首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acid stability of anti-Helicobacter pyroli IgY in aqueous polyol solution   总被引:1,自引:0,他引:1  
IgY was separated from a hen's egg yolk that was immunized with Helicobacter pyroli. The anti-H. pyroli IgY activity at acidic pH and the suppressive effect of polyol on acid-induced inactivation of IgY were investigated. Sorbitol and xylitol were used as polyols. IgY was quite stable at pH 5-7. Irreversible inactivation of IgY was observed at pH below 4, and proceeded rapidly at pH below 3. The acid stability of IgY was enhanced in the presence of 30% sorbitol or above. In a 50% aqueous sorbitol solution, an acid-induced inactivation was almost completely suppressed at pH 3. However, the improvement of IgY activity was not observed in the aqueous xylitol solution. IgY showed almost the same activity as native IgY when sucrose was substituted for sorbitol. On the other hand, the xylitol replacement with sucrose did not enhance the acid stability of IgY. The acid-induced inactivation of IgY was related to tryptophyl fluorescence. Fluorescence emission spectra suggested that structural changes near the tryptophan residues may occur under acidic conditions. An increase in sorbitol concentration induced a blue shift. The fluorescence emission of IgY in a 50% sorbitol solution had a peak at 330 nm, which was the same emission peak that was exhibited by native IgY. Sorbitol could, therefore, be used as a good stabilizer of IgY under acidic conditions.  相似文献   

2.
The erythrocyte sorbitol dehydrogenase (EC 1.1.1.14) activity, regarding its action on sorbitol oxidation to fructose, was studied in 19 species of mammals, showing a striking variability, with high activity in rodents. Enzyme activity was studied against other polyols, namely xylitol, inositol, manitol and dulcitol. Most animals showed activity against all the polyols studied, but hamster and red deer only presented activity on sorbitol and xylitol. Michaelis-Menten constant determinations for sorbitol were performed, and it was observed that animals which presented high activity had a high Km. pH curves were obtained from 8 animals, with an optimum pH ranging from pH 8.0 to pH 10.0; four of the animals presented an optimum pH at 8.5.  相似文献   

3.
The production of polyols in vitro by highly purified aldose reductase (EC 1.1.1.21) was monitored by g.l.c. In the presence of NADPH aldose reductase reduced glucose, galactose and xylose to the respective polyols sorbitol, galactitol and xylitol. The rates of formation of these polyols closely mirrored the Km values for the substrates obtained from kinetic measurements that monitored the rate of disappearance of NADPH. No polyol production occurred in the absence of purified aldose of purified aldose reductase, and analysis by g.l.c. revealed only the presence of unchanged monosaccharides. Addition of the aldose reductase inhibitor sorbinil to purified rat lens aldose reductase incubated with xylose in the presence of NADPH resulted in decreased xylitol production. However, aldose reductase inhibitors produced no effect in altering the rate of Nitro Blue Tetrazolium formation from either glucose or xylose, indicating that the observed inhibition in vitro does not result from a free-radical-scavenger effect.  相似文献   

4.
Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation.  相似文献   

5.
Several strains of the yeastPichia angophorae produced ethanol from xylitol in yields that were as high as 0.3 g ethanol/g xylitol used. One of the strains also produced ethanol from D-sorbitol and D-mannitol. The ability to produce ethanol from xylitol and sorbitol is of interest in efforts to increase the yield of ethanol in fermentations where these two polyols are produced as by-products.Issued as NRCC Publication Number 27894.  相似文献   

6.
When fed to starved adults of Anthonomus grandis, several pentoses and hexoses were metabolized to the corresponding polyols (sugar alcohols). Xylitol, galactitol, arabitol, ribitol, rhamnitol, mannitol, and sorbitol were metabolites of d-xylose, d-galactose and lactose, d-arabinose, d-ribose, l-rhamnose, d-mannose, and d-glucose and d-fructose, respectively. l-Sorbose was not metabolized to a polyol. Large quantities of xylitol and galactitol and intermediate amounts of arabitol, ribitol, and rhamnitol accumulated while only small amounts or traces of mannitol and sorbitol were detected. The limited accumulation of sorbitol in the glucose- and fructose-fed weevils probably was caused by the rapid metabolism of sorbitol to glucose, fructose, trehalose, and glycogen. Each of the ingested sugars, the corresponding polyols, and trehalose were present in the weevil haemolymph. Most of the polyols had never before been detected as metabolites in an insect.  相似文献   

7.
In Rhizobium trifolii 7000, the polyols myo-inositol, xylitol, ribitol, D-arabitol, D-mannitol, D-sorbital, and dulcitol are metabolized by inducible nicotinamide adenine dinucleotide-dependent polyol dehydrogenases. Five different polyol dehydrogenases were recognized: inositol dehydrogenase, specific for inositil; ribitol dehydrogenase, specific for ribitol; D-arabitol dehydrogenase, which oxidized D-arabitol, D-mannitol, and D-sorbitol; xylitol dehydrogenase, which oxidized xylitol and D-sorbitol; and dulcitol dehydrogenase, which oxidized dulcitol, ribitol, xylitol, and sorbitol. Apart from inositil and xylitol, all of the polyols induced more than one polyol dehydrogenase and polyol transport system, but the heterologous polyol dehydrogenases and polyol transport systems were not coordinately induced by a particular polyol. With the exception of xylitol, all of the polyols tested served as growth substrates. A mutant of trifolii 7000, which was constitutive for dulcitol dehydrogenase, could also grow on xylitol.  相似文献   

8.
9.
Ribitol+ strains of Escherichia coli acquire the ability to utilize xylitol by mutating to constitutive production of the coordinately controlled ribitol catabolic enzymes ribitol dehydrogenase (RDH) and D-ribulokinase (DRK). Such strains concomitantly acquire toxicity to galacitol and L-arabitol, and to D-arabitol if they are unable to utilize it for growth. Strains selected for resistance to these polyols have DRK structural gene mutations or other mutations that eliminate the constitutive production of DRK, consistent with the view that DRK phosphorylates those polyols to toxic substances. Ribitol+ strains selected for growth on 8 mM xylitol fail to grow on 30 mM xylitol. A product of ribitol and xylitol catabolism represses synthesis of RDH, an enzyme required for growth on xylitol. At 30 mM xylitol, greater than 99% of RDH synthesis is repressed. Strains that grow on 8 mM xylitol can mutate to grow on 30 mM xylitol. Such mutants, relieved of this repression, overproduce RDH, resulting in good growth on the poor substrate, xylitol, but poor growth on the normal substrate, ribitol.  相似文献   

10.
If the pH value in the ACD or in the ACD-AG storage solution is enhanced, the glucose in the autoclaving with undergo a caramelizing process. For this reason glucose was replaced by sorbite in the storage solutions with a pH value of 6.0 and additions of xylitol and pyruvate. The initial pH value in the blood amounted to 7.3. The content of 2.3 DPG of the erythrocytes remained fully preserved in the blood with sorbitol and additions of xylitol and pyruvate during the first 2 weeks of storage and decreased to 30% only in the third week. There were only slight amounts of 2.3 DPG in the ACD-AG blood at that time of storage. Up to the third week of storage the ATP content of erythrocytes as well as the haemoglobin level in the plasma revealed no essential differences between stored blood with sorbitol and xylitol as a substrate or glucose + xylitol respectively. The quick decrease of the ATP level to zero and the simultaneous strong increase of haemolysis in the sorbitol blood within the fourth week of storage is discussed in connection with a lowering of the NAD/NADH2 quotient. For the purpose of keeping the 2.3 DPG level of erythrocytes a storage solution with sorbite and xylitol (ASCX-AG-Pyr 10mM) seems to be well suited for a storing time of 2---3 weeks at first.  相似文献   

11.
Heat resistance at 65· of Saccharomyces rouxii and Schizosaccharomyces pombe was enhanced in solutions of sugars and polyols, containing 0·1 M-phosphate buffer, pH 6·5, at a water activity of 0·95. Resistance was maximum in solutions of sucrose, less in sorbitol and least in solutions of glucose, fructose and glycerol. Examination of the yeast cells by phase contrast microscopy showed shrinkage of cells in all solutions. Electron microscopy of freeze-etched preparations of Sacch. rouxii indicated plasmolysis of cells in sucrose and sorbitol solutions only.  相似文献   

12.
Sorbitol dehydrogenase (l-iditol:NAD(+) oxidoreductase, EC 1.1.1.14) has been detected and characterized from apple (Malus domestica cv. Granny Smith) mesocarp tissue cultures. The enzyme oxidized sorbitol, xylitol, l-arabitol, ribitol, and l-threitol in the presence of NAD. NADP could not replace NAD. Mannitol was slightly oxidized (8% of sorbitol). Other polyols that did not serve as substrate were galactitol, myo-inositol, d-arabitol, erythritol, and glycerol. The dehydrogenase oxidized NADH in the presence of d-fructose or l-sorbose. No detectable activity was observed with d-tagatose. NADPH could partially substitute for NADH.Maximum rate of NAD reduction in the presence of sorbitol occurred in tris(hydroxymethyl)aminomethane-HCl buffer (pH 9), or in 2-amino-2-methyl-1,3-propanediol buffer (pH 9.5). Maximum rates of NADH oxidation in the presence of fructose were observed between pH 5.7 and 7.0 with phosphate buffer. Reaction rates increased with increasing temperature up to 60 C. The K(m) for sorbitol and xylitol oxidation were 86 millimolar and 37 millimolar, respectively. The K(m) for fructose reduction was 1.5 molar.Sorbitol oxidation was completely inhibited by heavy metal ions, iodoacetate, p-chloromercuribenzoate, and cysteine. ZnSO(4) (0.25 millimolar) reversed the cysteine inhibition. It is suggested that apple sorbitol dehydrogenase contains sulfhydryl groups and requires a metal ion for full activity.  相似文献   

13.
Growth and l-lactic acid production on 24 different carbohydrates and polyols (glycerol, mannitol and sorbitol) by Rhizopus arrhizus CCM 8109 were determined. The d- but not the l-forms of xylose, fructose, galactose, mannose, glucose, cellobiose, maltose and sucrose and partially hydrolysed starch were converted to l-lactic acid. Changes in lipid formation and fatty acid composition were detected in biomass grown on the different sugars. In the presence of polyols, growth and considerable production of lipids were observed with little or no lactate production. Invertase was mainly associated with the mycelium during growth on sucrose, whereas glucoamylase and -amylase were produced extracellularly during growth on starch.The authors are with the Department of Biochemical Technology, Faculty of Chemical Technology, Slovak Polytechnical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic  相似文献   

14.
The amount of unfreezable water in lysozyme and bovine serum albumin in aqueous solutions of xylitol, sorbitol, glucose and sucrose was estimated by a differential scanning calorimeter according to new analytical methods. The antemelting point of aqueous polyol solutions seemed to shift to a higher temperature upon addition of protein, but the incipient melting point was not affected by the coexisting protein. The amount of unfreezable water in both proteins, as well as the heat of fusion of ice, decreased with increasing polyol concentration, regardless of the kind of polyols added. On the basis of these results, the solvation structure of the protein in these three-component systems and the mechanism of the polyol-induced stabilization of protein were discussed assuming protein–polyol interactions.  相似文献   

15.
AIMS: To characterize lactobacilli isolated from the intestines of ducks or pigs with respect to the production of extracellular homopolysaccharides (HoPS) and oligosaccharides. METHODS AND RESULTS: Lactobacillus strains of duck or pig origin were screened for HoPS synthesis and >25% of the isolates produced fructans or glucans from sucrose. Glucan-forming strains were found within the species Lactobacillus reuteri and Lactobacillus animalis and fructan-forming strains were found within Lactobacillus mucosae, Lactobacillus crispatus and Lactobacillus acidophilus. The glucan-forming strains of L. reuteri but not L. animalis produced glucose-oligosaccharides in additon to the respective polymers, and two fructan-forming strains of L. acidophilus produced kestose. Genes coding for glycosyltransferases were detected by PCR and partially characterized by sequence analysis. CONCLUSIONS: A large proportion of lactobacilli from intestinal habitats produce HoPS from sucrose and polysaccharide formation is generally associated with the formation of glucose- and fructose oligosaccharides. SIGNIFICANCE AND IMPACT OF THE STUDY: The characterization of the metabolic potential of intestinal lactobacilli contributes to the understanding of the molecular basis of autochthony in intestinal habitats. Moreover, this is the first report of glucose-oligosaccharide production during growth of lactobacilli, and one novel fructosyltransferase and one novel glucansucrase were partially characterized on the genetic level.  相似文献   

16.
The influence of glycerol, sorbitol, glucose and sucrose, on the refolding and reactivation courses of guanidine-denatured arginine kinase was studied. Glycerol, sucrose, and sorbitol, but not glucose, could improve the reactivation of the denatured arginine kinase, although in all cases aggregation was inhibited. Size exclusion chromatography showed that misfolded products were still formed during polyol-assisted refolding. The chemical and physical characteristics of polyols might explain the various observations.  相似文献   

17.
To address the contribution of hydrophobic interaction to the stability of molten globule (MG) of proteins, the effects of various polyols (ethylene glycol, glycerol, erythritol, xylitol, sorbitol, and inositol) on the structure of acid-unfolded horse cytochrome c were examined at pH 2, by means of circular dichroism (CD), partial specific volume, adiabatic compressibility, and differential scanning calorimetry (DSC). Addition of polyols induced the characteristic CD spectra of MG, the effect being enhanced with an increase in their concentration and chain length (the number of OH groups) of polyols except for ethylene glycol. The free energy change of MG formation by sorbitol was comparable with those for the salt-induced MG formation but the heat capacity change was negligibly small. The partial specific volume did not change within the experimental error but the adiabatic compressibility largely increased by MG formation. The sorbitol-induced MG showed a highly cooperative DSC thermogram with a large heat capacity change in comparison with the salt-induced one. These results demonstrate that polyols can stabilize the MG state of this protein through the enhanced hydrophobic interaction overcoming the electrostatic repulsion between charged residues. The stabilizing mechanism and structure of MG state induced by polyols were discussed in terms of the preferential solvent interactions and osmotic pressure of the medium, in comparison with the salt-induced one.  相似文献   

18.
Tinti JM  Nofre C 《Chemical senses》2001,26(3):231-237
A behavioural study on the ant Lasius niger was performed by observing its feeding responses to 85 compounds presented in a two-choice situation (tested compound versus water control or sucrose solution). Among these compounds, only 21 were phagostimulating: six monosaccharides (D-glucose, 6-deoxy-D-glucose, L-galactose, L-fucose, D-fructose, L-sorbose), four derivatives of D-glucose (methyl alpha-D-glucoside, D-gluconolactone and 6-chloro- and 6-fluoro-deoxy-D-glucose), five disaccharides (sucrose, maltose, palatinose, turanose and isomaltose), one polyol glycoside (maltitol), three trisaccharides (melezitose, raffinose and maltotriose) and two polyols (sorbitol and L-iditol). None of the 16 non-carbohydrate non-polyol compounds tested, although perceived as sweet in humans, was found to be active in ants. The molar order of effectiveness of the major naturally occuring compounds (melezitose > sucrose = raffinose > D-glucose > D-fructose = maltose = sorbitol) is basically different from the molar order of their sweetness potency in humans (sucrose > D-fructose > melezitose > maltose > D-glucose = raffinose = sorbitol). On a molar basis melezitose is in L. niger about twice as effective as sucrose or raffinose, while D-glucose and D-fructose are three and four times less effective, respectively, than sucrose or raffinose. From a structure-activity relationship study it was inferred that the active monosaccharides and polyols should interact with the ant receptor through only one type of receptor, through the same binding pocket and the same binding residues, via a six-point interaction. The high effectiveness of melezitose in L. niger mirrors the feeding habits of these ants, which attend homopterans and are heavy feeders on their honeydew, which is very rich in this carbohydrate.  相似文献   

19.
Aims: To demonstrate the feasibility of growing lactobacilli and producing lactic acid using maple sap as a sugar source and to show the importance of oligosaccharides in the processes. Methods and Results: Two maple sap samples (Cetta and Pinnacle) and purified sucrose were used as carbon sources in the preparation of three culture media. Compared with the sucrose‐based medium, both maple sap‐based media produced increased viable counts in two strains out of five by a factor of four to seven. Maple sap‐based media also enhanced lactic acid production in three strains. Cetta sap was found to be more efficient than Pinnacle sap in stimulating lactic acid production and, was also found to be richer in various oligosaccharides. The amendment of the Pinnacle‐based medium with trisaccharides significantly stimulated Lactobacillus acidophilus AC‐10 to grow and produce lactic acid. Conclusions: Maple sap, particularly if rich in oligosaccharides, represents a good carbon source for the growth of lactobacilli and the production of lactic acid. Significance and Impact of the Study: This study provides a proof‐of‐concept, using maple sap as a substrate for lactic acid production and for the development of a nondairy probiotic drink.  相似文献   

20.
Carbohydrate metabolism of hepatocytes from starved Japanese quail   总被引:1,自引:0,他引:1  
Hepatocytes were isolated from livers of mature male and female starved Japanese quail (Coturnix coturnix japonica). The hepatocytes take up lactate and dihydroxyacetone extensively, and have a very high rate of glucose synthesis from these substrates. Fructose uptake and incorporation into glucose is much less. Pyruvate and alanine are taken up extensively, but form little glucose. There is negligible lipogenesis in cells of starved quail. Alanine increases up to 10-fold incorporation of 3HOH and 14C from several substrates into fatty acids, but it remains insignificant as compared to lipogenesis by cells of fed quail. There is little utilization of glucose, even in the presence of alanine, in marked contrast to hepatocytes from fed quail. However, glucose is phosphorylated at high rates, but most of the glucose 6-phosphate is recycled to glucose. There is a marked difference in the metabolism of polyols between the sexes. Glycerol, xylitol, and sorbitol are converted nearly quantitatively into glucose by hepatocytes of starved female quail. In cells of starved males, the uptake of polyols is higher, but conversion to glucose less efficient. In cells of starved male quail, alanine markedly stimulates the uptake of glycerol and xylitol and their conversion to glucose, but has no effect on sorbitol metabolism. In cells of female quail, alanine is without a significant effect on polyol metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号