首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purified protein-disulphide isomerase has been examined for effects on the pathway and kinetics of the unfolding and refolding which accompanies disulphide bond breakage and reformation in bovine pancreatic trypsin inhibitor and bovine ribonuclease A. The intermediates of the pathways were not altered, although some interconversions which normally are not significant became so in the presence of the isomerase. The rate of every step involving both substantial protein conformational changes and protein disulphide bond formation, breakage or rearrangement was found to be increased significantly, but only when the conformational changes were rate-determining. The protein-disulphide isomerase appears to be a true catalyst of protein unfolding and refolding involving disulphide bond breakage, formation or rearrangement.  相似文献   

2.
Ab initio quantum mechanical calculations have been used to obtain details of the electron density distribution in a high-resolution refined protein structure. It is shown that with accurate atomic co-ordinates, electron density may be calculated with a quality similar to that which can be obtained directly from crystallographic studies of small organic molecules, and that this density contains information relevant to the understanding of catalysis. Atomic co-ordinates from the 1.8 A and 1.5 A resolution refinements of the crystal structure of protease A from Streptomyces griseus have been used to examine the influence of the environment on the electron density in the side-chain of the active site histidine (His57). The neighbouring aspartic acid 102 is the dominant factor in the environment, and quantum mechanical calculations have been performed on these two residues. Most interesting from the point of view of understanding the catalytic process is the effect that Asp102 has on the electron density in the region of the imidazole nitrogen (N epsilon 2) adjacent to the active site serine 195. In the positively charged imidazolium species, there is a polarization of the N epsilon 2-H bond, reducing the bonding density in a manner that may lower the height of the energy barrier for proton transfer. In the uncharged imidazole species, the proximity of Asp102 causes a movement of density from the lone pair region of the N epsilon 2 into the pi bonding region above and below the plane of the ring. Although it is shown that the primary effect of the aspartic acid is electrostatic, this movement is perpendicular to the direction of the electric field inducing it.  相似文献   

3.
Tonin is a mammalian serine protease that is capable of generating the vasoconstrictive agent, angiotensin II, directly from its precursor protein, angiotensinogen, a process that normally requires two enzymes, renin and angiotensin-converting enzyme. The X-ray crystallographic structure determination and refinement of tonin at 1.8 A resolution and the analysis of the resulting model are reported. The initial phases were obtained by the method of molecular replacement using as the search model the structure of bovine trypsin. The refined model of tonin consists of 227 amino acid residues out of the 235 in the complete molecule, 149 water molecules, and one zinc ion. The R-factor (R = sigma Fo - Fc/sigma Fo) is 0.196 for the 14,997 measured data between 8 and 1.8 A resolution with I greater than or equal to sigma (I). It is estimated that the overall root-mean-square error in the coordinates is about 0.3 A. The structure of tonin that has been determined is not in its active conformation, but one that has been perturbed by the binding of Zn2+ in the active site. Zn2+ was included in the buffer to aid the crystallization. Nevertheless, the structure of tonin that is described is for the most part similar to its native form as indicated by the close tertiary structural homology with kallikrein. The differences in the structures of the two enzymes are concentrated in several loop regions; these structural differences are probably responsible for the differences in their reactivities and specificities.  相似文献   

4.
5.
The naturally occurring serine protease inhibitor, chymostatin, forms a hemiacetal adduct with the catalytic Ser195 residue of Streptomyces griseus protease A. Restrained parameter least-squares refinement of this complex to 1.8 A resolution has produced an R index of 0 X 123 for the 11,755 observed reflections. The refined distance of the carbonyl carbon atom of the aldehyde to O gamma of Ser195 is 1 X 62 A. Both the R and S configurations of the hemiacetal occur in equal populations, with the end result resembling the expected configuration for a covalent tetrahedral product intermediate of a true substrate. This study strengthens the concept that serine proteases stabilize a covalent, tetrahedrally co-ordinated species and elaborates those features of the enzyme responsible for this effect. We propose that a major driving force for the hydrolysis of peptide bonds by serine proteases is the non-planar distortion of the scissile bond by the enzyme, which thereby lowers the activation energy barrier to hydrolysis by eliminating the resonance stabilization energy of the peptide bond.  相似文献   

6.
The 2.8 A (1 A = 0.1 nm) resolution structure of the crystalline orthorhombic form of the microbial serine protease Streptomyces griseus protease B (SGPB) has been solved by the method of multiple isomorphous replacement using five heavy-atom derivatives. The geometrical arrangement of the active site quartet, Ser-214, Asp-102, His-57, and Ser-195, is similar to that found for pancreatic alpha-chymotrypsin. SGPB and alpha-chymotrypsin have only 18% identity of primary structure but their tertiary structures are 63% topologically equivalent within a root mean square deviation of 2.07 A. The major tertiary structural differences between the bacterial enzyme SGPB and the pancreatic enzymes is due to the zymogen requirement of the multicellular organisms in order to protect themselves against autolytic degradation. The two pronase enzymes, SGPB and Streptomyces griseus protease A (SGPA), have 61% identity of sequence and their tertiary structures are 85% topologically equivalent within a root mean square deviation of 1.46 A. The active site regions of SGPA and SGPB are similar and their tertiary structures differ only in three minor regions of surface loops.  相似文献   

7.
8.
Streptomyces griseus trypsin (SGT) is a bacterial serine proteinase that is more homologous to mammalian than to other bacterial enzymes. The structure of SGT has been solved primarily by molecular replacement, though some low-resolution phase information was supplied by heavy-atom derivatives. The mammalian pancreatic serine proteinases bovine trypsin (BT) and alpha-chymotrypsin (CHT) were used as molecular replacement models. Because these proteins have low homology with SGT compared to the majority of other successful replacement models, new strategies were required for molecular replacement to succeed. The model of SGT has been refined at 1.7 A resolution to a final R-factor of 0.161 (1 A = 0.1 nm); the correlation coefficient between all observed and calculated structure factor amplitudes is 0.908. Solvent molecules located in the crystal structure play an important role in stabilizing buried charged and polar groups. An additional contribution to stability can be seen in the fact that the majority of the charged side-chains are involved in ionic interactions, sometimes linking the two domains of SGT. A comparison of SGT with BT shows that the greatest similarities are in the active-site and substrate-binding regions, consistent with their similar substrate specificities. The modeling of complexes of SGT with two inhibitors of BT, pancreatic trypsin inhibitor (PTI) and the third domain of Japanese quail ovomucoid (OMJPQ3), helps to explain why PTI inhibits SGT but OMJPQ3 does not. Like BT, but unlike other bacterial serine proteinases of known structure, SGT has a buried N terminus. SGT has also a well-defined Ca2+-binding site, but this site differs in location from that of BT.  相似文献   

9.
Excellent tetragonal crystals of the A protease from Streptomyces griseus were grown by equilibrium dialysis from 1.3 m-NaH2PO4 at pH 4.1. There are four molecules in the unit cell (axial lengths a = b = 55.14(4) A?, and c = 54.81(3) A?); the space group is P42. Intensity data were collected on a Picker FACS-1 diffractometer to minimum d spacings of 2.8 Å for crystals of the native enzyme and four heavy-atom derivatives. Background corrections to the measured peak intensities were made by a least-squares fit to a multi-dimensional function of the net intensity (I) and a linear combination of 2θ and φ. There was no dependence of the background on χ. The phase determination process has resulted in an overall average flgure-of-merit of 0.82 for 3957 reflections. The overall ratio of the root-mean-square (r.m.s.) heavy-atom scattering factor to the r.m.s. lack-of-closure errors for the derivatives ranged from 1.53 to 3.64. The common sodium mersalyl and mercury chloranilate site was close to the imidazole ring of His57; the rhenium site was located in a pocket between two enzyme molecules. The r.m.s. deviation of the measured co-ordinates to a stereochemically fitted model was 0.25 Å for the 1265 non-hydrogen atoms of the A protease.  相似文献   

10.
Structure and refinement of penicillopepsin at 1.8 A resolution   总被引:15,自引:0,他引:15  
Penicillopepsin, the aspartyl protease from the mould Penicillium janthinellum, has had its molecular structure refined by a restrained-parameter least-squares procedure at 1.8 Å resolution to a conventional R-factor of 0.136. The estimated co-ordinate accuracy for the majority of the 2363 atoms of the enzyme is better than 0.12 Å. The average atomic thermal vibration parameter, B, for the atoms of the enzyme is 14.5 Å2. One determining factor of this low average B value is the large central hydrophobic core, in which there are two prominent clusters of aromatic residues, one of nine, the other of seven residues. The N and C-terminal domains of penicillopepsin display an approximate 2-fold symmetry: 70 residue pairs are topologically equivalent, related by a rotation of 177 ° and a translation of 1.2 Å. The analysis of the secondary structural features of the molecule reveals non-linear hydrogen bonding. In penicillopepsin, there is no difference in the mean hydrogen-bond parameters for the elements of α-helix, parallel or antiparallel β-pleated sheet. The mean values for these structural elements are: NO, 2.90 Å; NHO, 1.95 Å; N?O, 160 °. The average hydrogen-bond parameters of the reverse β-turns and the 310 helices are distinctly different from the above values. The analysis of sidechain conformational angles χ1 and χ2 penicillopepsin and other enzyme structures refined in this laboratory shows much narrower distributions as compared with those compiled from unrefined protein structures. The close proximity of the carboxyl groups of Asp33 and Asp213 suggests that they share a proton in a tight hydrogen-bonded environment (Asp33OD2 to Asp213OD1 is 2.87 Å). There are several solvent molecules in the active site region and, in particular, O39 forms hydrogen-bonded interactions with both aspartate residues. The disposition of the two carboxyl groups suggests that neither is likely to be involved in a direct nucleophilic attack on the scissile bond of a substrate. The average atomic B-factors of the residues in this region of the molecule are between 5 and 8 Å2, confirming the proposal that conformational mobility of the active site residues has no role in the enzymatic mechanism. However, conformational mobility of neighbouring regions of the molecule e.g. the “flap” containing Tyr75, is verified by the high B-factors for those residues. The positions of 319 solvent sites per asymmetric unit have been selected from difference electron density maps and refined. Thirteen have been classified as internal, and several of these may have key roles during catalysis. The positively charged Nζ atom of Lys304 forms hydrogen bonds to the carboxylate of Asp14 (internal ion pair) and to two internal water molecules O5 and O25. The protonated side-chain of Asp300 forms a hydrogen bond to Thr214O, 2.78 Å, and is the recipient of a hydrogen bond from a surface pocket water molecule O46. There is no possibility for direct interaction between Asp300 and Lys304 without large conformational changes of their environment. The intermolecular packing involves many protein-protein contacts (66 residues) with a large number of solvent molecules involved in bridging between polar residues at the contact surface. The penicillopepsin molecules resemble an approximate hexagonal close-packing of spheres with each molecule having 12 “nearest” neighbours.  相似文献   

11.
12.
13.
14.
15.
The X-ray structure of a new crystal form of chymotrypsinogen A grown from ethanol/water has been determined at 1.8 A resolution using Patterson search techniques. The crystals are of orthorhombic space group P212121 and contain two molecules in the asymmetric unit. Both independent molecules (referred to as A and B) have been crystallographically refined to a final R value of 0.173 with reflection data to 1.8 A resolution. Owing to different crystal contacts, both independent molecules show at various sites conformational differences, especially in segments 33-38, 142-153 and 215-222. If these three loops are omitted in a comparison, the root-mean-square (r.m.s.) deviation of the main-chain atoms of molecules A and B is 0.32 A. If segments 70-79, 143-152 and 215-221 are omitted, a comparison of either molecule A or molecule B with the chymotrypsinogen model of Freer et al. (1970) reveals an r.m.s. deviation of the alpha-carbon atoms of about 0.7 A. Compared with the active enzyme, four spatially adjacent peptide segments, in particular, are differently organized in the zymogen: the amino-terminal segment 11-19 runs in a rigid but strained conformation along the molecular surface due to the covalent linkage through Cys1; also segment 184-194 is in a rigid unique conformation due to several mutually stabilizing interactions with the amino-terminal segment; segment 216-222, which also lines the specificity pocket, adapts to different crystal contacts and exists in both chymotrypsinogen molecules in different, but defined conformations; in particular, disulfide bridge 191-220, which covalently links both latter segments, has opposite handedness in molecules A and B; finally, the autolysis loop 142 to 153 is organized in a variety of ways and in its terminal part is completely disordered. Thus, the allosteric activation domain (Huber & Bode, 1978) is organized in defined although different conformations in chymotrypsinogen molecules A and B, in contrast to trypsinogen, where all four homologous segments of the activation domain are disordered. This reflects the structural variability and deformability of the activation domain in serine proteinase proenzymes. If the aforementioned peptide segments are omitted, a comparison of our chymotrypsinogen models with gamma-chymotrypsin (Cohen et al., 1981) yields an r.m.s. deviation for alpha-carbon atoms of about 0.5 A. The residues of the "active site triad" are arranged similarly, but the oxyanion hole is lacking in chymotrypsinogen.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Proteins of the subtilisin superfamily (subtilases) are widely distributed through many living species, where they perform a variety of processing functions. They are also used extensively in industry. In many of these enzymes, bound calcium ions play a key role in protecting against autolysis and thermal denaturation. We have determined the crystal structure of a highly thermostable protease from Bacillus sp. Ak.1 that is strongly stabilized by calcium. The crystal structure, determined at 1.8 A resolution (R=0. 182, Rfree=0.247), reveals the presence of four bound cations, three Ca(2+) and one Na(+). Two of the Ca(2+) binding sites, Ca-1 and Ca-2, correspond to sites also found in thermitase and the mesophilic subtilisins. The third calcium ion, however, is at a novel site that is created by two key amino acid substitutions near Ca-1, and has not been observed in any other subtilase. This site, acting cooperatively with Ca-1, appears to give substantially enhanced thermostability, compared with thermitase. Comparisons with the mesophilic subtilisins also point to the importance of aromatic clusters, reduced hydrophobic surface and constrained N and C termini in enhancing the thermostability of thermitase and Ak.1 protease. The Ak.1 protease also contains an unusual Cys-X-Cys disulfide bridge that modifies the active site cleft geometry.  相似文献   

17.
I Svendsen  M R Jensen  K Breddam 《FEBS letters》1991,292(1-2):165-167
The amino acid sequence and part of the DNA sequence of a glutamic acid-specific serine protease from Streptomyces griseus is reported. This protease is shown to be homologous with other serine proteases. An improved purification protocol for this enzyme is described.  相似文献   

18.
Kinetic analyses led to the discovery that N-acetylated tripeptides with polar residues at P3 are inhibitors of porcine pancreatic elastase (PPE) that form unusually stable acyl-enzyme complexes. Peptides terminating in a C-terminal carboxylate were more potent than those terminating in a C-terminal amide, suggesting recognition by the oxy-anion hole is important in binding. X-ray diffraction data were recorded to 0.95-A resolution for an acyl-enzyme complex formed between PPE and N-acetyl-Asn-Pro-Ile-CO2H at approximately pH 5. The accuracy of the crystallographic coordinates allows structural issues concerning the mechanism of serine proteases to be addressed. Significantly, the ester bond of the acyl-enzyme showed a high level of planarity, suggesting geometric strain of the ester link is not important during catalysis. Several hydrogen atoms could be clearly identified and were included within the model. In keeping with a recent x-ray structure of subtilisin at 0.78 A (1), limited electron density is visible consistent with the putative location of a hydrogen atom approximately equidistant between the histidine and aspartate residues of the catalytic triad. Comparison of this high resolution crystal structure of the acyl-enzyme complex with that of native elastase at 1.1 A (2) showed that binding of the N-terminal part of the substrate can be accommodated with negligible structural rearrangements. In contrast, comparison with structures obtained as part of "time-resolved" studies on the reacting acyl-enzyme complex at >pH 7 (3) indicate small but significant structural differences, consistent with the proposed synchronization of ester hydrolysis and substrate release.  相似文献   

19.
The enzymatic activity of Streptomyces griseus protease B (SGPB) was measured over pH range 8.4--11.5 using a specific new, chromophoric substrate N-succinyl-glycyl-glycyl-L-phenylalanine p-nitroanilide. It was found that the activity is dependent on ionization of a single group with apparent pK = 10.84, possibly lysine-125. Maleylation of the epsilon-amino group of this lysine was linearily associated with the loss of enzymatic activity. It is therefore suggested that the electrostatic interaction between the side chain of lysine-125 and the alpha-carboxyl group of the C-terminal tyrosine is crucial to the active conformation of the enzyme. In contrast the maleylation of the alpha-amino group of the N-terminal isoleucine was rapid but could not be correlated to the loss of activity.  相似文献   

20.
Refined structure of porcine pepsinogen at 1.8 A resolution   总被引:1,自引:0,他引:1  
The molecular structure of porcine pepsinogen at 1.8 A resolution has been determined by a combination of molecular replacement and multiple isomorphous phasing techniques. The resulting structure was refined by restrained-parameter least-squares methods. The final R factor [formula: see text] is 0.164 for 32,264 reflections with I greater than or equal to sigma (I) in the resolution range of 8.0 to 1.8 A. The model consists of 2785 protein atoms in 370 residues, a phosphoryl group on Ser68 and 238 ordered water molecules. The resulting molecular stereochemistry is consistent with a well-refined crystal structure with co-ordinate accuracy in the range of 0.10 to 0.15 A for the well-ordered regions of the molecule (B less than 15 A2). For the enzyme portion of the zymogen, the root-mean-square difference in C alpha atom co-ordinates with the refined porcine pepsin structure is 0.90 A (284 common atoms) and with the C alpha atoms of penicillopepsin it is 1.63 A (275 common atoms). The additional 44 N-terminal amino acids of the prosegment (Leu1p to Leu44p, using the letter p after the residue number to distinguish the residues of the prosegment) adopt a relatively compact structure consisting of a long beta-strand followed by two approximately orthogonal alpha-helices and a short 3(10)-helix. Intimate contacts, both electrostatic and hydrophobic interactions, are made with residues in the pepsin active site. The N-terminal beta-strand, Leu1p to Leu6p, forms part of the six-stranded beta-sheet common to the aspartic proteinases. In the zymogen the first 13 residues of pepsin, Ile1 to Glu13, adopt a completely different conformation from that of the mature enzyme. The C alpha atom of Ile1 must move approximately 44 A in going from its position in the inactive zymogen to its observed position in active pepsin. Electrostatic interactions of Lys36pN and hydrogen-bonding interactions of Tyr37pOH, and Tyr90H with the two catalytic aspartate groups, Asp32 and Asp215, prevent substrate access to the active site of the zymogen. We have made a detailed comparison of the mammalian pepsinogen fold with the fungal aspartic proteinase fold of penicillopepsin, used for the molecular replacement solution. A structurally derived alignment of the two sequences is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号