首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The genomic era offers excellent opportunities to improve our understanding of the genetic basis of mosquito adaptation, evolution, and competence to a pathogen. The availability of polytene chromosomes in anopheline mosquitoes makes them an excellent model system for studying genome organization, evolution, and function. Physical mapping facilitated the whole genome sequence assembly for the major malaria vector Anopheles gambiae and comparative genome mapping has determined types, patterns, and rates of chromosomal rearrangements in mosquito evolution. Together with sequencing projects, high-resolution physical mapping can shed light on mechanisms of chromosomal rearrangements and phylogenetic relation-ships among species.  相似文献   

3.
Transposable elements represent important tools to perform functional studies in insects. In Drosophila melanogaster, the remobilization properties of transposable elements have been utilized for enhancer-trapping and insertional mutagenesis experiments, which have considerably helped in the functional characterization of the fruitfly genome. In Anopheles mosquitoes, the sole vectors of human malaria, as well as in other mosquito vectors of disease, the use of transposons has also been advocated to achieve the spread of anti-parasitic genes throughout field populations. Here we report on the post-integration behavior of the Minos transposon in both the germ-line and somatic tissues of Anopheles mosquitoes. Transgenic An. stephensi lines developed using the piggyBac transposon and expressing the Minos transposase were tested for their ability to remobilize an X-linked Minos element. Germ-line remobilization events were not detected, while somatic excisions and transpositions were consistently recovered. The analysis of these events showed that Minos activity in Anopheles cells is characterized by unconventional functionality of the transposon. In the two cases analyzed, re-integration of the transposon occurred onto the same X chromosome, suggesting a tendency for local hopping of Minos in the mosquito genome. This is the first report of the post-integration behavior of a transposable element in a human malaria vector. Christina Scali and Tony Nolan contributed equally to the work.  相似文献   

4.
Rich in repeated DNA sequences and poor in genes, the heterochromatin is an important functional part of the eukaryotic genome. Heterochromatin exhibits high evolutionary variability, which was revealed on the cytological and molecular levels in malarial mosquito species from the Anopheles maculipennis complex. In this connection, investigation of the heterochromatin molecular composition in species of this complex is of interest.  相似文献   

5.
Anopheles is a diverse genus of mosquitoes comprising over 500 described species, including all known human malaria vectors. While a limited number of key vector species have been studied in detail, the goal of malaria elimination calls for surveillance of all potential vector species. Here, we develop a multilocus amplicon sequencing approach that targets 62 highly variable loci in the Anopheles genome and two conserved loci in the Plasmodium mitochondrion, simultaneously revealing both the mosquito species and whether that mosquito carries malaria parasites. We also develop a cheap, nondestructive, and high-throughput DNA extraction workflow that provides template DNA from single mosquitoes for the multiplex PCR, which means specimens producing unexpected results can be returned to for morphological examination. Over 1000 individual mosquitoes can be sequenced in a single MiSeq run, and we demonstrate the panel’s power to assign species identity using sequencing data for 40 species from Africa, Southeast Asia, and South America. We also show that the approach can be used to resolve geographic population structure within An. gambiae and An. coluzzii populations, as the population structure determined based on these 62 loci from over 1000 mosquitoes closely mirrors that revealed through whole genome sequencing. The end-to-end approach is quick, inexpensive, robust, and accurate, which makes it a promising technique for very large-scale mosquito genetic surveillance and vector control.  相似文献   

6.
Although heterochromatin makes up a significant portion of the malaria mosquito genome, its organization, function, and evolution are poorly understood. Sibling species of the Anopheles maculipennis subgroup, the European malaria mosquitoes, are characterized by striking differences in the morphology of pericentric heterochromatin; however, the molecular basis for the rapid evolutionary transformation of heterochromatin is not known. This study reports an initial survey of the molecular organization of the pericentric heterochromatin in nonmodel species from the A. maculipennis subgroup. Molecular identity and chromosomal localization were established for short DNA fragments obtained by microdissection from the pericentric diffuse β-heterochromatin of A. atroparvus. Among 102 sequenced clones of the Atr2R library, twenty had sequence similarity to transposable elements (TEs) from the Anopheles gambiae and Aedes aegypti genomes. At least six protein-coding single-copy genes from A. gambiae and four single-copy genes from Drosophila melanogaster were homologous to eight clones from the library. Most of these conserved genes were heterochromatic in A. gambiae but euchromatic in D. melanogaster. The remaining 74 clones were characterized as noncoding repetitive DNA. Comparative chromosome mapping of twelve clones in the sibling species A. atroparvus and A. messeae demonstrated that the noncoding repetitive sequences and the TEs have undergone independent chromosome-specific and species-specific gains and losses in the morphologically different pericentric heterochromatic regions, in accordance with the “library model.”  相似文献   

7.
Malaria remains one of the most devastating infectious diseases, killing up to a million people every year. Whereas much progress has been made in understanding the life cycle of the parasite in the human host and in the mosquito vector, significant gaps of knowledge remain. Fertilization of malaria parasites, a process that takes place in the lumen of the mosquito midgut, is poorly understood and the molecular interactions (receptor–ligand) required for Plasmodium fertilization remain elusive. By use of a phage display library, we identified FG1 (Female Gamete peptide 1), a peptide that binds specifically to the surface of female Plasmodium berghei gametes. Importantly, FG1 but not a scrambled version of the peptide, strongly reduces P. berghei oocyst formation by interfering with fertilization. In addition, FG1 also inhibits P. falciparum oocyst formation suggesting that the peptide binds to a molecule on the surface of the female gamete whose structure is conserved. Identification of the molecular interactions disrupted by the FG1 peptide may lead to the development of novel malaria transmission‐blocking strategies.  相似文献   

8.
The properties of heterochromatin from polytene chromosomes of the malaria mosquito Anopheles messeae Fal. and A. atroparvus V. Tiel. were studied by various methods of differential staining and by hybridization in situ with two repetitive DNA sequences of Drosophila melanogaster. In malaria mosquito, the heterochromatin was heterogeneous. Two forms of alpha-heterochromatin were revealed: pericentromeric and intercalary heterochromatin, which is localized within the internal chromosome regions.  相似文献   

9.
10.
Numerous selective and differential staining techniques have been used to investigate the hierarchical organisation of the human genome. This investigation demonstrates the unique characteristics that are produced on fixed human chromosomes when sequential procedures involving restriction endonuclease TaqI, distamycin A (DA) and 4,6-diamidino-2-phenylindole (DAPI) are employed. TaqI produces extensive gaps in the heterochromatic regions associated with satellite II and III DNAs of human chromosomes 1, 9, 15, 16 and Y. DA/DAPI selectively highlights, as brightly fluorescent C-bands, the heterochromatin associated with the alpha, beta, satellite II and III DNAs of these chromosomes. When DA and DAPI are used on chromosomes before TaqI digestion, and then stained with Giemsa, the centromeric regions appear to be more resistant, producing a distinct C-banding pattern and gaps in the heterochromatin regions. Sequential use of the DA/DAPI technique after TaqI treatment produces a bright fluorescence on the remaining pericentromeric regions of chromosomes 1, 9, 16 and Y, which also displayed a cytochemically unique banding pattern. This approach has produced specific enhanced chromosomal bands, which may serve as tools to characterize genomic heterochromatin at a fundamental level.  相似文献   

11.
The mosquito Anopheles sacharovi, a member of the A. maculipennis complex, is an important malaria vector in the Middle East. Here we describe the isolation of 15 microsatellite polymorphic loci from the A. sacharovi genome, displaying a high among‐individual diversity (0.30–0.92) in a sample from Turkey. Seven loci displayed a significant departure from Hardy–Weinberg proportions, suggesting a substantial frequency of null alleles. The remaining eight loci are good candidates for further genetic studies in this species.  相似文献   

12.
J. T. Mahan  M. L. Beck 《Genetica》1986,68(2):113-118
The amount of heterochromatin in the genome of ten members of thevirilis species group was determined as the length of C-band chromosome material relative to the total karyotype length. Thevirilis phylad (Drosophila virilis, D. novamexicana, D. americana americana, andD. americana texana) has significantly greater amounts of heterochromatin in the genome than do members of the montana phylad (D. montana, D. lacicola, D. flavomontana, D. borealis, D. ezoana, D. littoralis). Thus, the significant karyotypic change accompanying diversification of these species has involved reduction in their total constitutive heterochromatin. These changes have apparently involved reductions in the amount of centromeric heterochromatin in the autosomes.  相似文献   

13.
Chromosomal inversions facilitate local adaptation of beneficial mutations and modulate genetic polymorphism, but the extent of their effects within the genome is still insufficiently understood. The genome of Anopheles funestus, a malaria mosquito endemic to sub‐Saharan Africa, contains an impressive number of paracentric polymorphic inversions, which are unevenly distributed among chromosomes and provide an excellent framework for investigating the genomic impacts of chromosomal rearrangements. Here, we present results of a fine‐scale analysis of genetic variation within the genome of two weakly differentiated populations of Anopheles funestus inhabiting contrasting moisture conditions in Cameroon. Using population genomic analyses, we found that genetic divergence between the two populations is centred on regions of the genome corresponding to three inversions, which are characterized by high values of FST, absolute sequence divergence and fixed differences. Importantly, in contrast to the 2L chromosome arm, which is collinear, nucleotide diversity is significantly reduced along the entire length of three autosome arms bearing multiple overlapping chromosomal rearrangements. These findings support the idea that interactions between reduced recombination and natural selection within inversions contribute to sculpt nucleotide polymorphism across chromosomes in An. funestus.  相似文献   

14.
15.
The mosquito Anopheles nili is widespread across tropical Africa and appears to be the major vector of malaria in some rural forested areas of central Africa. Here we describe the isolation of 11 microsatellite polymorphic loci from the A. nili genome, displaying a high among‐individual diversity (0.58–0.96) in samples from west Africa. Two loci displayed a significant departure from Hardy–Weinberg proportions across all samples, suggesting a substantial frequency of null alleles. The remaining nine loci are good candidates for further genetic studies in this species.  相似文献   

16.
Many cells in the thorax of Drosophila were found to stall during replication, a phenomenon known as underreplication. Unlike underreplication in nuclei of salivary and follicle cells, this stall occurs with less than one complete round of replication. This stall point allows precise estimations of early-replicating euchromatin and late-replicating heterochromatin regions, providing a powerful tool to investigate the dynamics of structural change across the genome. We measure underreplication in 132 species across the Drosophila genus and leverage these data to propose a model for estimating the rate at which additional DNA is accumulated as heterochromatin and euchromatin and also predict the minimum genome size for Drosophila. According to comparative phylogenetic approaches, the rates of change of heterochromatin differ strikingly between Drosophila subgenera. Although these subgenera differ in karyotype, there were no differences by chromosome number, suggesting other structural changes may influence accumulation of heterochromatin. Measurements were taken for both sexes, allowing the visualization of genome size and heterochromatin changes for the hypothetical path of XY sex chromosome differentiation. Additionally, the model presented here estimates a minimum genome size in Sophophora remarkably close to the smallest insect genome measured to date, in a species over 200 million years diverged from Drosophila.  相似文献   

17.
18.

Background  

The main vector for transmission of malaria in India is the Anopheles culicifacies mosquito species, a naturally selected subgroup of which is completely refractory (R) to transmission of the malaria parasite, Plasmodium vivax;  相似文献   

19.
We describe the preliminary analysis of over 35,000 clones from a full-length enriched cDNA library from the malaria mosquito vector Anopheles gambiae. The clones define nearly 3,700 genes, of which around 2,600 significantly improve current gene definitions. An additional 17% of the genes were not previously annotated, suggesting that an equal percentage may be missing from the current Anopheles genome annotation.  相似文献   

20.
Two long repeats, MS3 and MS4, are predominantly located in sex-chromosomal heterochromatin in common vole species [1]. Their tandem arrangement was revealed by means of the PCR analysis of genomic DNAs of four Microtus species and by restriction mapping of clones selected from a M. rossiaemeridionalis genomic library. Several mobile elements proved to be incorporated in a monomeric unit of each repeat and amplified together with its other components. In addition, LINE inserts were found in MS4 tandem arrays. The copy number of both repeats per haploid genome was estimated at 100–300 for euchromatin and 20,000–40,000 for the M. rossiaemeridionalis genome. The repeats were assumed to be the major component of sex-chromosomal heterochromatin DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号