首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Echan LA  Tang HY  Ali-Khan N  Lee K  Speicher DW 《Proteomics》2005,5(13):3292-3303
Systematic detection of low-abundance proteins in human blood that may be putative disease biomarkers is complicated by an extremely wide range of protein abundances. Hence, depletion of major proteins is one potential strategy for enhancing detection sensitivity in serum or plasma. This study compared a recently commercialized HPLC column containing antibodies to six of the most abundant blood proteins ("Top-6 depletion") with either older Cibacron blue/Protein A or G depletion methods or no depletion. In addition, a prototype spin column version of the HPLC column and an alternative prototype two antibody spin column were evaluated. The HPLC polyclonal antibody column and its spin column version are very promising methods for substantially simplifying human serum or plasma samples. These columns show the lowest nonspecific binding of the depletion methods tested. In contrast other affinity methods, particularly dye-based resins, yielded many proteins in the bound fractions in addition to the targeted proteins. Depletion of six abundant proteins removed about 85% of the total protein from human serum or plasma, and this enabled 10- to 20-fold higher amounts of depleted serum or plasma samples to be applied to 2-D gels or alternative protein profiling methods such as protein array pixelation. However, the number of new spots detected on 2-D gels was modest, and most newly visualized spots were minor forms of relatively abundant proteins. The inability to detect low-abundance proteins near expected 2-D staining limits was probably due to both the highly heterogeneous nature of most plasma or serum proteins and masking of many low-abundance proteins by the next series of most abundant proteins. Hence, non2-D methods such as protein array pixelation are more promising strategies for detecting lower abundance proteins after depleting the six abundant proteins.  相似文献   

2.
Gao M  Deng C  Yu W  Zhang Y  Yang P  Zhang X 《Proteomics》2008,8(5):939-947
An unbiased method for large-scale depletion of high-abundance proteins and identification of middle- or low-abundance proteins by multidimensional LC (MDLC) was demonstrated in this paper. At the protein level, the MDLC system, coupling the first dimensional strong cation exchange (SCX) chromatography with the second dimensional RP-HPLC, instead of immunoaffinity technology, was used to deplete high-abundance proteins. Sixty-two fractions from SCX were separated further by RPLC. UV absorption spectra were observed to differentiate high-abundance proteins from middle- or low-abundance proteins. After the depletion of high-abundance proteins, middle- or low-abundance proteins were enriched, digested, and separated by online 2D-micro-SCX/cRPLC. The eluted peptides were deposited on the MALDI target and detected by MALDI-TOF/TOF MS. This depletion strategy was applied to the proteome of the normal human liver (NHL) provided by the China Human Liver Proteome Project (CHLPP). In total, 58 high-abundance proteins were depleted in one experiment. The strategy increases greatly the number of identified proteins and around 1213 proteins were identified, which was about 2.7 times as that of the nondepletion method.  相似文献   

3.
Genistein is an isoflavone and phytoestrogen that is a potent inhibitor of cell proliferation and angiogenesis. This study was designed to investigate the binding of genistein to human serum albumin (HSA) under physiological conditions with drug concentrations in the range of 6.7 × 10−6 to 2.0 × 10−5 mol L−1 and HSA concentration at 1.5 × 10−6 mol L−1. Fluorescence quenching methods in combination with Fourier transform infrared (FT-IR) spectroscopy and circular dichroism (CD) spectroscopy was used to determine the binding mode, the binding constant and the protein structure changes in the presence of genistein in aqueous solution. Changes in the CD spectra and FT-IR spectra were observed upon ligand binding, and the degree of tryptophan fluorescence quenching change did significantly in the complexes. These data have proved the change in protein secondary structure accompanying ligand binding. The change in tryptophan fluorescence intensity was used to determine the binding constants. The thermodynamic parameters, the enthalpy change (ΔH) and the entropy change (ΔS) were calculated to be −22.24 kJ mol−1and 19.60 J mol−1 K−1 according to the van’t Hoff equation, which indicated that hydrophobic and electrostatic interactions play the main role in the binding of genistein to HSA.  相似文献   

4.
多聚精氨酸融合增强型绿色荧光蛋白制备方法及穿膜效果   总被引:1,自引:0,他引:1  
为了方便细胞穿膜肽R9融合蛋白的可溶性表达及功能上的研究,构建了pSUMO (小分子泛素样修饰蛋白) -R9-EGFP (增强型绿色荧光蛋白) 原核表达载体。分别纯化EGFP及R9-EGFP蛋白后,作用于HepG2,细胞经流式细胞仪及激光共聚焦检测R9细胞穿膜肽的作用效果。实验结果显示在SUMO分子伴侣的作用下,R9-EGFP融合蛋白获得可溶性表达。经流式细胞仪检测,R9细胞穿膜肽可以快速有效的携带目的蛋白进入细胞内部且呈时间、剂量依赖性,大约1.5 h以后荧光强度进入平台期。共聚焦显微镜检测结果表明R9细胞穿膜肽可以有效携带EGFP进入HepG2细胞,并显示主要聚集在细胞浆内。同时体外经肝素抑制实验显示,肝素抑制R9-EGFP穿膜的效率达到50%。这些结果表明,可以利用pSUMO-R9/Ni-NTA表达纯化系统,快速、有效地表达出可溶性多聚精氨酸融合蛋白,同时R9细胞穿膜肽可以有效地携带目的蛋白进入细胞内,为进一步研究多聚精氨酸的穿膜机制提供了基础。  相似文献   

5.
Catechins are polyphenolic antioxidants found in green tea leaves. Recent studies have reported that various polyphenolic compounds, including catechins, cause protein carbonyl formation in proteins via their pro-oxidant actions. In this study, we evaluate the formation of protein carbonyl in human serum albumin (HSA) by tea catechins and investigate the relationship between catechin chemical structure and its pro-oxidant property. To assess the formation of protein carbonyl in HSA, HSA was incubated with four individual catechins under physiological conditions to generate biotin-LC-hydrazide labeled protein carbonyls. Comparison of catechins using Western blotting revealed that the formation of protein carbonyl in HSA was higher for pyrogallol-type catechins than the corresponding catechol-type catechins. In addition, the formation of protein carbonyl was also found to be higher for the catechins having a galloyl group than the corresponding catechins lacking a galloyl group. The importance of the pyrogallol structural motif in the B-ring and the galloyl group was confirmed using methylated catechins and phenolic acids. These results indicate that the most important structural element contributing to the formation of protein carbonyl in HSA by tea catechins is the pyrogallol structural motif in the B-ring, followed by the galloyl group. The oxidation stability and binding affinity of tea catechins with proteins are responsible for the formation of protein carbonyl, and consequently the difference in these properties of each catechin may contribute to the magnitude of their biological activities.  相似文献   

6.
Steady-state and time-resolved fluorescence spectroscopy was used to follow the local and global changes in structure and dynamics during chemical and thermal denaturation of unlabeled human serum albumin (HSA) and HSA with an acrylodan moiety bound to Cys34. Acrylodan fluorescence was monitored to obtain information about unfolding processes in domain I, and the emission of the Trp residue at position 214 was used to examine domain II. In addition, Trp-to-acrylodan resonance energy transfer was examined to probe interdomain spatial relationships during unfolding. Increasing the temperature to less than 50 degrees C or adding less than 1.0 M GdHCl resulted in an initial, reversible separation of domains I and II. Denaturation by heating to 70 degrees C or by adding 2.0 M GdHCl resulted in irreversible unfolding of domain II. Further denaturation of HSA by either method resulted in irreversible unfolding of domain I. These results clearly demonstrate that HSA unfolds by a pathway involving at least three distinct steps. The low detection limits and high information content of dual probe fluorescence should allow this technique to be used to study the unfolding behavior of entrapped or immobilized HSA.  相似文献   

7.
The reaction mechanism of cefoxitin sodium with bovine serum albumin was investigated using fluorescence spectroscopy and synchronous fluorescence spectroscopy at different temperatures. The results showed that the change of binding constant of the synchronous fluorescence method with increasing temperature could be used to estimate the types of quenching mechanisms of drugs with protein and was consistent with one of fluorescence quenching method. In addition, the number of binding sites, type of interaction force, cooperativity between drug and protein and energy‐transfer parameters of cefoxitin sodium and bovine serum albumin obtained from two methods using the same equation were consistent. Electrostatic force played a major role in the conjugation reaction between bovine serum albumin and cefoxitin sodium, and the type of quenching was static quenching. The primary binding site for cefoxitin sodium was sub‐hydrophobic domain IIA, and the number of binding sites was 1. The value of Hill's coefficients (nH) was approximately equal to 1, which suggested no cooperativity in the bovine serum albumin–cefoxitin sodium system. The donor‐to‐acceptor distance r < 7 nm indicated that static fluorescence quenching of bovine serum albumin by cefoxitin sodium was also a non‐radiation energy‐transfer process. The results indicated that synchronous fluorescence spectrometry could be used to study the reaction mechanism between drug and protein, and was a useful supplement to the conventional method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A method is described for profiling putative adducts (or other unknown covalent modifications) at the Cys34 locus of human serum albumin (HSA), which represents the preferred reaction site for small electrophilic species in human serum. By comparing profiles of putative HSA-Cys34 adducts across populations of interest it is theoretically possible to explore environmental causes of degenerative diseases and cancer caused by both exogenous and endogenous chemicals. We report a novel application of selected-reaction-monitoring (SRM) mass spectrometry, termed fixed-step SRM (FS-SRM), that allows detection of essentially all HSA-Cys34 modifications over a specified range of mass increases (added masses). After tryptic digestion, HSA-Cys34 adducts are contained in the third largest peptide (T3), which contains 21 amino acids and an average mass of 2433.87 Da. The FS-SRM method does not require that exact masses of T3 adducts be known in advance but rather uses a theoretical list of T3-adduct m/z values separated by a fixed increment of 1.5. In terms of added masses, each triply charged parent ion represents a bin of ±2.3 Da between 9.1 Da and 351.1 Da. Synthetic T3 adducts were used to optimize FS-SRM and to establish screening rules based upon selected b- and y-series fragment ions. An isotopically labeled T3 adduct is added to protein digests to facilitate quantification of putative adducts. We used FS-SRM to generate putative adduct profiles from six archived specimens of HSA that had been pooled by gender, race, and smoking status. An average of 66 putative adduct hits (out of a possible 77) were detected in these samples. Putative adducts covered a wide range of concentrations, were most abundant in the mass range below 100 Da, and were more abundant in smokers than in nonsmokers. With minor modifications, the FS-SRM methodology can be applied to other nucleophilic sites and proteins.  相似文献   

9.
The use of proteomic analysis to find potential diagnostic biomarkers is limited by the presence of serum albumin (HSA) and immunoglobulin (IgG) at high concentrations in patients’ blood; these substances impede the detection of serum proteins with similar molecular weights. Recombinant HSA- and IgG-binding polypeptides are used as ligands in creating sorbents for complete removal of the proteins by affinity chromatography. The binding specificity of the sorbents for HSA and IgG is higher than that of the conventionally used antibodies. A composite sorbent enabling the depletion of HSA and IgG from serum by single-step affinity chromatography was obtained. The developed sorbents were used to prepare serum for proteomic analysis.  相似文献   

10.
The homogeneous recombinant mammalian protein tyrosine phosphatase 1B (PTP1B) and Yersinia protein tyrosine phosphatase (PTPase) are inactivated by a series of low-molecular-weight S-nitrosothiols. These compounds exhibited different inhibitory activities in a time- and concentration-dependent manner with second-order rate constants (k(inact)/K(I)) ranging from 37 to 113 M(-1) min(-1) against mammalian PTP1B and from 66 to 613 M(-1) min(-1) against Yersinia PTPase. Furthermore, the inactivation of Yersinia PTPase by S-nitrosylated protein:S-nitroso human serum albumin was investigated. Both single-S-nitrosylated and poly-S-nitrosylated human serum albumin show good inhibitory ability to Yersinia PTPase. The second-order rate constants are 472 and 1188 M(-1) min(-1), respectively. This result indicates a possibility that S-nitrosylated albumin in vivo may function as an inhibitor for a variety of cysteine-dependent enzymes.  相似文献   

11.
Fluorescent probe N-phenyl-1-amino-8-sulfonaphthalene (ANS) was used for studying pH-dependent structural N-F-transition in human serum albumin of two kinds: in commercial albumin and in natural blood serum. The kinetics of ANS fluorescence decay in albumin solutions was measured. There were found two types of the sites occupied by ANS in albumin under physiological conditions (pH 7.4). In the first binding site ANS fluorescence decay time was 16.6 +/- 0.3 nsec and it was not significantly changed at N-F transition (pH 4.0). In the second binding site the decay time was dependent on pH in commercial albumin and was not significantly changed in serum. In the second binding site there were individual differences of ANS decay time (4.3 +/- 0.6 nsec). The observed ANS fluorescence intensity enhancing (about 40-50%) in N-F transition may be explained by an increase of albumin binding sites capacity for ANS.  相似文献   

12.
This study was designed to examine the interactions of ergosterol with bovine serum albumin (BSA) and human serum albumin (HSA) under physiological conditions with the drug concentrations in the range of 2.99-105.88?μM and the concentration of proteins was fixed at 5.0?μM. The analysis of emission spectra quenching at different temperatures revealed that the quenching mechanism of HSA/BSA by ergosterol was the static quenching. The number of binding sites n and the binding constants K were obtained at various temperatures. The distance r between ergosterol and HSA/BSA was evaluated according to F?ster non-radioactive energy transfer theory. The results of synchronous fluorescence, 3D fluorescence, FT-IR, CD and UV-Vis absorption spectra showed that the conformations of HSA/BSA altered in the presence of ergosterol. The thermodynamic parameters, free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) for BSA-ergosterol and HSA-ergosterol systems were calculated by the van't Hoff equation and discussed. Besides, with the aid of three site markers (for example, phenylbutazone, ibuprofen and digitoxin), we have reported that ergosterol primarily binds to the tryptophan residues of BSA/HSA within site I (subdomain II A).  相似文献   

13.
The intensity of the chemiluminescence (CL) signal from an aqueous peroxyoxalate CL reaction can be significantly enhanced in the presence of various proteins with hydrophobic sites. A flow-injection measurement for various hydrophobic proteins based on this CL enhancement was developed. The enhancement is due to the inclusion of the CL species in the favorable environment provided by the protein's hydrophobicity, which results in efficient light production. Various protein structures were evaluated; the degree of enhancement depends on the protein structure and CL reaction conditions. The CL enhancement measurement in the flow-injection system is made after the introduction of the protein solution to the main phosphate buffer stream followed by the addition of the CL reagent streams: (1) hydrogen peroxide in water and (2) 8-anilino-1-naphthalene sulfonic acid and 4,4'-oxalylbis-(trifluoromethylsulfonylimino)ethylene bis(4-methyl morpholinium trifluoromethane sulfonate) in acetonitrile. Although prior separation of proteins is required before the measurement, the advantage of this approach is increased sensitivity without derivatization of the protein. The enhancement was demonstrated for several proteins, including antibodies, which suggests that this approach may be generally applicable to a variety of measurements, including immunoassay determinations. This CL enhancement was used to develop a simple and accurate flow-injection measurement for the determination of albumin and IgG in human serum.  相似文献   

14.
15.
A new intramolecular charge transfer fluorescence probe, namely, 4'-dimethylamino-2,5-dihydroxychalcone (DMADHC), exhibited dramatic enhancement of fluorescence intensity with an accompanying blue shift of the emission maximum when the concentration of human serum albumin (HSA) was increased. Binding to HSA also caused a progressive shift in the absorption spectrum of DMADHC, and a clear isosbestic point appeared. The binding site number and binding constant were calculated. Thermodynamic parameters were given and possible binding site was speculated. The optimum conditions for the determination of HSA were also investigated. A new, fast, and simple spectrofluorimetric method for the determination of HSA was developed. In the detection of HSA in samples of human plasma, this method gave values close to that of the Erythrosin B method.  相似文献   

16.
Wan Y  Ghosh R  Cui Z 《Biotechnology progress》2004,20(4):1103-1112
The fractionation of the plasma proteins human serum albumin (HSA) and human immunoglobulins (HIgG) using the combination of two newly developed techniques, pulsed sample injection technique and carrier phase ultrafiltration (CPUF), is discussed in this paper. The effects of pH and ionic strength on the transmission of a single protein (i.e., either HSA or HIgG) through 100 and 300 kDa MWCO polyethersulfone (PES) membranes were quantified using the pulsed sample injection technique. The experimental results thus obtained suggested that it would be possible to fractionate these proteins by optimizing the solution pH and ionic strength. With 100 and 300 kDa PES membranes, effective separation of HSA and HIgG was achieved by CPUF using suitable conditions, i.e., pH 4.7 and low salt concentration. The fractionation of HSA and HIgG by "reverse selectivity" using 300 kDa membranes was also examined.  相似文献   

17.
I Feldman  D Young  R McGuire 《Biopolymers》1975,14(2):335-351
The fluorescence parameters, lifetime, relative quantum yield, maximum and mean wavelength, half-width, and polarization, of bovine serum albumin (BSA) were measured at 15°C in aqueous solutions containing varying concentrations of different chemical perturbants, glycerol, Cu2+ ions, guanidine hydrochloride, and urea. By considering a quenching mechanism as being either dynamic or static, depending upon whether the quenching is or is not accompanied by a change in the fluorescence lifetime, we were able to correlate the changes produced in the various fluorescence parameters by the different chemical perturbants with changes in macromolecular structure as the concentration of perturbant was gradually increased. The addition of glycerol and of Cu2+ ions indicated that in aqueous BSA both tryptophan residues are below the surface of the macromolecule, out of contact with solvent water, and, as a consequence, they are statically quenched. “Ultra-Pure” guanidine hydrochloride at 2.4 M or more caused a drastic conformation change, which resulted in the emergence of a visible tyrosine peak at 304 nm in the BSA fluorescence spectrum when either 260- or 270-nm excitation was employed. With the same excitation, the enhancement of BSA tyrosine fluorescence by 6–8 M ultra-pure urea produced only a shoulder near 304 nm in the BSA fluorescence spectrum. We have introduced the use of a new relative quantum yield for protein fluorescence, q′, referenced to the quantum yield of unquenched free tryptophan, which eliminates the quenching action of water from the reference.  相似文献   

18.
The unfolding of human serum proteins (HSP) was studied by measuring the intrinsic fluorescence intensity at a wavelength of excitation corresponding to tryptophan's or typosine's fluorescence and surface hydrophobicity. The maxima emission wavelengths (max) of human serum albumin (HSA) and human serum globulin (HSG) before beer consumption (BC) were 336.0 and 337.0 nm and after BC shifted to 335.0 and 334.0 nm, respectively. The surface hydrophobicity slightly increased after BC. In a solution of 8 M urea the max of BSA shifted to 346.4 and that of BSG to 342.5 nm. In contrast, in the same solution but after BC the max positions of HSA and HSG shifted to 355.9 and 357.7 nm, respectively. A decrease in fluorescence intensity, a shift in the maximum of emission, and an increase in surface hydrophobicity which reflected unfolding of proteins were observed. Here we provide evidence that the loosening of the HSP structure takes place primarily in various concentrations of urea before and after beer consumption. Differences in the fluorescence behavior of the proteins are attributed to disruption of the structure of proteins by denaturants as well as by the change in their compactability as a result of ethanol consumption.  相似文献   

19.
Two-dimensional differential gel electrophoresis (2-D DIGE) was used to analyze human serum following the removal of albumin and five other high-abundant serum proteins. After protein removal, serum was analyzed by SDS-PAGE as a preliminary screen, and significant differences between four high-abundant protein removal methods were observed. Antibody-based albumin removal and high-abundant protein removal methods were found to be efficient and specific. To further characterize serum after protein removal, 2-D DIGE was employed, enabling multiplexed analysis of serum through the use of three fluorescent protein dyes. Comparison between crude serum and serum after removal of high-abundant proteins clearly illustrates an increase in the number of lower abundant protein spots observed. Approximately 850 protein spots were detected in crude serum whereas over 1500 protein spots were exposed following removal of six high-abundant proteins, representing a 76% increase in protein spot detection. Several proteins that showed a 2-fold increase in intensity after depletion of high-abundant proteins, as well as proteins that were depleted during abundant protein removal methods, were further characterized by mass spectrometry. This series of experiments demonstrates that high-abundant protein removal, combined with 2-D DIGE, is a practical approach for enriching and characterizing lower abundant proteins in human serum. Consequently, this methodology offers advances in proteomic characterization, and therefore, in the identification of biomarkers from human serum.  相似文献   

20.
Human serum albumin (HSA) is the major transport protein affording endogenous and exogenous substances in plasma. It can affect the behavior and efficacy of chemicals in vivo through the binding interaction. AKR (3-O-α-l-arabinofuranosyl-kaempferol-7-O-α-l-rhamnopyranoside) is a flavonoid diglycoside with modulation of estrogen receptors (ERs). Herein, we investigated the binding interaction between AKR and HSA by multiple fluorescence spectroscopy and molecular modeling. As a result, AKR specifically binds in site I of HSA through hydrogen bonds, van der Waals force, and electrostatic interaction. The formation of AKR–HSA complex in binding process is spontaneously exothermic and leads to the static fluorescence quenching through affecting the microenvironment around the fluorophores. The complex also affects the backbone of HSA and makes AKR access to fluorophores. Molecular modeling gives the visualization of the interaction between AKR and HSA as well as ERs. The affinity of AKR with HSA is higher than the competitive site marker Warfarin. In addition, docking studies reveal the binding interaction of AKR with ERs through hydrogen bonds, van der Waals force, hydrophobic, and electrostatic interactions. And AKR is more favorable to ERβ. These results unravel the binding interaction of AKR with HSA and mechanism as an ERs modulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号