首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of human lysozyme has been crystallographically refined at 1.5 Å resolution by difference map and restrained least-squares procedures to an R factor of 0.187. A comprehensive analysis of the non-bonded and hydrogen-bonded contacts in the lysozyme molecule, which were not restrained, revealed by the refinement has been carried out. The non-bonded CC contacts begin at ~3.45 Å, and the shorter contacts are dominated, as expected, by interactions between trigonal and tetrahedral carbon atoms. The CO contact distances have a “foot” at 3.05 Å. The CN distance plot shows a significant peak at 3.25 Å, which results from close contact between peptide NHs and carbonyl carbons involved in NiC′i ? 2 interactions in α-helices and reverse turns. The distances involving sulphur atoms discriminate SC trigonal interactions at 3.4 to 3.6 Å from SC tetrahedral interactions at 3.7 Å. All these types of non-bonded interactions show minimum distances close to standard van der Waals' separations.Analysis of hydrogen-bond distances has been carried out by using standard geometry to place hydrogen atoms and measuring the XHO distances. On this basis, there are 130 intramolecular hydrogens: 111 NHO bonds, of which 69 are between main-chain atoms, 13 between side-chain atoms and 29 between mainchain and side-chain atoms. If a cluster of four well-defined internal water molecules is included in the protein structure, there is a total of 19 OHO hydrogen bonds. The mean NO, NHO distances and HN?O angles are 2.96 ± 0.17 Å, 2.05 ± 0.18 Å and 18.5 ± 9.6 °, and the mean OO, OHO distances and HÔO angles are 2.83 ± 0.19 Å, 1.98 ± 0.26 Å and 23.8 ± 13.4 °. The distances agree well with standard values, although the hydrogen bonds are consistently more non-linear than in equivalent small molecules. An analysis of the hydrogen-bond angles at the receptor atom indicates that the α-helix, β-sheet and reverse turn have characteristic angular values. A detailed analysis of the regularity of the α-helices and reverse turns shows small but consistent differences between the α-helices in lysozyme and the current standard model, which may now need revision. Of the 21 reverse turns that include a hydrogen bond, the conformations of 19 agree very closely with four of the five standard types. We conclude that the restrained least-squares method of refinement has been validated by these analyses.  相似文献   

2.
Neutron diffraction data from crystals of sperm whale carbonmonoxymyoglobin have been refined by the real space refinement technique. Estimates of the neutron occupancies at the end of the refinement show that the mean for each atom type (including hydrogen and deuterium) is close to the expected value and has a standard deviation from the mean of about 5%. Mean neutron occupancies of main-chain atoms involved in deuterium bonds versus those not involved in deuterium bonds demonstrate that the hydrogen/deuterium exchange of the latter group is higher. The oxygen and deuterium co-ordinates for 40 water molecules have been determined: 27 of these water molecules were involved in bridges between protein atoms, and nine were involved in deuterium bonds with main-chain atoms. The deuterium-bond angles in helical regions show significant deviations from linearity. The mean ND … O angle was 154(3) °2 and the mean CO … D angle was 145(3) °.  相似文献   

3.
Water structure in a protein crystal: rubredoxin at 1.2 A resolution   总被引:4,自引:0,他引:4  
The model for rubredoxin based on X-ray diffraction data has been extensively refined with a 1.2 Å resolution data set. Water oxygen atoms were deleted from the model if B exceeded 50 Å2 and occupancy was less than 0.3 eÅ?3. The final water model consists of 127 sites with B values ranging from 15 to 6?0 Å2 and occupancies from unity down to 0.3, the most tightly bound water oxygen atoms being hydrogen bonded to two or more main-chain nitrogen or oxygen atoms. The water forms extensive hydrogen bond networks bridging the crevices on the molecular surfaces and between adjacent molecules. The minimum distances of the water sites from the protein surface are distributed about two distinct maxima, the major one at 2.5 to 3 Å and a minor one at 4 to 4.5 Å. Beyond 5? to 6 Å from the protein surface, the discrete water merges into the aqueous continuum.  相似文献   

4.
The pyrogenic toxin toxic shock syndrome toxin-1 fromStaphylococcus aureusis a causative agent of the toxic shock syndrome disease. It belongs to a family of proteins known as superantigens that cross-link major histocompatibility class II molecules and T-cell receptors leading to the activation of a substantial number of T cells. The crystal structure of this protein has been refined to 2.07 Å with anRcrystvalue of 20.4% for 51,240 reflections. The final model contains three molecules in the asymmetric unit with good stereochemistry and a root-mean-square deviation of 0.009 Å and 1.63° from ideality for bond lengths and bond angles, respectively. The overall fold is considerably similar to that of other known microbial superantigens (staphylococcal enterotoxins). However, a detailed structural analysis shows that toxic shock syndrome toxin-1 lacks several structural features that affect its specificity for Vβ elements of the T-cell receptor and also its recognition by major histocompatibility class II molecules.  相似文献   

5.
The crystal structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor has been refined with data to 1.9 Å resolution, using a procedure described by Deisenhofer &; Steigemann (1974) in their refinement of the crystal structure of the free inhibitor. This procedure involves cycles consisting of phase calculation using the current atomic model, Fourier synthesis using these phases and the observed structure factor amplitudes and Diamond's real-space refinement (Diamond, 1971,1974). At various stages, difference Fourier syntheses are calculated to detect and correct gross errors in the model and to localize solvent molecules.The refinement progressed smoothly, starting with the model obtained from the isomorphous Fourier map at 2.6 Å resolution. The R-factor is 0.23 for 20,500 significantly measured reflections to 1.9 Å resolution, using an over-all temperature factor of 20 Å2. The estimated standard deviation of atomic positions is 0.09 Å.An objective assessment of the upper limit of the error in the atomic coordinates of the final model is possible by comparing the inhibitor component in the model of the complex with the refined structure of the free inhibitor (Deisenhofer &; Steigemann, 1974). The mean deviation of main-chain atoms of the two molecular models in internal segments is 0.25 Å, of main-chain dihedral angles 5.1 ° and side-chain dihedral angles 6.5 °.A comparison of the trypsin component with α-chymotrypsin (Birktoft &; Blow, 1972) showed a mean deviation of main-chain atoms of 0.75 Å. The structures are closely similar and the various deletions and insertions cause local structural differences only.  相似文献   

6.
《Inorganica chimica acta》1988,144(2):205-211
Two (1:2) silver monophosphine complexes have been studied by X-ray diffraction methods and in solution by P NMR spectroscopy. Both are monomeric and tricoordinated in the solid state but one of them, the perchlorate compound, is probably associated as a dimer species in solution from the lower 1J(107Ag31P) value when compared to the nitrate analogue. Previous structural correlations found in other silver-phosphine complexes have been confirmed for these new compounds. Thus, larger PAgP bond angles are associated with shorter AgP bond distances, longer Aganion bond distances and lower Lewis basicity of the anions. Selected structural data are: PAgP bond angle of 139.04(9)°, AgP bond lengths of 2.440(3) and 2.445(3) Å for the nitrate complex and 147.34(3)°, 2.429(1) Å and 2.432(1) Å, for the perchlorate one. J(107Ag31P) is 457 Hz and 447 Hz, respectively. The complexes are triclinic, Z = 2, with the parameters: a = 9.258(2), b = 9.828(2), c = 23.385(5) Å, α = 94.73(2)°, β = 96.35(2)°, γ = 116.42(1)° (nitrate) and a = 9.505(2), b = 9.790(2), c = 23.667(6) Å, α= 99.03(2) β = 95.44(2) γ = 115.97(1)° (perchlorate).  相似文献   

7.
The crystal structure of the glutamine-binding protein (GlnBP) fromEscherichia coliin a ligand-free “open” conformational state has been determined by isomorphous replacement methods and refined to anR-value of 21.4% at 2.3 Å resolution. There are two molecules in the asymmetric unit, related by pseudo 4-fold screw symmetry. The refined model consists of 3587 non-hydrogen atoms from 440 residues (two monomers), and 159 water molecules. The structure has root-mean-square deviations of 0.013 Å from “deal” bond lengths and 1.5° from “ideal” bond angles.The GlnBP molecule has overall dimensions of approximately 60 Å × 40 Å × 35 Å and is made up of two domains (termed large and small), which exhibit a similar supersecondary structure, linked by two antiparallel β-strands. The small domain contains three α-helices and four parallel and one antiparallel β-strands. The large domain is similar to the small domain but contains two additional α-helices and three more short antiparallel β-strands. A comparison of the secondary structural motifs of GlnBP with those of other periplasmic binding proteins is discussed.A model of the “closed form” GlnBP-Gln complex has been proposed based on the crystal structures of the histidine-binding protein-His complex and “open form” GlnBP. This model has been successfully used as a search model in the crystal structure determination of the “closed form” GlnBP-Gln complex by molecular replacement methods. The model agrees remarkably well with the crystal structure of the Gln-GlnBP complex with root-mean-square deviation of 1.29 Å. Our study shows that, at least in our case, it is possible to predict one conformational state of a periplasmic binding protein from another conformational state of the protein. The glutamine-binding pockets of the model and the crystal structure are compared and the modeling technique is described.  相似文献   

8.
Two compounds of empirical formula MCl3- (THF)3, M = V and Cr, have been characterized by single crystal X-ray studies. The VCl3(THF)3 molecule, which has a mer octahedral stereochemistry, crystallizes in the monoclinic space group P21/c with a= 8.847(2),b= 12.861(5),c= 15.134(3) Å, β = 91.94(2)°, V = 1721(1) Å3 and Z = 4. The V-Ci(1) and V-CI(2) distances have a mean value of 2.330 [3] Å while V-CI(3) = 2.297(2) Å, The VO(1) and VO(2) distances have a mean value of 2.061[8] Å while V-O(3) = 2.102(3) Å cis ClVCl angles average 92.0[5]° and cis OVO angles average 86.2[2]° . The isostmctural complex, CrCl3(THF)3, has a crystal structure made up of discrete octahedral mer-CrCl3(THF)3 molecules with the following unit cell dimensions (space group P21/c): a = 8.715(1), b= 12.786(3), c = 15.122(3) Å, β = 92.15(1)°, V = 1684(1) Å3 and Z = 4. The CrCl(1) and CrCl(2) distances have a mean value of 2.310131 Å while CrCl(3) = 2.283(2) Å. The CrO(1) and CrO(2) distances have a mean value of 2.0101171 Å while CrO(3) = 2.077(4) Å. cis ClCrCl angles average 90.9[4]° and cis OCrO angles average 86.1 [2]°. The structures of these two octahedral complexes and those previously reported for ScCl3(THF)3 and TiCl3(THF)3 are compared and certain general trends are discussed.  相似文献   

9.
The structure of rubredoxin at 1.2 A resolution   总被引:12,自引:0,他引:12  
Structural details of the model of Clostridium pasteurianum rubredoxin are presented, based on the refined model at 1.2 Å resolution. The molecule contains no extensive regions of pleated-sheet or helical structure. Regular secondary structure consists primarily of residues 3 to 7, 11 to 13 and 48 to 52 in a small region of pleated-sheet; and residues 14 to 18, 19 to 23, 29 to 33 and 45 to 49 in 310 helical corners. Interbond angles in the helical corners average as much as 10 ° greater than normally accepted values and a number of the peptide groups deviate significantly from planarity.Rubredoxin has a pronounced asymmetry in the distribution of charged groups on its surface. This would lead to highly favored molecular orientations when the protein interacts with other charged molecules.Bond lengths in the iron-sulfur complex range from 2.24 å to 2.33 Å, and bond angles range from 104 ° to 114 °.  相似文献   

10.
Structure of alpha-chymotrypsin refined at 1.68 A resolution   总被引:16,自引:0,他引:16  
  相似文献   

11.
Structure and refinement of penicillopepsin at 1.8 A resolution   总被引:15,自引:0,他引:15  
Penicillopepsin, the aspartyl protease from the mould Penicillium janthinellum, has had its molecular structure refined by a restrained-parameter least-squares procedure at 1.8 Å resolution to a conventional R-factor of 0.136. The estimated co-ordinate accuracy for the majority of the 2363 atoms of the enzyme is better than 0.12 Å. The average atomic thermal vibration parameter, B, for the atoms of the enzyme is 14.5 Å2. One determining factor of this low average B value is the large central hydrophobic core, in which there are two prominent clusters of aromatic residues, one of nine, the other of seven residues. The N and C-terminal domains of penicillopepsin display an approximate 2-fold symmetry: 70 residue pairs are topologically equivalent, related by a rotation of 177 ° and a translation of 1.2 Å. The analysis of the secondary structural features of the molecule reveals non-linear hydrogen bonding. In penicillopepsin, there is no difference in the mean hydrogen-bond parameters for the elements of α-helix, parallel or antiparallel β-pleated sheet. The mean values for these structural elements are: NO, 2.90 Å; NHO, 1.95 Å; N?O, 160 °. The average hydrogen-bond parameters of the reverse β-turns and the 310 helices are distinctly different from the above values. The analysis of sidechain conformational angles χ1 and χ2 penicillopepsin and other enzyme structures refined in this laboratory shows much narrower distributions as compared with those compiled from unrefined protein structures. The close proximity of the carboxyl groups of Asp33 and Asp213 suggests that they share a proton in a tight hydrogen-bonded environment (Asp33OD2 to Asp213OD1 is 2.87 Å). There are several solvent molecules in the active site region and, in particular, O39 forms hydrogen-bonded interactions with both aspartate residues. The disposition of the two carboxyl groups suggests that neither is likely to be involved in a direct nucleophilic attack on the scissile bond of a substrate. The average atomic B-factors of the residues in this region of the molecule are between 5 and 8 Å2, confirming the proposal that conformational mobility of the active site residues has no role in the enzymatic mechanism. However, conformational mobility of neighbouring regions of the molecule e.g. the “flap” containing Tyr75, is verified by the high B-factors for those residues. The positions of 319 solvent sites per asymmetric unit have been selected from difference electron density maps and refined. Thirteen have been classified as internal, and several of these may have key roles during catalysis. The positively charged Nζ atom of Lys304 forms hydrogen bonds to the carboxylate of Asp14 (internal ion pair) and to two internal water molecules O5 and O25. The protonated side-chain of Asp300 forms a hydrogen bond to Thr214O, 2.78 Å, and is the recipient of a hydrogen bond from a surface pocket water molecule O46. There is no possibility for direct interaction between Asp300 and Lys304 without large conformational changes of their environment. The intermolecular packing involves many protein-protein contacts (66 residues) with a large number of solvent molecules involved in bridging between polar residues at the contact surface. The penicillopepsin molecules resemble an approximate hexagonal close-packing of spheres with each molecule having 12 “nearest” neighbours.  相似文献   

12.
The basic phospholipase A2 from the venom ofAgkistrodon halys Pallas is a potent hemolytic toxin and anticoagulant. The accurate rotation and translation parameters of the molecules in orthorhombic crystal form I were successfully obtained using the fitting refinement technique. The structure was refined in the resolution range of 0.6–0.25 nm using least square refinement with non-crystallographic two fold symmetry restraint, and resulted in the finalR factor of 20.1 %, and the rms deviations from ideal stereochemistry were 0.001 3 nm for bond lengths and 1.32° for bond angles. The overall architecture of the present structure was similar to that of the determined structure of the orthorhombic crystal form II, with a few differences in the regions of the β-wing and Ca2+ -binding Imp. The dimers formed by the two molecules in the asymmetric unit in both crystal forms were also similar. However, one of the monomers showed an orientational difference of 5.5° along the dimer interface in the two crystal forms, suggesting the flexibility of the interface of the dimer to some degree. The molecular packing of the dimer in crystal form I was much more compact than that in crystal form II.  相似文献   

13.
In a further examination of the multiply bonded NbS group, the structure of NbS(S2CNEt2)3 has been determined. The compound crystallizes in triclinic space group P1 with a = 9.870(1), b = 15.743(2), c = 16.804(3) Å, α = 101.69(1)°, β = 93.51(1)°, γ = 91.12(1)°, and Z = 4. With use of 6709 unique data (FO2 > 3σ(FO2)) the structure was refined to R(Rw) = 3.1(3.5%). The crystal contains two inequivalent molecules with distorted pentagonal bipyramidal coordination in which a sulfide atom occupies an axial position. The molecules are differentiated by ethyl group orientations and significantly different NbS bond lengths of 2.122(1) and 2.168(1) Å. Full structural details are reported. The results fall within the ca. 2.09–2.20 Å interval established with other molecules and emphasize the variability in bond length of the NbS group. Stretching frequencies and bond lengths show a rough inverse dependence. For square pyramidal [NbSCl4]1?, with a relatively high NbS bond order, vNbS = 552 cm?1 is associated with a bond length of 2.085(5) Å and an overlap population of 0.64.  相似文献   

14.
The crystal structure of [Sm(OPMePh2)4I2]I, 1, was determined by X-ray diffraction and refined anisotropically to a final R value of 0.067 from 3040 reflections with I>3.0σ(I). The space group was P2/a and Z=2. The unit cell dimensions were: a= 17.777(6), b=13.559(2), c=11.656(4) Å, α=γ= 90.0 and β=97.25(3)°. The cation geometry was octahedral with the Sm(III) bonded to two mutually trans I ions and four OPMePh2 groups. A third non-bonded I was present elsewhere in the cell. The SmI and SmO distances were 3.077(1) and 2.27(1) Å respectively. Two of the SmOP angles were 172.1(6)° and the other two were 162.0(6)°.  相似文献   

15.
The crystal state conformations of three peptides containing the α,α-dialkylated residues. α,α-di-n-propylglycine (Dpg) and α,α-di-n-butylglycine (Dbg), have been established by x-ray diffraction. Boc-Ala-Dpg-Alu-OMe (I) and Boc-Ala-Dbg-Ala-OMe (III) adopt distorted type II β-turn conformations with Ala (1) and Dpg/Dbg (2) as the corner residues. In both peptides the conformational angles at the Dxg residue (I: ? = 66.2°, ψ = 19.3°; III: ? = 66.5°. ψ = 21.1°) deviate appreciably from ideal values for the i + 2 residue in a type II β-turn. In both peptides the observed (N…O) distances between the Boc CO and Ala (3) NH groups are far too long (1: 3.44 Å: III: 3.63 Å) for an intramolecular 4 → 1 hydrogen bond. Boc-Ala-Dpg-Ata-NHMe (II) crystallizes with two independent molecules in the asymmetric unit. Both molecules HA and HB adopt consecutive β-turn (type III-III in HA and type III-I in IIB) or incipient 310-helical structures, stabilized by two intramolecular 4 → 1 hydrogen bonds. In all four molecules the bond angle N-Cα-C′ (τ) at the Dxg residues are ≥ 110°. The observation of conformational angles in the helical region of ?,ψ space at these residues is consistent with theoretical predictions. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Porcine pancreas kallikrein A has been crystallized in the presence of the small inhibitor benzamidine, yielding tetragonal crystals of space group P41212 containing two molecules per asymmetric unit. X-ray data up to 2·05 Å resolution have been collected using normal rotation anode as well as synchrotron radiation. The crystal structure of benzamidine-kallikrein has been determined using multiple isomorphous replacement techniques, and has subsequently been refined to a crystallographic R-value of 0·220 by applying a diagonal matrix least-squares energy constraint refinement procedure.Both crystallographically independent kallikrein molecules 1 and 2 are related by a non-integral screw axis and form open, heterologous “dimer” structures. The root-mean-square deviation of both molecules is 0·37 Å for all main-chain atoms. This value is above the estimated mean positional error of about 0·2 Å and reflects some significant conformational differences, especially at surface loops. The binding site of molecule 1 in the asymmetric unit is in contact with residues of molecule 2, whereas the binding site of the latter is free and accessible to the solvent. In both molecules the characteristic “kallikrein loop”, where the peptide chain of kallikrein A is cleaved, is only partially traceable. The carbohydrate attached to Asn95 in this loop, although detectable chemically, is not defined.A comparison of the refined structures of porcine kallikrein and bovine trypsin indicates spatial homology for these enzymes. The root-mean-square difference is 0·68 Å if we compare only main-chain atoms of internal segments. Remarkably large deviations are found in some external loops most of which surround the binding site and form a more compact rampart around it in kallikrein than in trypsin. This feature might explain the strongly reduced activity and accessibility of kallikrein towards large protein substrates and inhibitors (e.g. as shown by the model-building experiments on inhibitor complexes reported by Chen &; Bode. 1983).The conformation of the active site residues is very similar in both enzymes. Tyr99 of kallikrein, which is a leucyl residue in trypsin, protrudes into the binding site and interferes with the binding of peptide substrates (Chen &; Bode. 1983). The kallikrein specificity pocket is significantly enlarged compared with trypsin due to a longer peptide segment, 217 to 220, and to the unique outwards orientation of the carbonyl group of cis-Pro219. Further, the side-chain of Ser226 in porcine kallikrein, which is a glycyl residue in trypsin, partially covers Asp 189 at the bottom of the pocket. These features considerably affect the binding geometry and strength of binding of benzamidine.  相似文献   

17.
Iodine-cyclohexa-amylose tetrahydrate [(C6H10O5)6 ·I2·d4H2O] crystallizes in the orthorhombic space-group P212121, a  14.240 Å, b  36.014 Å, c  9.558 Å. The structure was solved by heavy-atom techniques and refined by least-squares methods to a conventional discrepancy index R  0.148 for the 2872 observed data. The six d-glucose residues are in the C1 chair conformation; the conformational angles vary in magnitude from 45 to 66°, the angles O(5)-C(5)-C(6)-O(6) are close to · 70°, and the six O(4) atoms are almost coplanar (r.m. s. displacement 0.13 Å). Only four of the six O(2) ?O(3) intramolecular hydrogen bonds have formed, which renders the molecule less symmetrical and more conical-shaped than in the previously determined α-cyclodextrin-potassium acetate complex. The iodine molecule is coaxial with the cyclohexa-amylose molecule. The I-I distance is a conventional 2.677 Å. Close interactions between the iodine atoms and the host molecule comprise carbon atoms C(5) and C(6) and oxygen atoms O(4), with interatomic distances all equal to or greater than van der Waals contacts. Intermolecular, almost-linear, short contacts O ? I-I?O with I?O distances of 3.22 and 3.07 Å indicate attractive interaction.The molecules are arranged in herring-bone “cage-type” fashion, with the four water molecules as space-filling mediators; the structure is held together by an intricate network of hydrogen bonds.  相似文献   

18.
The title compound, when recrystallised from water, is monoclinic, space group P21, with a = 5.774(4), b = 7.189(5), c = 12.69(1) Å, β = 106.66(5)°, and Z = 2. The crystal structure was determined from three-dimensional X-ray diffraction data taken on an automatic diffractometer with CuKα, and refined by least-squares techniques to R = 0.034 for 977 reflexions. The pyranose ring adopts the 4C1 conformation. The conformation about the exocyclic C-5-C-6 bond is gauche-trans [the torsion angles O-6-C-6-C-5-O-5 and O-6-C-6-C-5-C-4 are 64.2(8) and ?175.6(7)°, respectively], which is significantly different from the gauche-gauche geometry in d-glucose 6-(barium phosphate). The phosphate ester bond, P-O-6, is 1.584(3) Å. All of the oxygen-bonded hydrogen atoms are involved in intermolecular hydrogen-bonds.  相似文献   

19.
The complex formed by porcine pancreatic kallikrein A with the bovine pancreatic trypsin inhibitor (PTI) has been crystallized at pH 4 in tetragonal crystals of space group P41212 with one molecule per asymmetric unit. Its crystal structure has been solved applying Patterson search methods and using a model derived from the bovine trypsin-PTI complex (Huber et al., 1974) and the structure of porcine pancreatic kallikrein A (Bode et al., 1983). The kallikrein-PTI model has been crystallographically refined to an R-value of 0·23 including X-ray data to 2·5 Å.The root-mean-square deviation, including all main-chain atoms, is 0·45 Å and 0·65 Å for the PTI and for the kallikrein component, respectively, compared with the refined models of the free components. The largest differences are observed in external loops of the kallikrein molecule surrounding the binding site, particularly in the C-terminal part of the intermediate helix around His172. Overall, PTI binding to kallikrein is similar to that of the trypsin complex. In particular, the conformation of the groups at the active site is identical within experimental error (in spite of the different pH values of the two structures). Ser195 OG is about 2·5 Å away from the susceptible inhibitor bond Lys15 C and forms an optimal 2·5 Å hydrogen bond with His57 NE.The PTI residues Thr11 to Ile18 and Val34 to Arg39 are in direct contact with kallikrein residues and form nine intermolecular hydrogen bonds. The reactive site Lys15 protrudes into the specificity pocket of kallikrein as in the trypsin complex, but its distal ammonium group is positioned differently to accommodate the side-chain of Ser226. Ser226 OG mediates the ionic interaction between the ammonium group and the carboxylate group of Asp189. Model-building studies indicate that an arginine side-chain could be accommodated in this pocket. The PTI disulfide bridge 14–38 forces the kallikrein residue Tyr99 to swing out of its normal position. Model-building experiments show that large hydrophobic residues such as phenylalanine can be accommodated at this (S2) site in a wedge-shaped hydrophobic cavity, which is formed by the indole ring of Trp215 and by the phenolic side-chain of Tyr99, and which opens towards the bound inhibitor/substrate chain. Arg17 in PTI forms a favorable hydrogen bond and van der Waals' contacts with kallikrein residues, whereas the additional hydrogen bond formed in the trypsin-PTI complex between Tvr39 OEH and Ile19 N is not possible The kallikrein binding site offers a qualitative explanation of the unusual binding and cleavage at the N-terminal Met-Lys site of kininogen. Model-building experiments suggest that the generally restricted capacity of kallikrein to bind protein inhibitors with more extended binding segments might be explained by steric hindrance with some extruding external loops surrounding the kallikrein binding site (Bode et al., 1983).  相似文献   

20.
X-ray crystal structure determination of agglutinin from abrus precatorius in Taiwan is presented. The crystal structure of agglutinin, a type II ribosome-inactivating protein (RIP) from the seeds of Abrus precatorius in Taiwan, has been determined from a novel crystalline form by the molecular replacement method using the coordinates of abrin-a as the template. The structure has space group P41212 with Z = 8, and been refined at 2.6 Å to R-factor of 20.4%. The root-mean-square deviations of bond lengths and angles from the standard values are 0.009 Å and 1.3°. Primary, secondary, tertiary and quaternary structures of agglutinin have been described and compared with those of abrin-a to a certain extent. In subsequent docking research, we found that Asn200 of abrin-a may form a critical hydrogen bond with G4323 of 28SRNA, while corresponding Pro199 of agglutinin is a kink hydrophobic residue bound with the cleft in a more compact complementary relationship. This may explain the lower toxicity of agglutinin than abrin-a, despite of similarity in secondary structure and the activity cleft of two RIPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号