共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Katsuno M Adachi H Doyu M Minamiyama M Sang C Kobayashi Y Inukai A Sobue G 《Nature medicine》2003,9(6):768-773
Spinal and bulbar muscular atrophy (SBMA) is an adult-onset motor neuron disease that affects males. It is caused by the expansion of a polyglutamine (polyQ) tract in androgen receptors. Female carriers are usually asymptomatic. No specific treatment has been established. Our transgenic mouse model carrying a full-length human androgen receptor with expanded polyQ has considerable gender-related motor impairment. This phenotype was abrogated by castration, which prevented nuclear translocation of mutant androgen receptors. We examined the effect of androgen-blockade drugs on our mouse model. Leuprorelin, a lutenizing hormone-releasing hormone (LHRH) agonist that reduces testosterone release from the testis, rescued motor dysfunction and nuclear accumulation of mutant androgen receptors in male transgenic mice. Moreover, leuprorelin treatment reversed the behavioral and histopathological phenotypes that were once caused by transient increases in serum testosterone. Flutamide, an androgen antagonist promoting nuclear translocation of androgen receptors, yielded no therapeutic effect. Leuprorelin thus seems to be a promising candidate for the treatment of SBMA. 相似文献
3.
Spinal and bulbar muscular atrophy (SBMA) is a late-onset motor neuron disease characterized by proximal muscle atrophy, weakness, contraction fasciculations, and bulbar involvement. Only males develop symptoms, while female carriers usually are asymptomatic. A specific treatment for SBMA has not been established. The molecular basis of SBMA is the expansion of a trinucleotide CAG repeat, which encodes the polyglutamine (polyQ) tract, in the first exon of the androgen receptor (AR) gene. The pathologic hallmark is nuclear inclusions (NIs) containing the mutant and truncated AR with expanded polyQ in the residual motor neurons in the brainstem and spinal cord as well as in some other visceral organs. Several transgenic (Tg) mouse models have been created for studying the pathogenesis of SBMA. The Tg mouse model carrying pure 239 CAGs under human AR promoter and another model carrying truncated AR with expanded CAGs show motor impairment and nuclear NIs in spinal motor neurons. Interestingly, Tg mice carrying full-length human AR with expanded polyQ demonstrate progressive motor impairment and neurogenic pathology as well as sexual difference of phenotypes. These models recapitulate the phenotypic expression observed in SBMA. The ligand-dependent nuclear localization of the mutant AR is found to be involved in the disease mechanism, and hormonal therapy is suggested to be a therapeutic approach applicable to SBMA. 相似文献
4.
Molecular and phenotypic reassessment of an infrequently used mouse model for spinal muscular atrophy 总被引:1,自引:0,他引:1
Rocky G. Gogliotti Suzan M. Hammond Cathleen Lutz Christine J. DiDonato 《Biochemical and biophysical research communications》2010,391(1):517-126
Proximal spinal muscular atrophy (SMA) results from loss of the survival motor neuron 1 (SMN1) gene, with retention of its nearly identical homolog, SMN2. There is a direct correlation between disease severity and SMN2 copy number. Mice do not have a Smn2 gene, and thus cannot naturally replicate the disorder. However, two murine models of SMA have been generated using SMN2-BAC transgenic mice bred onto a mutant Smn background. In these instances mice die shortly after birth, have variable phenotypes within the same litter, or completely correct the SMA phenotype. Both models have been imported to The Jackson Laboratory for distribution to the research community. To ensure that similar results are obtained after importation to The Jackson Laboratory to what was originally reported in the literature, we have begun a molecular and phenotypic evaluation of these mouse models. Here we report our findings for the SMA mouse model that has been deposited by the Li group from Taiwan. These mice, JAX stock number TJL-005058, are homozygous for the SMN2 transgene, Tg(SMN2)2Hung, and a targeted Smn allele that lacks exon 7, Smn1tm1Hung. Our findings are consistent with those reported originally for this line and clarify some of the original data. In addition, we have cloned and mapped the integration site for Tg(SMN2)2Hung to Chromosome 4, and provide a simple genotyping assay that is specific to the junction fragment. Finally, based upon the survival data from our genetic crosses, we suggest that this underused SMA model may be a useful compliment or alternative to the more commonly used “delta7” SMA mouse. We provide breeding schemes in which two genotypes of mice can be generated so that 50% of the litter will be SMA-like pups while 50% will be controls. 相似文献
5.
Schindler M Fabre C de Weille J Carreau S Mersel M Bakalara N 《Molecular endocrinology (Baltimore, Md.)》2012,26(7):1102-1116
As one of the nine hereditary neurodegenerative polyQ disorders, spinal and bulbar muscular atrophy (SBMA) results from a polyQ tract expansion in androgen receptor (AR). Although protein aggregates are the pathological hallmark of many neurodegenerative diseases, their direct role in the neurodegeneration is more and more questioned. To determine the early molecular mechanisms causing motor neuron degeneration in SBMA, we established an in vitro system based on the tetracycline-inducible expression of normal (AR20Q), the mutated, 51 glutamine-extended (AR51Q), or polyQ-deleted (AR0Q) AR in NSC34, a motor neuron-like cell line lacking endogenous AR. Although no intracellular aggregates were formed, the expression of the AR51Q leads to a loss of function characterized by reduced neurite outgrowth and to a toxic gain of function resulting in decreased cell viability. In this study, we show that both AR20Q and AR51Q are recruited to lipid rafts in response to testosterone stimulation. However, whereas testosterone induces the activation of the c-jun N-terminal kinase/c-jun pathway via membrane-associated AR20Q, it does not so in NSC34 expressing AR51Q. Phosphorylation of c-jun N-terminal kinase plays a crucial role in AR20Q-dependent survival and differentiation of NSC34. Moreover, c-jun protein levels decrease more slowly in AR20Q- than in AR51Q-expressing NSC34 cells. This is due to a rapid and transient inhibition of glycogen synthase kinase 3α occurring in a phosphatidylinositol 3-kinase-independent manner. Our results demonstrate that the deregulation of nongenomic AR signaling may be involved in SBMA establishment, opening new therapeutic perspectives. 相似文献
6.
Ligand promotes intranuclear inclusions in a novel cell model of spinal and bulbar muscular atrophy 总被引:5,自引:0,他引:5
Spinal and bulbar muscular atrophy (SBMA, Kennedy's disease) is one of a group of progressive neurodegenerative diseases resulting from a polyglutamine repeat expansion. In SBMA the polymorphic trinucleotide CAG repeat in exon 1 of the androgen receptor (AR) gene is increased, resulting in expansion of a polyglutamine tract. Patient autopsy material reveals neuronal intranuclear inclusions (NII) in affected regions that contain only amino-terminal epitopes of the AR. Cell models have previously been unable to produce intranuclear inclusions containing only a portion of the AR. We report here the creation of an inducible cell model of SBMA that reproduces this important characteristic of disease pathology. PC12 cells expressing highly expanded AR form ubiquitinated intranuclear inclusions containing amino-terminal epitopes of the AR as well as heat shock proteins. Inclusions appear as distinct granular electron-dense structures in the nucleus by immunoelectron microscopy. Dihydrotestosterone treatment of mutant AR-expressing cells results in increased inclusion load. This model mimics the formation of ubiquitinated intranuclear inclusions containing the amino-terminal portion of AR observed in patient tissue and reveals a role for ligand in the pathogenesis of SBMA. 相似文献
7.
Kennedy Disease/Spinal Bulbar Muscular Atrophy (KD/SBMA) is a progressive neurodegenerative disease caused by genetic polyglutamine expansion of the androgen receptor. We have recently found that overexpression of wildtype androgen receptor in skeletal muscle of transgenic mice results in a KD/SBMA phenotype. This surprising result challenges the orthodox view that KD/SBMA requires expression of polyglutamine expanded androgen receptor within motoneurons. Theories relating to the etiology of this disease drawn from studies of human patients, cellular and mouse models are considered with a special emphasis on potential myogenic contributions to as well as the molecular etiology of KD/SBMA. 相似文献
8.
Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy 总被引:1,自引:0,他引:1
Spinal muscular atrophy (SMA) is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7). In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs) in hindlimb muscles of SMNΔ7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a ~28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3-5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1)-positive synapses onto SMNΔ7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNΔ7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNΔ7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy. 相似文献
9.
Mo K Razak Z Rao P Yu Z Adachi H Katsuno M Sobue G Lieberman AP Westwood JT Monks DA 《PloS one》2010,5(9):e12922
Background
Emerging evidence implicates altered gene expression within skeletal muscle in the pathogenesis of Kennedy disease/spinal bulbar muscular atrophy (KD/SBMA). We therefore broadly characterized gene expression in skeletal muscle of three independently generated mouse models of this disease. The mouse models included a polyglutamine expanded (polyQ) AR knock-in model (AR113Q), a polyQ AR transgenic model (AR97Q), and a transgenic mouse that overexpresses wild type AR solely in skeletal muscle (HSA-AR). HSA-AR mice were included because they substantially reproduce the KD/SBMA phenotype despite the absence of polyQ AR.Methodology/Principal Findings
We performed microarray analysis of lower hindlimb muscles taken from these three models relative to wild type controls using high density oligonucleotide arrays. All microarray comparisons were made with at least 3 animals in each condition, and only those genes having at least 2-fold difference and whose coefficient of variance was less than 100% were considered to be differentially expressed. When considered globally, there was a similar overlap in gene changes between the 3 models: 19% between HSA-AR and AR97Q, 21% between AR97Q and AR113Q, and 17% between HSA-AR and AR113Q, with 8% shared by all models. Several patterns of gene expression relevant to the disease process were observed. Notably, patterns of gene expression typical of loss of AR function were observed in all three models, as were alterations in genes involved in cell adhesion, energy balance, muscle atrophy and myogenesis. We additionally measured changes similar to those observed in skeletal muscle of a mouse model of Huntington''s Disease, and to those common to muscle atrophy from diverse causes.Conclusions/Significance
By comparing patterns of gene expression in three independent models of KD/SBMA, we have been able to identify candidate genes that might mediate the core myogenic features of KD/SBMA. 相似文献10.
Mentis GZ Blivis D Liu W Drobac E Crowder ME Kong L Alvarez FJ Sumner CJ O'Donovan MJ 《Neuron》2011,69(3):453-467
To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes, illustrating the reversibility of these synaptic defects. Deafferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. 相似文献
11.
Georgiou I Sermon K Lissens W De Vos A Platteau P Lolis D Van Steirteghem A Liebaers I 《Human genetics》2001,108(6):494-498
X-linked spinal and bulbar muscular atrophy is characterized by adult onset motor neuron disease and results from a defect in the androgen receptor. The disease is caused by a dynamic mutation in the first exon of the androgen receptor gene, involving a CAG trinucleotide repeat. We have developed a single-cell polymerase chain reaction assay for the androgen receptor gene and describe the application of this assay for preimlantation genetic diagnosis (PGD) in a couple at risk, where the female partner is a carrier of 47 repeats. Diagnosis was based on the detection of both normal and expanded alleles. Allele dropout of the expanded allele was observed in only 1 of 25 lymphoblasts of the carrier and of a non-expanded allele in 1 of 20 research blastomeres tested before the actual PGD. One contraction of four repeats was also found in the carrier's lymphoblasts. Neither expansions nor contractions were observed in the blastomeres biopsied from 11 embryos. Two embryos were unaffected, eight were female carriers and one was an affected male embryo. 相似文献
12.
13.
Singh NN Seo J Ottesen EW Shishimorova M Bhattacharya D Singh RN 《Molecular and cellular biology》2011,31(5):935-954
Prevention of skipping of exon 7 during pre-mRNA splicing of Survival Motor Neuron 2 (SMN2) holds the promise for cure of spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Here, we report T-cell-restricted intracellular antigen 1 (TIA1) and TIA1-related (TIAR) proteins as intron-associated positive regulators of SMN2 exon 7 splicing. We show that TIA1/TIAR stimulate exon recognition in an entirely novel context in which intronic U-rich motifs are separated from the 5' splice site by overlapping inhibitory elements. TIA1 and TIAR are modular proteins with three N-terminal RNA recognition motifs (RRMs) and a C-terminal glutamine-rich (Q-rich) domain. Our results reveal that any one RRM in combination with a Q domain is necessary and sufficient for TIA1-associated regulation of SMN2 exon 7 splicing in vivo. We also show that increased expression of TIA1 counteracts the inhibitory effect of polypyrimidine tract binding protein, a ubiquitously expressed factor recently implicated in regulation of SMN exon 7 splicing. Our findings expand the scope of TIA1/TIAR in genome-wide regulation of alternative splicing under normal and pathological conditions. 相似文献
14.
ASC-J9 ameliorates spinal and bulbar muscular atrophy phenotype via degradation of androgen receptor
Yang Z Chang YJ Yu IC Yeh S Wu CC Miyamoto H Merry DE Sobue G Chen LM Chang SS Chang C 《Nature medicine》2007,13(3):348-353
Motor neuron degeneration resulting from the aggregation of the androgen receptor with an expanded polyglutamine tract (AR-polyQ) has been linked to the development of spinal and bulbar muscular atrophy (SBMA or Kennedy disease). Here we report that adding 5-hydroxy-1,7-bis(3,4-dimethoxyphenyl)-1,4,6-heptatrien-3-one (ASC-J9) disrupts the interaction between AR and its coregulators, and also increases cell survival by decreasing AR-polyQ nuclear aggregation and increasing AR-polyQ degradation in cultured cells. Intraperitoneal injection of ASC-J9 into AR-polyQ transgenic SBMA mice markedly improved disease symptoms, as seen by a reduction in muscular atrophy. Notably, unlike previous approaches in which surgical or chemical castration was used to reduce SBMA symptoms, ASC-J9 treatment ameliorated SBMA symptoms by decreasing AR-97Q aggregation and increasing VEGF164 expression with little change of serum testosterone. Moreover, mice treated with ASC-J9 retained normal sexual function and fertility. Collectively, our results point to a better therapeutic and preventative approach to treating SBMA, by disrupting the interaction between AR and AR coregulators. 相似文献
15.
The monogenetic disease Spinal Muscular Atrophy (SMA) is characterized by a progressive loss of motoneurons leading to muscle weakness and atrophy due to severe reduction of the Survival of Motoneuron (SMN) protein. Several models of SMA show deficits in neurite outgrowth and maintenance of neuromuscular junction (NMJ) structure. Survival of motoneurons, axonal outgrowth and formation of NMJ is controlled by neurotrophic factors such as the Fibroblast Growth Factor (FGF) system. Besides their classical role as extracellular ligands, some FGFs exert also intracellular functions controlling neuronal differentiation. We have previously shown that intracellular FGF-2 binds to SMN and regulates the number of a subtype of nuclear bodies which are reduced in SMA patients. In the light of these findings, we systematically analyzed the FGF-system comprising five canonical receptors and 22 ligands in a severe mouse model of SMA. In this study, we demonstrate widespread alterations of the FGF-system in both muscle and spinal cord. Importantly, FGF-receptor 1 is upregulated in spinal cord at a pre-symptomatic stage as well as in a mouse motoneuron-like cell-line NSC34 based model of SMA. Consistent with that, phosphorylations of FGFR-downstream targets Akt and ERK are increased. Moreover, ERK hyper-phosphorylation is functionally linked to FGFR-1 as revealed by receptor inhibition experiments. Our study shows that the FGF system is dysregulated at an early stage in SMA and may contribute to the SMA pathogenesis. 相似文献
16.
Spinal Muscular Atrophy is a recessive genetic disease and affects lower motor neurones and muscle tissue. A single gene is disrupted in SMA: SMN1 activity is abolished but a second copy of the gene (SMN2) provides limited activity. While the SMN protein has been shown to function in the assembly of RNA-protein complexes, it is unclear how the overall reduction in SMN activity specifically results in the neuromuscular phenotypes. Similar to humans, reduced smn activity in the fly causes earliest phenotypes in neuromuscular tissues. To uncover the effects of reduced SMN activity, we have studied gene expression in control and diseased fly tissues using whole genome micro-arrays. A number of gene expression changes are recovered and independently validated. Identified genes show trends in their predicted function: several are consistent with the function of SMN, in addition some uncover novel pathways. This and subsequent genetic analysis in the fly indicates some of the identified genes could be taken for further studies as potential drug targets for SMA and other neuromuscular disorders. 相似文献
17.
Hong Liu Ariane Beauvais Adam N. Baker Catherine Tsilfidis Rashmi Kothary 《Developmental neurobiology》2011,71(2):153-169
The eye is an excellent model for the study of neuronal development and pathogenesis of central nervous system disorders because of its relative ease of accessibility and the well‐characterized cellular makeup. We have used this model to study spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease caused by deletions or mutations in the survival of motor neuron 1 gene (SMN1). We have investigated the expression pattern of mouse Smn mRNA and protein in the neural retina and the optic nerve of wild type mice. Smn protein is present in retinal ganglion cells and amacrine cells within the neural retina as well as in glial cells in the optic nerve. Histopathological analysis in phenotype stage SMA mice revealed that Smn deficiency is associated with a reduction in ganglion cell axon and glial cell number in the optic nerve, as well as compromised cellular processes and altered organization of neurofilaments in the neural retina. Whole mount preparation and retinal neuron primary culture provided further evidence of abnormal synaptogenesis and neurofilament accumulation in the neurites of Smn‐deficient retinal neurons. A subset of amacrine cells is absent, in a cell‐autonomous fashion, in the retina of SMA mice. Finally, the retinas of SMA mice have altered electroretinograms. Altogether, our study has demonstrated defects in axodendritic outgrowth and cellular composition in Smn‐depleted retinal neurons, indicating a role for Smn in neuritogenesis and neurogenesis, and providing us with an insight into pathogenesis of SMA. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 153‐169, 2011 相似文献
18.
19.
Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease. Here, we developed a closely representative cell model of SMA by knocking down the disease-determining gene, survival motor neuron (SMN), in human embryonic stem cells (hESCs). Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons. Notably, the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated. Furthermore, these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-Δ7 (lacking exon 7) knockdown, and were specific to spinal motor neurons. Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes, including specific axonal defects and motor neuron loss. Finally, knockdown of SMN-FL led to excessive mitochondrial oxidative stress in human motor neuron progenitors. The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine, a potent antioxidant, which prevented disease-related apoptosis and subsequent motor neuron death. Thus, we report here the successful establishment of an hESC-based SMA model, which exhibits disease gene isoform specificity, cell type specificity, and phenotype reversibility. Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA. 相似文献
20.
Chang HC Dimlich DN Yokokura T Mukherjee A Kankel MW Sen A Sridhar V Fulga TA Hart AC Van Vactor D Artavanis-Tsakonas S 《PloS one》2008,3(9):e3209
Spinal Muscular Atrophy (SMA), a recessive hereditary neurodegenerative disease in humans, has been linked to mutations in the survival motor neuron (SMN) gene. SMA patients display early onset lethality coupled with motor neuron loss and skeletal muscle atrophy. We used Drosophila, which encodes a single SMN ortholog, survival motor neuron (Smn), to model SMA, since reduction of Smn function leads to defects that mimic the SMA pathology in humans. Here we show that a normal neuromuscular junction (NMJ) structure depends on SMN expression and that SMN concentrates in the post-synaptic NMJ regions. We conducted a screen for genetic modifiers of an Smn phenotype using the Exelixis collection of transposon-induced mutations, which affects approximately 50% of the Drosophila genome. This screen resulted in the recovery of 27 modifiers, thereby expanding the genetic circuitry of Smn to include several genes not previously known to be associated with this locus. Among the identified modifiers was wishful thinking (wit), a type II BMP receptor, which was shown to alter the Smn NMJ phenotype. Further characterization of two additional members of the BMP signaling pathway, Mothers against dpp (Mad) and Daughters against dpp (Dad), also modify the Smn NMJ phenotype. The NMJ defects caused by loss of Smn function can be ameliorated by increasing BMP signals, suggesting that increased BMP activity in SMA patients may help to alleviate symptoms of the disease. These results confirm that our genetic approach is likely to identify bona fide modulators of SMN activity, especially regarding its role at the neuromuscular junction, and as a consequence, may identify putative SMA therapeutic targets. 相似文献