首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Biomarkers》2013,18(8):721-729
Chronic renal failure (CRF) is a major challenge for the public healthcare problem. A novel UPLC Q-TOF/MS method with MSE data collection mode was developed as a very effective biochemical analytical tool for precise identification of important biomarkers in the adenine-induced CRF rats. Nine endogenous metabolites were identified by using metabonomic method combined with multivariate data analysis, the accurate mass, isotopic pattern, MSE fragments information and MassLynx i-FIT algorithm. The identified metabolites indicated the perturbations of bile acid and phospholipid metabolism are related to CRF rats. This work shows that metabonomics method is a valuable tool in CRF mechanism study.  相似文献   

2.
The application of LC-MS for untargeted urinary metabolite profiling in metabonomic research has gained much interest in recent years. However, the effects of varying sample pre-treatments and LC conditions on generic metabolite profiling have not been studied. We aimed to evaluate the effects of varying experimental conditions on data acquisition in untargeted urinary metabolite profiling using UPLC/QToF MS. In-house QC sample clustering was used to monitor the performance of the analytical platform. In terms of sample pre-treatment, results showed that untreated filtered urine yielded the highest number of features but dilution with methanol provided a more homogenous urinary metabolic profile with less variation in number of features and feature intensities. An increased cycle time with a lower flow rate (400mul/min vs 600mul/min) also resulted in a higher number of features with less variability. The step elution gradient yielded the highest number of features and the best chromatographic resolution among three different elution gradients tested. The maximum retention time and mass shift were only 0.03min and 0.0015Da respectively over 600 injections. The analytical platform also showed excellent robustness as evident by tight QC sample clustering. To conclude, we have investigated LC conditions by studying variability and repeatability of LC-MS data for untargeted urinary metabolite profiling.  相似文献   

3.
Direct plasma injection technology coupled with a LC-MS/MS assay provides fast and straightforward method development and greatly reduces the time for the tedious sample preparation procedures. In this work, a simple and sensitive bioanalytical method based on direct plasma injection using a single column high-performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS) was developed for direct cocktail analysis of double-pooled mouse plasma samples for the quantitative determination of small molecules. The overall goal was to improve the throughput of the rapid pharmacokinetic (PK) screening process for early drug discovery candidates. Each pooled plasma sample was diluted with working solution containing internal standard and then directly injected into a polymer-coated mixed-function column for sample clean-up, enrichment and chromatographic separation. The apparent on-column recovery of six drug candidates in mouse plasma samples was greater than 90%. The single HPLC column was linked to either an atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI) source as a part of MS/MS system. The total run cycle time using single column direct injection methods can be achieved within 4 min per sample. The analytical results obtained by the described direct injection methods were comparable with those obtained by semi-automated protein precipitation methods within +/- 15%. The advantages and challenges of using direct single column LC-MS/MS methods with two ionization sources in combination of sample pooling technique are discussed.  相似文献   

4.
A multiple-reaction-monitoring LC/MS/MS method for the analysis of nevirapine oxidative metabolites, 2-hydroxynevirapine, 3-hydroxynevirapine, 8-hydroxynevirapine, 12-hydroxynevirapine, and 4-carboxynevirapine, in human plasma was developed and validated. The metabolites were isolated from 50 microL heparinized plasma by enzymatic hydrolysis of the glucuronide conjugates to the free metabolite followed by protein precipitation with acetonitrile. Peaks were quantitated at 3.03 min for the 4-carboxynevirapine metabolite, at 3.72, 4.27, 5.27, and 5.73 min for the positional 2-hydroxynevirapine, 12-hydroxynevirapine, 3-hydroxynevirapine, and 8-hydroxynevirapine metabolites, respectively, and 2.30 min for the internal standard, pirenzepine. The assay was accurate and precise based on assay validation controls over the nominal range of 0.010-1.0 mg/L. The average accuracy at the lowest concentration quality control (QC) sample was 16% (difference from theoretical value) for 8-hydroxynevirapine, all others were closer to their known respective standards. Within- and between-day precisions were within 12% for quality control samples for all five metabolites. Repetitive thawing and freezing did not have an effect on any metabolite through a minimum of three cycles. Thawed samples, remaining in plasma for 4 h before extraction, were within 5% of theoretical value. Stability of the extracted samples on the autosampler at room temperature was evaluated for 48 h and was observed to be within 12% of a fresh analytical sample for 2-hydroxynevirapine and 3-hydroxynevirapine; other metabolites were within 6% of theoretical value. The utility of the analytical method was demonstrated using trough steady-state plasma samples collected from 48 patients in a hepatic impairment study.  相似文献   

5.
A chemiluminescent enzyme immunoassay (CLEIA) was compared to an ultraperformance liquid chromatography tandem mass spectroscopy (UPLC‐MS/MS) procedure for the analysis of zeranol and its metabolites in bovine tissue samples. Apparent recoveries from fortified samples by both methods were comparable at 0.5–4.0 µg/kg and a significant correlation was obtained. For CLEIA analysis, hapten mimicking the analyte was first synthesized and conjugated with the carrier protein bovine serum albumin as the immunogen to produce monoclonal antibody. The obtained antibody showed extensive cross‐reactivity toward zeranol metabolites (zearalanone). The limit of detection of CLEIA and UPLC‐MS/MS was 0.05 µg/kg and 0.5 µg/kg, respectively. Recoveries of both methods for fortified samples were higher than 75.0% with the coefficient of variation less than 15%. These results indicated that the combination of screening with CLEIA and confirmation with UPLC‐MS/MS for zeranol and its metabolites would be a reliable method for a large number of bovine samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
An alternative on-line automated sample enrichment technique useful for the direct determination of various drugs and their metabolites in plasma is described for rapid development of highly sensitive and selective liquid chromatographic methods using mass spectrometric detection. The method involves direct injection of plasma onto an internal surface reversed-phase (ISRP) guard column, washing the proteins from the column to waste with aqueous acetonitrile, and backflushing the analytes onto a reversed-phase octyl silica column using switching valves. The analytes were detected using a tandem mass spectrometer operated in selected reaction monitoring (SRM) mode using atmospheric pressure chemical ionization (APCI). Use of two ISRP guard columns in parallel configuration allowed alternate injections of plasma samples on these columns for sample enrichment and shortened the column equilibration and LCMSMS analysis times, thereby increasing the sample throughput. The total run time, including both sample enrichment and chromatography, was about 6 min. Using this technique, an analytical method was developed for the quantitation of granisetron and its active 7-hydroxy metabolite in dog plasma. Granisetron is a selective 5-HT3 receptor antagonist used in the prevention and treatment of cytostatic induced nausea and vomiting. Recovery of the analytes was quantitative and the method displayed excellent linearity over the concentration ranges tested. Results from a three day validation study for both compounds demonstrated excellent precision (1.3–8.7%) and accuracy (93–105%) across the calibration range of 0.1 to 50 ng/ml using an 80 μl plasma sample. The automated method described here was simple, reliable and economical. This on-line approach using ISRP columns and column switching with LCMSMS is applicable for the quantification of other pharmaceuticals in pharmacokinetics studies in animals and humans which require high sensitivity.  相似文献   

7.
An improved method for determining levels of levosulpiride in human plasma using ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was developed and validated. The protein precipitation method was used for plasma sample preparation. Levosulpiride and an internal standard (IS) were isocratically separated on a UPLC BEH C18 column with a mobile phase of ammonium formate buffer (1 mM, adjusted to pH 3 with formic acid) and acetonitrile (60:40, v/v). MS/MS detection was performed by monitoring the parent → daughter pair of levosulpiride and the IS at m/z 342 → 112 and 329 → 256, respectively. The method was linear from 2.5 to 200 ng/mL and exhibited acceptable precision and percent recovery. The method was successfully demonstrated in pharmacokinetic and bioequivalence studies of two levosulpiride oral formulations administered to healthy volunteers. When compared to the previous LC–MS methods, the proposed method is faster, well-validated, and uses lesser plasma volume and a similar sensitivity. The use of UPLC allowed rapid and sensitive quantification of levosulpiride, making this method suitable for high-throughput clinical applications.  相似文献   

8.

Introduction

Processing delays after blood collection is a common pre-analytical condition in large epidemiologic studies. It is critical to evaluate the suitability of blood samples with processing delays for metabolomics analysis as it is a potential source of variation that could attenuate associations between metabolites and disease outcomes.

Objectives

We aimed to evaluate the reproducibility of metabolites over extended processing delays up to 48 h. We also aimed to test the reproducibility of the metabolomics platform.

Methods

Blood samples were collected from 18 healthy volunteers. Blood was stored in the refrigerator and processed for plasma at 0, 15, 30, and 48 h after collection. Plasma samples were metabolically profiled using an untargeted, ultrahigh performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) platform. Reproducibility of 1012 metabolites over processing delays and reproducibility of the platform were determined by intraclass correlation coefficients (ICCs) with variance components estimated from mixed-effects models.

Results

The majority of metabolites (approximately 70% of 1012) were highly reproducible (ICCs?≥?0.75) over 15-, 30- or 48-h processing delays. Nucleotides, energy-related metabolites, peptides, and carbohydrates were most affected by processing delays. The platform was highly reproducible with a median technical ICC of 0.84 (interquartile range 0.68–0.93).

Conclusion

Most metabolites measured by the UPLC–MS/MS platform show acceptable reproducibility up to 48-h processing delays. Metabolites of certain pathways need to be interpreted cautiously in relation to outcomes in epidemiologic studies with prolonged processing delays.
  相似文献   

9.
10.
The differences among individual bile acids (BAs) in eliciting different physiological and pathological responses are largely unknown because of the lack of valid and simple analytical methods for the quantification of individual BAs and their taurine and glycine conjugates. Therefore, a simple and sensitive LC-MS/MS method for the simultaneous quantification of 6 major BAs, their glycine, and taurine conjugates in mouse liver, bile, plasma, and urine was developed and validated. One-step sample preparation using solid-phase extraction (for bile and urine) or protein precipitation (for plasma and liver) was used to extract BAs. This method is valid and sensitive with a limit of quantification ranging from 10 to 40 ng/ml for the various analytes, has a large dynamic range (2500), and a short run time (20 min). Detailed BA profiles were obtained from mouse liver, plasma, bile, and urine using this method. Muricholic acid (MCA) and cholic acid (CA) taurine conjugates constituted more than 90% of BAs in liver and bile. BA concentrations in liver were about 300-fold higher than in plasma, and about 180-fold higher in bile than in liver. In summary, a reliable and simple LC-MS/MS method to quantify major BAs and their metabolites was developed and applied to quantify BAs in mouse tissues and fluids.  相似文献   

11.
Urinary metabolic perturbations associated with acute and chronic acetaminophen-induced hepatotoxicity were investigated using nuclear magnetic resonance (NMR) spectroscopy and ultra performance liquid chromatography/mass spectrometry (UPLC/MS) metabonomics approaches to determine biomarkers of hepatotoxicity. Acute and chronic doses of acetaminophen (APAP) were administered to male Sprague-Dawley rats. NMR and UPLC/MS were able to detect both drug metabolites and endogenous metabolites simultaneously. The principal component analysis (PCA) of NMR or UPLC/MS spectra showed that metabolic changes observed in both acute and chronic dosing of acetaminophen were similar. Histopathology and clinical chemistry studies were performed and correlated well with the PCA analysis and magnitude of metabolite changes. Depletion of antioxidants (e.g. ferulic acid), trigonelline, S-adenosyl-l-methionine, and energy-related metabolites indicated that oxidative stress was caused by acute and chronic acetaminophen administration. Similar patterns of metabolic changes in response to acute or chronic dosing suggest similar detoxification and recovery mechanisms following APAP administration.  相似文献   

12.
The investigation presented here describes a protocol designed to perform high-throughput metabolic profiling analysis on human blood plasma by ultra-performance liquid chromatography/mass spectrometry (UPLC/MS). To address whether a previous extraction protocol for gas chromatography (GC)/MS-based metabolic profiling of plasma could be used for UPLC/MS-based analysis, the original protocol was compared with similar methods for extraction of low-molecular-weight compounds from plasma via protein precipitation. Differences between extraction methods could be observed, but the previously published extraction method was considered the best. UPLC columns with three different stationary phases (C8, C18, and phenyl) were used in identical experimental runs consisting of a total of 60 injections of extracted male and female plasma samples. The C8 column was determined to be the best for metabolic profiling analysis on plasma. The acquired UPLC/MS data of extracted male and female plasma samples was subjected to principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA). Furthermore, a strategy for compound identification was applied here, demonstrating the strength of high-mass-accuracy time-of-flight (TOF)/MS analysis in metabolic profiling.  相似文献   

13.
Mass spectrometry-based metabolomics is a rapidly growing field in both research and diagnosis. Generally, the methodologies and types of instruments used for clinical and other absolute quantification experiments are different from those used for biomarkers discovery and untargeted analysis, as the former requires optimal sensitivity and dynamic range, while the latter requires high resolution and high mass accuracy. We used a Q-TOF mass spectrometer with two different types of pentafluorophenyl (PFP) stationary phases, employing both positive and negative ionization, to develop and validate a hybrid quantification and discovery platform using LC–HRMS. This dual-PFP LC–MS platform quantifies over 50 clinically relevant metabolites in serum (using both MS and MS/MS acquisitions) while simultaneously collecting high resolution and high mass accuracy full scans to monitor all other co-eluting non-targeted analytes. We demonstrate that the linearity, accuracy, and precision results for the quantification of a number of metabolites, including amino acids, organic acids, acylcarnitines and purines/pyrimidines, meets or exceeds normal bioanalytical standards over their respective physiological ranges. The chromatography resolved highly polar as well as hydrophobic analytes under reverse-phase conditions, enabling analysis of a wide range of chemicals, necessary for untargeted metabolomics experiments. Though previous LC–HRMS methods have demonstrated quantification capabilities for various drug and small molecule compounds, the present study provides an HRMS quant/qual platform tailored to metabolic disease; and covers a multitude of different metabolites including compounds normally quantified by a combination of separate instrumentation.  相似文献   

14.
Quantitative analytical methods are described for the analysis of the anticancer drug procarbazine and eight known metabolites including those known to have cytotoxic activity. A direct sample insertion mass spectrometric assay for procarbazine and the urinary excretion product, N-isopropyl-terephthalamic acid, has been developed. This method employs stable isotope labeled variants in a procedure that minimizes analytical errors that may be encountered in the quantitation of the chemically unstable parent drug. A liquid chromatographic method is described for the analysis of seven known procarbazine metabolites. Use of these methods is demonstrated by the analysis of procarbazine metabolism during incubation in a 9000-g rat liver homogenate preparation. Procarbazine disappearance and metabolite appearance are also monitored in rat plasma following intraperitoneal administration of a 150 mg/kg bolus dose. Applications to patient pharmacokinetics is demonstrated using the liquid chromatographic assay to follow the appearance of active procarbazine metabolites on the first and fourteenth day of an oral 250 mg/kg/day course of therapy of a patient being treated for cancer.  相似文献   

15.
Two methods based on solid-phase extraction (SPE) using traditional cartridges and microelution SPE plates (μSPE) as the sample pre-treatment, and an improved liquid chromatography coupled to tandem mass spectrometry (UPLC–MS/MS) were developed and compared to determine the phenolic compounds in virgin oil olive from plasma samples. The phenolic compounds studied were hydroxytyrosol, tyrosol, homovanillic acid, p-coumaric acid, 3,4-DHPEA-EDA, p-HPEA-EDA, luteolin, apigenin, pinoresinol and acetoxypinoresinol. Good recoveries were obtained in both methods, and the LOQs and LODs were similar, in the range of low μM. The advantage of μSPE, in comparison with SPE cartridges, was the lack of the evaporation step to pre-concentrate the analytes. The μSPE-UPLC–ESI-MS/MS method developed was then applied to determine the phenolic compounds and their metabolites, in glucuronide, sulphate and methylated forms, in human plasma after the ingestion of virgin olive oil.  相似文献   

16.
A quantitative bioanalytical method with excellent specificity using liquid chromatography (LC) atmospheric pressure chemical ionization-tandem mass spectrometry (APCI-MS–MS) combined with a column-switching technique has been developed for the highly sensitive and reliable determination of TS-962 (HL-004), a novel acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor, in rat and rabbit plasma. The method involves protein precipitation of a 25-μl aliquot of plasma sample with eight volumes of methanol containing a deuterium-labeled internal standard, the direct injection of a methanolic supernatant into the analytical instrumentation with no sample evaporation and reconstitution steps, automated on-line clean-up on a C18 short trapping column (10 mm×4.0 mm I.D.) followed by separation on a C18 analytical column (50 mm×4.6 mm I.D.), and detection with APCI-MS–MS using m/z 448 ([M+H]+) as a precursor ion and m/z 178 as a product ion in a selected reaction monitoring mode. The lower limit of quantification was 1 ng/ml, and good linearity of the calibration graph was obtained in the range of 1∼490 ng/ml with excellent reliability. The developed method enabled pharmacokinetic profiles to be determined for rats and rabbits with sequential plasma collection from an individual animal.  相似文献   

17.
Suspect screening analysis is a targeted metabolomics approach in which identification of compounds relies on specific available information such as their molecular formula and isotopic pattern. This method was applied to the study of grape metabolomics with an UPLC/MS high-resolution Q-TOF mass spectrometer (nominal resolution 40,000) coupled with a Jet Stream ionization source. The present paper describes the detailed qualitative and quantitative study of grape stilbenes, the principal polyphenols associated with the beneficial effects of drinking wine. For identification of compounds, a new database was expressly constructed from the molecular information of potential metabolites of grape and wine from the literature and other electronic databases. Currently, GrapeMetabolomics contains about a thousand putative grape compounds. If untargeted analysis of a sample provides identification of a new compound with a sufficiently confident score, it is added to the database. Thus, by increasing the number of samples studied, GrapeMetabolomics can be expanded. This method is effective for identification of the molecular formulae of several hundred metabolites in two runs (positive and negative ionization) with minimal sample preparation, and can also be used to analyse some single classes of compounds involved in cell and tissue metabolism. With this approach, a total of 18 stilbene derivatives was identified in two grape samples (Raboso Piave and Primitivo) on the basis of accurate mass measurements and isotopic patterns, and identification was confirmed by MS/MS analysis. The approach can also potentially be applied to the metabolomics of other plant varieties.  相似文献   

18.
Urine is an easily accessible bodily fluid particularly suited for the routine clinical analysis of disease biomarkers. Actually, the urinary proteome is more diverse than anticipated a decade ago. Hence, significant analytical and practical issues of urine proteomics such as sample collection and preparation have emerged, in particular for large-scale studies. We have undertaken a systematic study to define standardized and integrated analytical protocols for a biomarker development pipeline, employing two LC-MS analytical platforms, namely accurate mass and time tags and selected reaction monitoring, for the discovery and verification phase, respectively. Urine samples collected from hospital patients were processed using four different protocols, which were evaluated and compared on both analytical platforms. Addition of internal standards at various stages of sample processing allowed the estimation of protein extraction yields and the absolute quantification of selected urinary proteins. Reproducibility of the entire process and dynamic range of quantification were also evaluated. Organic solvent precipitation followed by in-solution digestion provided the best performances and was thus selected as the standard method common to the discovery and verification phases. Finally, we applied this protocol for platforms' cross-validation and obtained excellent consistency between urinary protein concentration estimates by both analytical methods performed in parallel in two laboratories.  相似文献   

19.
Mass spectrometry (MS)-based metabolomic methods enable simultaneous profiling of hundreds of salivary metabolites, and may be useful to diagnose a wide range of diseases using saliva. However, few studies have evaluated the effects of physiological or environmental factors on salivary metabolomic profiles. Therefore, we used capillary electrophoresis-MS to analyze saliva metabolite profiles in 155 subjects with reasonable oral hygiene, and examined the effects of physiological and environmental factors on the metabolite profiles. Overall, 257 metabolites were identified and quantified. The global profiles and individual metabolites were evaluated by principle component analysis and univariate tests, respectively. Collection method, collection time, sex, body mass index, and smoking affected the global metabolite profiles. However, age also might contribute to the bias in sex and collection time. The profiles were relatively unaffected by other parameters, such as alcohol consumption and smoking, tooth brushing, or the use of medications or nutritional supplements. Temporomandibular joint disorders had relatively greater effects on salivary metabolites than other dental abnormalities (e.g., stomatitis, tooth alignment, and dental caries). These findings provide further insight into the diversity and stability of salivary metabolomic profiles, as well as the generalizability of disease-specific biomarkers.  相似文献   

20.
A sensitive, precise and accurate quantitative liquid chromatography/tandem mass spectrometry (LC–MS/MS) method for the measurement of sunitinib (SU11248) and N-desethyl sunitinib (SU12662) in human plasma was developed and validated. All sample handling was done under strict light protection. The sample preparation method employed acetonitrile protein precipitation using d5-SU11248 as an internal standard. The processed samples were chromatographed on a polymeric reversed-phase analytical column and analyzed by triple-quadrupole MS/MS in multiple reaction monitoring (MRM) mode using positive TurboIonSpray® (TISP). The LC–MS/MS method described in this paper presents high absolute recovery (86.2% SU11248, 84.8% SU12662), high sensitivity (lower limit of quantitation of 0.06 ng/mL for both analytes), high inter-day precision (1.6–6.1% SU11248, 1.1–5.3% SU12662) and high analytical recovery (99.8–109.1% SU11248, 99.9–106.2% SU12662), as well as excellent linearity over the concentration range 0.060–100 ng/mL (r2 > 0.999) with a short runtime of only 4.0 min. Results on the stability of SU11248 and SU12662 in human plasma are presented. During validation plasma from intensive care patients receiving many drugs were tested for interference and incurred samples were analyzed. The method met all criteria of the EMA and FDA guidelines during validation and was successfully applied to a pharmacokinetic study in healthy human volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号