric CO2 concentration on root yield was greater than that on total biomass. At the last harvest (137d from sowing), total biomass was 16% (95% CI = 6%, 27%) greater at 551 than at 348 μmol mol−1 CO2, and 37% (95% CI = 30%, 44%) greater as a result of a 1°C rise in soil temperature. Enrichment with CO2 or a 1°C rise in soil temperature increased root yield by 31% (95% CI = 19%, 45%) and 34% (95% CI = 27%, 42%), respectively, at this harvest. No effect on total biomass or root yield of an interaction between temperature and atmospheric CO2 concentration at 137 DAS was detected. When compared at a given leaf number (seven leaves), CO2 enrichment increased total biomass by 25% and root yields by 80%, but no effect of differences in temperature on plant weights was found. Thus, increases in total biomass and root yield observed in the warmer crops were a result of the effects of temperature on the timing of crop growth and development. Partitioning to the storage roots during early root expansion was greater at 551 than at 348 μmol mol−1 CO2. The root to total weight ratio was unaffected by differences in temperature at 551 μmol mol−1CO2, but was reduced by cooler temperatures at 348 μmol mol−1 CO2. At a given thermal time from sowing, CO2 enrichment increased the leaf area per plant, particularly during early root growth, primarily as a result of an increase in the rate of leaf area expansion, and not an increase in leaf number.  相似文献   

8.
Among plants grown under enriched atmospheric CO2, root:shoot balance (RSB) theory predicts a proportionately greater allocation of assimilate to roots than among ambient‐grown plants. Conversely, defoliation, which decreases the plant's capacity to assimilate carbon, is predicted to increase allocation to shoot. We tested these RSB predictions, and whether responses to CO2 enrichment were modified by defoliation, using Heterotheca subaxillaris, an annual plant native to south‐eastern USA. Plants were grown under near‐ambient (400 μmol mol?1) and enriched (700 μmol mol?1) levels of atmospheric CO2. Defoliation consisted of the weekly removal of 25% of each new fully expanded, but not previously defoliated, leaf from either rosette or bolted plants. In addition to dry mass measurements of leaves, stems, and roots, Kjeldahl N, protein, starch and soluble sugars were analysed in these plant components to test the hypothesis that changes in C:N uptake ratio drive shifts in root:shoot ratio. Young, rapidly growing CO2‐enriched plants conformed to the predictions of RSB, with higher root:shoot ratio than ambient‐grown plants (P < 0.02), whereas older, slower growing plants did not show a CO2 effect on root:shoot ratio. Defoliation resulted in smaller plants, among which both root and shoot biomass were reduced, irrespective of CO2 treatment (P < 0.03). However, H. subaxillaris plants were able to compensate for leaf area removal through flexible shoot allocation to more leaves vs. stem (P < 0.01). Increased carbon availability through CO2 enrichment did not enhance the response to defoliation, apparently because of complete growth compensation for defoliation, even under ambient conditions. CO2‐enriched plants had higher rates of photosynthesis (P < 0.0001), but this did not translate into increased final biomass accumulation. On the other hand, earlier and more abundant yield of flower biomass was an important consequence of growth under CO2 enrichment.  相似文献   

9.
Soybean plants (Glycine max (L.) Merr. c.v. Williams) were grown in CO2 controlled, natural-light growth chambers under one of four atmospheric CO2 concentrations ([CO2]): (1) 250 μmol mol–1 24 h d–1[250/250]; (2) 1000 μmol mol–1 24 h d–1[1000/1000]; (3) 250 μmol mol–1 during daylight hours and 1000 μmol mol–1 during night-time hours [250/1000] or (4) 1000 μmol mol–1 during daylight hours and 250 μmol mol–1 during night-time hours [1000/250]. During the vegetative growth phase few physiological differences were observed between plants exposed to a constant 24 h [CO2] (250/250 and 1000/1000) and those that were switched to a higher or lower [CO2] at night (250/1000 and 1000/250), suggesting that the primary physiological responses of plants to growth in elevated [CO2] is apparently a response to daytime [CO2] only. However, by the end of the reproductive growth phase, major differences were observed. Plants grown in the 1000/250 regime, when compared with those in the 1000/1000 regime, had significantly more leaf area and leaf mass, 27% more total plant dry mass, but only 18% of the fruit mass. After 12 weeks of growth these plants also had 19% higher respiration rates and 32% lower photosynthetic rates than the 1000/1000 plants. As a result the ratio of carbon gain to carbon loss was reduced significantly in the plants exposed to the reduced night-time [CO2]. Plants grown in the opposite switching environment, 250/1000 versus 250/250, showed no major differences in biomass accumulation or allocation with the exception of a significant increase in the amount of leaf mass per unit area. Physiologically, those plants exposed to elevated night-time [CO2] had 21% lower respiration rates, 14% lower photosynthetic rates and a significant increase in the ratio of carbon gain to carbon loss, again when compared with the 250/250 plants. Biochemical differences also were found. Ribulose-1,5-bisphosphate carboxylase/ oxygenase concentrations decreased in the 250/ 1000 treatment compared with the 250/250 plants, and phosphoenolpyruvate carboxylase activity decreased in the 1000/250 compared with the 1000/1000 plants. Glucose, fructose and to a lesser extent sucrose concentrations also were reduced in the 1000/250 treatment compared with the 1000/1000 plants. These results indicate that experimental protocols that do not maintain elevated CO2 levels 24 h d–1 can have significant effects on plant biomass, carbon allocation and physiology, at least for fast-growing annual crop plants. Furthermore, the results suggest some plant processes other than photosynthesis are sensitive to [CO2] and under ecologically relevant conditions, such as high night-time [CO2], whole plant carbon balance can be affected.  相似文献   

10.
Responses of photosynthesis and stomatal conductance were monitored throughout a 3-year field exposure of Liriodendron tulipifera (yellow-poplar) and Quercus alba (white oak) to elevated concentrations of atmospheric CO2. Exposure to atmospheres enriched with +150 and +300 umol mol-1 CO2 increased net photosynthesis by 12–144% over the course of the study. Net photosynthesis was consistently higher at +300 than at +150 umol mol-1 CO2. The effect of CO2 enrichment on stomatal conductance was limited, but instantaneous leaf-level water use efficiency increased significantly. No decrease in the responsiveness of photosynthesis to CO2 enrichment over time was detected, and the responses were consistent throughout the canopy and across successive growth flushes and seasons. The relationships between internal CO2 concentration and photosynthesis (e.g. photosynthetic capacity and carboxylation efficiency) were not altered by growth at elevated concentrations of CO2. No alteration in the timing of leaf senescence or abscission was detected, suggesting that the seasonal duration of effective gas-exchange was unaffected by CO2 treatment. These results are consistent with data previously reported for these species in controlled-environment studies, and suggest that leaf-level photosynthesis does not down-regulate in these species as a result of acclimation to CO2 enrichment in the field. This sustained enhancement of photosynthesis provides the opportunity for increased growth and carbon storage by trees as the atmospheric concentration of CO2 rises, but many additional factors interact in determining whole-plant and forest responses to global change.  相似文献   

11.
Fine roots (≤1 mm diameter) are critical in plant water and nutrient absorption, and it is important to understand how rising atmospheric CO2 will affect them as part of terrestrial ecosystem responses to global change. This study's objective was to determine the effects of elevated CO2 on production, mortality, and standing crops of fine root length over 2 years in a free‐air CO2 enrichment (FACE) facility in the Mojave Desert of southern Nevada, USA. Three replicate 25 m diameter FACE rings were maintained at ambient (~370 μmol mol?1) and elevated CO2 (~550 μmol mol?1) atmospheric concentrations. Twenty‐eight minirhizotron tubes were placed in each ring to sample three microsite locations: evergreen Larrea shrubs, drought‐deciduous Ambrosia shrubs, and along systematic community transects (primarily in shrub interspaces which account for ~85% of the area). Seasonal dynamics were similar for ambient and elevated CO2: fine root production peaked in April–June, with peak standing crop occurring about 1 month later, and peak mortality occurring during the hot summer months, with higher values for all three measures in a wet year compared with a dry year. Fine root standing crop, production, and mortality were not significantly different between treatments except standing crop along community transects, where fine root length was significantly lower in elevated CO2. Fine root turnover (annual cumulative mortality/mean standing crop) ranged from 2.33 to 3.17 year?1, and was not significantly different among CO2 treatments, except for community transect tubes where it was significantly lower for elevated CO2. There were no differences in fine root responses to CO2 between evergreen (Larrea) and drought‐deciduous (Ambrosia) shrubs. Combined with observations of increased leaf‐level water‐use efficiency and lack of soil moisture differences, these results suggest that under elevated CO2 conditions, reduced root systems (compared with ambient CO2) appear sufficient to provide resources for modest aboveground production increases across the community, but in more fertile shrub microsites, fine root systems of comparable size with those in ambient CO2 were required to support the greater aboveground production increases. For community transects, development of the difference in fine root standing crops occurred primarily through lower stimulation of fine root production in the elevated CO2 treatment during periods of high water availability.  相似文献   

12.
Plant carbon‐use‐efficiency (CUE), a key parameter in carbon cycle and plant growth models, quantifies the fraction of fixed carbon that is converted into net primary production rather than respired. CUE has not been directly measured, partly because of the difficulty of measuring respiration in light. Here, we explore if CUE is affected by atmospheric CO2. Sunflower stands were grown at low (200 μmol mol?1) or high CO2 (1000 μmol mol?1) in controlled environment mesocosms. CUE of stands was measured by dynamic stand‐scale 13C labelling and partitioning of photosynthesis and respiration. At the same plant age, growth at high CO2 (compared with low CO2) led to 91% higher rates of apparent photosynthesis, 97% higher respiration in the dark, yet 143% higher respiration in light. Thus, CUE was significantly lower at high (0.65) than at low CO2 (0.71). Compartmental analysis of isotopic tracer kinetics demonstrated a greater commitment of carbon reserves in stand‐scale respiratory metabolism at high CO2. Two main processes contributed to the reduction of CUE at high CO2: a reduced inhibition of leaf respiration by light and a diminished leaf mass ratio. This work highlights the relevance of measuring respiration in light and assessment of the CUE response to environment conditions.  相似文献   

13.
Increased atmospheric carbon dioxide supply is predicted to alter plant growth and biomass allocation patterns. It is not clear whether changes in biomass allocation reflect optimal partitioning or whether they are a direct effect of increased growth rates. Plasticity in growth and biomass allocation patterns was investigated at two concentrations of CO2 ([CO2]) and at limiting and nonlimiting nutrient levels for four fast‐ growing old‐field annual species. Abutilon theophrasti, Amaranthus retroflexus, Chenopodium album, and Polygonum pensylvanicum were grown from seed in controlled growth chamber conditions at current (350 μmol mol?1, ambient) and future‐ predicted (700 μmol mol?1, elevated) CO2 levels. Frequent harvests were used to determine growth and biomass allocation responses of these plants throughout vegetative development. Under nonlimiting nutrient conditions, whole plant growth was increased greatly under elevated [CO2] for three C3 species and moderately increased for a C4 species (Amaranthus). No significant increases in whole plant growth were observed under limiting nutrient conditions. Plants grown in elevated [CO2] had lower or unchanged root:shoot ratios, contrary to what would be expected by optimal partitioning theory. These differences disappeared when allometric plots of the same data were analysed, indicating that CO2‐induced differences in root:shoot allocation were a consequence of accelerated growth and development rates. Allocation to leaf area was unaffected by atmospheric [CO2] for these species. The general lack of biomass allocation responses to [CO2] availability is in stark contrast with known responses of these species to light and nutrient gradients. We conclude that biomass allocation responses to elevated atmospheric [CO2] are not consistent with optimal partitioning predictions.  相似文献   

14.
Decomposition of soybean grown under elevated concentrations of CO2 and O3   总被引:1,自引:0,他引:1  
A critical global climate change issue is how increasing concentrations of atmospheric CO2 and ground‐level O3 will affect agricultural productivity. This includes effects on decomposition of residues left in the field and availability of mineral nutrients to subsequent crops. To address questions about decomposition processes, a 2‐year experiment was conducted to determine the chemistry and decomposition rate of aboveground residues of soybean (Glycine max (L.) Merr.) grown under reciprocal combinations of low and high concentrations of CO2 and O3 in open‐top field chambers. The CO2 treatments were ambient (370 μmol mol?1) and elevated (714 μmol mol?1) levels (daytime 12 h averages). Ozone treatments were charcoal‐filtered air (21 nmol mol?1) and nonfiltered air plus 1.5 times ambient O3 (74 nmol mol?1) 12 h day?1. Elevated CO2 increased aboveground postharvest residue production by 28–56% while elevated O3 suppressed it by 15–46%. In combination, inhibitory effects of added O3 on biomass production were largely negated by elevated CO2. Plant residue chemistry was generally unaffected by elevated CO2, except for an increase in leaf residue lignin concentration. Leaf residues from the elevated O3 treatments had lower concentrations of nonstructural carbohydrates, but higher N, fiber, and lignin levels. Chemical composition of petiole, stem, and pod husk residues was only marginally affected by the elevated gas treatments. Treatment effects on plant biomass production, however, influenced the content of chemical constituents on an areal basis. Elevated CO2 increased the mass per square meter of nonstructural carbohydrates, phenolics, N, cellulose, and lignin by 24–46%. Elevated O3 decreased the mass per square meter of these constituents by 30–48%, while elevated CO2 largely ameliorated the added O3 effect. Carbon mineralization rates of component residues from the elevated gas treatments were not significantly different from the control. However, N immobilization increased in soils containing petiole and stem residues from the elevated CO2, O3, and combined gas treatments. Mass loss of decomposing leaf residue from the added O3 and combined gas treatments was 48% less than the control treatment after 20 weeks, while differences in decomposition of petiole, stem, and husk residues among treatments were minor. Decreased decomposition of leaf residues was correlated with lower starch and higher lignin levels. However, leaf residues only comprised about 20% of the total residue biomass assayed so treatment effects on mass loss of total aboveground residues were relatively small. The primary influence of elevated atmospheric CO2 and O3 concentrations on decomposition processes is apt to arise from effects on residue mass input, which is increased by elevated CO2 and suppressed by O3.  相似文献   

15.
Small birch plants (Betula pendula Roth.) were grown from seed for periods of up to 70d in a climate chamber at optimal nutrition and at present (350 μmol mol?1) or elevated (700 μmol mol?1) concentrations of atmospheric CO2. Nutrients were sprayed over the roots in Ingestad-type units. Relative growth rate and net assimilation rate were slightly higher at elevated CO2, whereas leaf area ratio was slightly lower. Smaller leaf area ratio was associated with lower values of specific leaf area. Leaves grown at elevated CO2 had higher starch concentrations (dry weight basis) than leaves grown at present levels of CO2. Biomass allocation showed no change with CO2, and no large effects on stem height, number of side shoots and number of leaves were found. However, the specific root length of fine roots was higher at elevated CO2. No large difference in the response of carbon assimilation to intercellular CO2 concentration (A/Ci curves) were found between CO2 treatments. When measured at the growth environments, the rates of photosynthesis were higher in plants grown at elevated CO2 than in plants grown at present CO2. Water use efficiency of single leaves was higher in the elevated treatment. This was mainly attributable to higher carbon assimilation rate at elevated CO2. The difference in water use efficiency diminished with leaf age. The small treatment difference in relative growth rate was maintained throughout the experiment, which meant that the difference in plant size became progressively greater. Thus, where plant nutrition is sufficient to maintain maximum growth, small birch plants may potentially increase in size more rapidly at elevated CO2.  相似文献   

16.
Ribulose-1,5-bisphosphate (RuBP) pool size was determined at regular intervals during the growing season to understand the effects of tropospheric ozone concentrations, elevated atmospheric carbon dioxide concentrations and their interactions on the photosynthetic limitation by RuBP regeneration. Soybean (Glycine max [L.] Merr. cv. Essex) was grown from seed to maturity in open-top field chambers in charcoal-filtered air (CF) either without (22 nmol O3 mol?1) or with added O3 (83 nmol mol?1) at ambient (AA, 369 μmol CO2 mol?1) or elevated CO2 (710 μmol mol?1). The RuBP pool size generally declined with plant age in all treatments when expressed on a unit leaf area and in all treatments but CF-AA when expressed per unit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) binding site. Although O3 in ambient CO2 generally reduced the RuBP pool per unit leaf area, it did not change the RuBP pool per unit Rubisco binding site. Elevated CO2, in CF or O3-fumigated air, generally had no significant effect on RuBP pool size, thus mitigating the negative O3 effect. The RuBP pools were below 2 mol mol?1 binding site in all treatments for most of the season, indicating limiting RuBP regeneration capacity. These low RuBP pools resulted in increased RuBP regeneration via faster RuBP turnover, but only in CF air and during vegetative and flowering stages at elevated CO2. Also, the low RuBP pool sizes did not always reflect RuBP consumption rates or the RuBP regeneration limitation relative to potential carboxylation (%RuBP). Rather, %RuBP increased linearly with decrease in the RuBP pool turnover time. These data suggest that amelioration of damage from O3 by elevated atmospheric CO2 to the RuBP regeneration may be in response to changes in the Rubisco carboxylation.  相似文献   

17.
Two cultivars of spring wheat (Triticum aestivum L. cvs. Alexandria and Hanno) and three cultivars of winter wheat (cvs. Riband, Mercia and Haven) were grown at two concentrations of CO2 [ambient (355 pmol mol?1) and elevated (708 μmol mol?1)] under two O3 regimes [clean air (< 5 nmol mol?1 O3) and polluted air (15 nmol mol?1 O3 at night rising to a midday maximum of 75 nmol mol?1)] in a phytotron at the University of Newcastle-upon-Tyne. Between the two-leaf stage and anthesis, measurements of leaf gas-exchange, non-structural carbohydrate content, visible O3 damage, growth, dry matter partitioning, yield components and root development were made in order to examine responses to elevated CO2 and/or O3. Growth at elevated CO2 resulted in a sustained increase in the rate of CO2 assimilation, but after roughly 6 weeks' exposure there was evidence of a slight decline in the photosynthetic rate (c.-15%) measured under growth conditions which was most pronounced in the winter cultivars. Enhanced rates of CO2 assimilation were accompanied by a decrease in stomatal conductance which improved the instantaneous water use efficiency of individual leaves. CO2 enrichment stimulated shoot and root growth to an equivalent extent, and increased tillering and yield components, however, non-structural carbohydrates still accumulated in source leaves. In contrast, long-term exposure to O3 resulted in a decreased CO2 assimilation rate (c. -13%), partial stomatal closure, and the accumulation of fructan and starch in leaves in the light. These effects were manifested in decreased rates of shoot and root growth, with root growth more severely affected than shoot growth. In the combined treatment growth of O3-treated plants was enhanced by elevated CO2, but there was little evidence that CO2 enrichment afforded additional protection against O3 damage. The reduction in growth induced by O3 at elevated CO2 was similar to that induced by O3 at ambient CO2 despite additive effects of the individual gases on stomatal conductance that would be expected to reduce the O3 flux by 20%, and also CO2-induced increases in the provision of substrates for detoxification and repair processes. These observations suggest that CO2 enrichment may render plants more susceptible to O3 damage at the cellular level. Possible mechanisms are discussed.  相似文献   

18.
To examine the effectiveness of super-elevated (10,000 μmol mol−1) CO2 enrichment under cold cathode fluorescent lamps (CCFL) for the clonal propagation of Cymbidium, plantlets were cultured on modified Vacin and Went (VW) medium under 0, 3,000 and 10,000 μmol mol−1 CO2 enrichment and two levels of photosynthetic photon flux density (PPFD, 45 and 75 μmol m−2 s−1). Under high PPFD, 10,000 μmol mol−1 CO2 increased root dry weight and promoted shoot growth. In addition, a decrease in photosynthetic capacity and chlorosis at leaf tips were observed. Rubisco activity and stomatal conductance of these plantlets were lower than those of plantlets at 3,000 μmol mol−1 CO2 under high PPFD, which had a higher photosynthetic capacity. On the other hand, plantlets on Kyoto medium grown in 10,000 μmol mol−1 CO2 under high PPFD had a higher photosynthetic rate than those on modified VW medium; no chlorosis was observed. Furthermore, growth of plantlets, in particular the roots, was remarkably enhanced. This result indicates that a negative response to super-elevated CO2 under high PPFD could be improved by altering medium components. Super-elevated CO2 enrichment of in vitro-cultured Cymbidium could positively affect the efficiency and quality of commercial production of clonal orchid plantlets.  相似文献   

19.
Two herbaceous perennials, alfalfa (Medicago sativa L. cv. Arc) and orchard grass (Dactylus glomerata L. cv. Potomac), were grown at ambient (367 μmol mol−1) and elevated (729 μmol mol−1) CO2 concentrations at constant temperatures of 15, 20, 25 and 30°C in order to examine direct and indirect changes in nighttime CO2 efflux rate (respiration) of single leaves. Direct (biochemical) effects of CO2 on nighttime respiration were determined for each growth condition by brief (<30 min) exposure to each CO2 concentration. If no direct inhibition of respiration was observed, then long-term reductions in CO2 efflux between CO2 treatments were presumed to be due to indirect inhibition, probably related to long-term changes in leaf composition. By this criterion, indirect effects of CO2 on leaf respiration were observed at 15 and 20°C for M. sativa on a weight basis, but not on a leaf area or protein basis. Direct effects however, were observed at 15, 20 and 25°C in D. glomerata; therefore the observed reductions in respiration for leaves grown and measured at elevated relative to ambient CO2 concentrations could not be distinguished as indirect inhibition. No inhibition of respiration at elevated CO2 was observed at the highest growth temperature (30°C) in either species. CO2 efflux increased with measurement and growth temperature for M. sativa at both CO2 concentrations; however, CO2 efflux in D. glomerata showed complete acclimation to growth temperature. Stimulation of leaf area and weight by elevated CO2 levels declined with growth temperature in both species. Data from the present study suggest that both direct and indirect inhibition of respiration are possible with future increases in atmospheric CO2, and that the degree of each type of respiratory inhibition is a function of growth temperature.  相似文献   

20.
Native scrub‐oak communities in Florida were exposed for three seasons in open top chambers to present atmospheric [CO2] (approx. 350 μmol mol?1) and to high [CO2] (increased by 350 μmol mol?1). Stomatal and photosynthetic acclimation to high [CO2] of the dominant species Quercus myrtifolia was examined by leaf gas exchange of excised shoots. Stomatal conductance (gs) was approximately 40% lower in the high‐ compared to low‐[CO2]‐grown plants when measured at their respective growth concentrations. Reciprocal measurements of gs in both high‐ and low‐[CO2]‐grown plants showed that there was negative acclimation in the high‐[CO2]‐grown plants (9–16% reduction in gs when measured at 700 μmol mol?1), but these were small compared to those for net CO2 assimilation rate (A, 21–36%). Stomatal acclimation was more clearly evident in the curve of stomatal response to intercellular [CO2] (ci) which showed a reduction in stomatal sensitivity at low ci in the high‐[CO2]‐grown plants. Stomatal density showed no change in response to growth in high growth [CO2]. Long‐term stomatal and photosynthetic acclimation to growth in high [CO2] did not markedly change the 2·5‐ to 3‐fold increase in gas‐exchange‐derived water use efficiency caused by high [CO2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号