首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The uptake and accumulation of the potent osmolytes glycine betaine and carnitine enable the food-borne pathogen Listeria monocytogenes to proliferate in environments of elevated osmotic stress, often rendering salt-based food preservation inadequate. To date, three osmolyte transport systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and a carnitine transporter OpuC. We investigated the specificity of each transporter towards each osmolyte by creating mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state osmolyte accumulation data together with growth rate experiments demonstrated that osmotically activated glycine betaine transport is readily and effectively mediated by Gbu and BetL and to a lesser extent by OpuC. Osmotically stimulated carnitine transport was demonstrated for OpuC and Gbu regardless of the nature of stressing salt. BetL can mediate weak carnitine uptake in response to NaCl stress but not KCl stress. No other transporter in L. monocytogenes 10403S appears to be involved in osmotically stimulated transport of either osmolyte, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown under elevated osmotic stress.  相似文献   

2.
Listeria monocytogenes is a pathogenic bacterium that can grow at low temperatures and elevated osmolarity. The organism survives these stresses by the intracellular accumulation of osmolytes: low-molecular-weight organic compounds which exert a counterbalancing force. The primary osmolyte in L. monocytogenes is glycine betaine, which is accumulated from the environment via two transport systems: glycine betaine porter I, an Na+-glycine betaine symporter; and glycine betaine porter II, an ATP-dependent transporter. The biochemical characteristics of glycine betaine porter I were investigated in a mutant strain (LTG59) lacking the ATP-dependent transporter. At 4% NaCl, glycine betaine uptake in LTG59 was about fivefold lower than in strain DP-L1044, which has both transporters, indicating that the ATP-dependent transporter is the primary means by which glycine betaine enters the cell. In the absence of osmotic stress, cold-activated uptake by both transporters was most rapid between 7 and 12°C, but a larger fraction of the total uptake was via the ATP-dependent transporter than was observed under salt-stressed conditions. Twelve glycine betaine analogs were tested for their ability to inhibit glycine betaine uptake and growth of stressed cultures. Carnitine, dimethylglycine, and γ-butyrobetaine appear to inhibit the ATP-dependent transporter, while trigonelline and triethylglycine primarily inhibit glycine betaine porter I. Triethylglycine was also able to retard the growth of osmotically stressed L. monocytogenes grown in the presence of glycine betaine.  相似文献   

3.
The food-borne pathogen Listeria monocytogenes proliferates at refrigeration temperatures, rendering refrigeration ineffective in the preservation of Listeria-contaminated foods. The uptake and intracellular accumulation of the potent compatible solutes glycine betaine and carnitine has been shown to be a key mediator of the pathogen's cold-tolerant phenotype. To date, three compatible solute systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and the carnitine transporter OpuC. We investigated the specificity of each transporter towards each compatible solute at 4°C by examining mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state compatible solute accumulation data together with growth rate experiments demonstrated that under cold stress glycine betaine transport is primarily mediated by Gbu and that Gbu-mediated betaine uptake results in significant growth stimulation of chill-stressed cells. BetL and OpuC can serve as minor porters for the uptake of betaine, and their action is capable of providing a small degree of cryotolerance. Under cold stress, carnitine transport occurs primarily through OpuC and results in a high level of cryoprotection. Weak carnitine transport occurs via Gbu and BetL, conferring correspondingly weak cryoprotection. No other transporter in L. monocytogenes 10403S appears to be involved in transport of either compatible solute at 4°C, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown at that temperature.  相似文献   

4.
The food-borne pathogen Listeria monocytogenes is notable for its ability to grow under osmotic stress and at low temperatures. It is known to accumulate the compatible solutes glycine betaine and carnitine from the medium in response to osmotic or chill stress, and this accumulation confers tolerance to these stresses. Two permeases that transport glycine betaine have been identified, both of which are activated by hyperosmotic stress and one of which is activated by low temperature. An osmotically activated transporter for carnitine, OpuC, has also been identified. We have isolated a Tn917-LTV3 insertional mutant that could not be rescued from hyperosmotic stress by exogenous carnitine. The mutant, LTS4a, grew indistinguishably from a control strain (DP-L1044) in the absence of stress or in the absence of carnitine, but DP-L1044 grew substantially faster under osmotic or chill stress in the presence of carnitine. LTS4a was found to be strongly impaired in KCl-activated as well as chill-activated carnitine transport. 13C nuclear magnetic resonance spectroscopy of perchloric acid extracts showed that accumulation of carnitine by LTS4a was negligible under all conditions tested. Direct sequencing of LTS4a genomic DNA with a primer based on Tn917-LTV3 yielded a 487-bp sequence, which allowed us to determine that the opuC operon had been interrupted by the transposon. It can be concluded that opuC encodes a carnitine transporter that can be activated by either hyperosmotic stress or chill and that the transport system plays a significant role in the tolerance of L. monocytogenes to both forms of environmental stress.  相似文献   

5.
The ability of the gram-positive, food-borne pathogen Listeria monocytogenes to tolerate environments of elevated osmolarity and reduced temperature is due in part to the transport and accumulation of the osmolyte glycine betaine. Previously we showed that glycine betaine transport was the result of Na+-glycine betaine symport. In this report, we identify a second glycine betaine transporter from L. monocytogenes which is osmotically activated but does not require a high concentration of Na+ for activity. By using a pool of Tn917-LTV3 mutants, a salt- and chill-sensitive mutant which was also found to be impaired in its ability to transport glycine betaine was isolated. DNA sequence analysis of the region flanking the site of transposon insertion revealed three open reading frames homologous to opuA from Bacillus subtilis and proU from Escherichia coli, both of which encode glycine betaine transport systems that belong to the superfamily of ATP-dependent transporters. The three open reading frames are closely spaced, suggesting that they are arranged in an operon. Moreover, a region upstream from the first reading frame was found to be homologous to the promoter regions of both opuA and proU. One unusual feature not shared with these other two systems is that the start codons for two of the open reading frames in L. monocytogenes appear to be TTG. That glycine betaine uptake is nearly eliminated in the mutant strain when it is assayed in the absence of Na+ is an indication that only the ATP-dependent transporter and the Na+-glycine betaine symporter occur in L. monocytogenes.  相似文献   

6.
The food-borne pathogen Listeria monocytogenes grows actively under high-salt conditions by accumulating compatible solutes such as glycine betaine and carnitine from the medium. We report here that the dominant transport system for glycine betaine uptake, the Gbu porter, may act as a secondary uptake system for carnitine, with a K(m) of 4 mM for carnitine uptake and measurable uptake at carnitine concentrations as low as 10 microM. This porter has a K(m) for glycine betaine uptake of about 6 micro M. The dedicated carnitine porter, OpuC, has a K(m) for carnitine uptake of 1 to 3 microM and a V(max) of approximately 15 nmol/min/mg of protein. Mutants lacking either opuC or gbu were used to study the effects of four carnitine analogs on growth and uptake of osmolytes. In strain DP-L1044, which had OpuC and the two glycine betaine porters Gbu and BetL, triethylglycine was most effective in inhibiting growth in the presence of glycine betaine, but trigonelline was best at inhibiting growth in the presence of carnitine. Carnitine uptake through OpuC was inhibited by gamma-butyrobetaine. Dimethylglycine inhibited both glycine betaine and carnitine uptake through the Gbu porter. Carnitine uptake through the Gbu porter was inhibited by triethylglycine. Glycine betaine uptake through the BetL porter was strongly inhibited by trigonelline and triethylglycine. These results suggest that it is possible to reduce the growth of L. monocytogenes under osmotically stressful conditions by inhibiting glycine betaine and carnitine uptake but that to do so, multiple uptake systems must be affected.  相似文献   

7.
Aims: To investigate the effect of glycine betaine (GB) on the survival of Listeria monocytogenes on leaf surfaces under low relative humidity (RH). Methods and Results: The addition of GB (≥25 mmol l?1) improved the survival of L. monocytogenes under low RH on parsley leaves, thus suggesting that GB can improve the tolerance of L. monocytogenes to desiccation. Ten times less GB was needed to improve L. monocytogenes survival under low RH on nonbiological surfaces compared with parsley leaves, suggesting that, on the leaf surface, L. monocytogenes may have to compete for the available GB with autochthonous bacteria and/or the plant itself. Wild type and mutants carrying deletions in the three GB uptake systems, BetL, Gbu and OpuC, behaved similarly with and without added GB on parsley leaves (P > 0·05). In addition, preaccumulation of GB, triggered by osmotic stress prior to inoculation, failed to improve survival under low RH compared with osmotic stress without GB accumulation. Conclusions: Exogenous GB had a protective effect on L. monocytogenes cells from desiccation during survival on parsley leaves. This effect was independent of intracellular GB accumulation by the known uptake systems. Significance and Impact of the Study: Presence of GB could improve the survival of L. monocytogenes to desiccation on leaf surfaces and nonbiological surfaces.  相似文献   

8.
The trimethylammonium compound glycine betaine (N,N,N-trimethylglycine) can be accumulated to high intracellular concentrations, conferring enhanced osmo- and cryotolerance upon Listeria monocytogenes. We report the identification of betL, a gene encoding a glycine betaine uptake system in L. monocytogenes, isolated by functional complementation of the betaine uptake mutant Escherichia coli MKH13. The betL gene is preceded by a consensus ςB-dependent promoter and is predicted to encode a 55-kDa protein (507 amino acid residues) with 12 transmembrane regions. BetL exhibits significant sequence homologies to other glycine betaine transporters, including OpuD from Bacillus subtilis (57% identity) and BetP from Corynebacterium glutamicum (41% identity). These high-affinity secondary transporters form a subset of the trimethylammonium transporter family specific for glycine betaine, whose substrates possess a fully methylated quaternary ammonium group. The observed Km value of 7.9 μM for glycine betaine uptake after heterologous expression of betL in E. coli MKH13 is consistent with values obtained for L. monocytogenes in other studies. In addition, a betL knockout mutant which is significantly affected in its ability to accumulate glycine betaine in the presence or absence of NaCl has been constructed in L. monocytogenes. This mutant is also unable to withstand concentrations of salt as high as can the BetL+ parent, signifying the role of the transporter in Listeria osmotolerance.  相似文献   

9.
R Ko  L T Smith    G M Smith 《Journal of bacteriology》1994,176(2):426-431
Listeria monocytogenes is a gram-positive food-borne pathogen that is notably resistant to osmotic stress and can grow at refrigerator temperatures. These two characteristics make it an insidious threat to public health. Like several other organisms, L. monocytogenes accumulates glycine betaine, a ubiquitous and effective osmolyte, intracellularly when grown under osmotic stress. However, it also accumulates glycine betaine when grown under chill stress at refrigerator temperatures. Exogenously added glycine betaine enhances the growth rate of stressed but not unstressed cells, i.e., it confers both osmotolerance and cryotolerance. Both salt-stimulated and cold-stimulated accumulation of glycine betaine occur by transport from the medium rather than by biosynthesis. Direct measurement of glycine betaine uptake shows that cells transport betaine 200-fold faster at high salt concentration (4% NaCl) than without added salt and 15-fold faster at 7 than at 30 degrees C. The kinetics of glycine betaine transport suggest that the two transport systems are indistinguishable in terms of affinity for betaine and may be the same. Hyperosmotic shock and cold shock experiments suggest the transport system(s) to be constitutive; activation was not blocked by chloramphenicol. A cold-activated transport system is a novel observation and has intriguing implications concerning the physical state of the cell membrane at low temperature.  相似文献   

10.
The uptake and degradation of nanomolar levels of [methyl-14C]choline in estuarine water samples and in seawater filtrate cultures composed mainly of natural free-living bacteria was studied. Uptake of [14C]choline exhibited Michaelis-Menten kinetics, with Kt + Sn values of 1.7 to 2.9 nM in filtrate cultures and 1.7 to 4.1 nM in estuarine-water samples. Vmax values ranged from 0.5 to 3.3 nM · h−1. The uptake system for choline in natural microbial assemblages therefore displays very high affinity and appears able to scavenge this compound at the concentrations expected in seawater. Uptake of choline was inhibited by some natural structural analogs and p-chloromercuribenzoate, indicating that the transporter may be multifunctional and may involve a thiol binding site. When 11 nM [14C]choline was added to water samples, a significant fraction (>50%) of the methyl carbon was respired to CO2 in incubations lasting 10 to 53 h. Cells taking up [14C]choline produced [14C]glycine betaine ([14C]GBT), and up to 80% of the radioactivity retained by cells was in the form of GBT, a well-known osmolyte. Alteration of the salinity in filtrate cultures affected the relative proportion of [14C]choline degraded or converted to [14C]GBT, without substantially affecting the total metabolism of choline. Increasing the salinity from 14 to 25 or 35 ppt caused more [14C]GBT to be produced from choline but less 14CO2 to be produced than in the controls. Lowering the salinity to 7 ppt decreased [14C]GBT production and increased 14CO2 production slightly. Intracellular accumulations of [14C]GBT in the salt-stressed cultures were osmotically significant (34 mM). Choline may be used as an energy substrate by estuarine bacteria and may also serve as a precursor of the osmoprotectant GBT, particularly as bacteria are mixed into higher-salinity waters.  相似文献   

11.
The naturally occurring compatible solutes betaine and L-carnitine allow the food-borne pathogen Listeria monocytogenes to adjust to environments of high osmotic strength. Previously, it was demonstrated that L. monocytogenes possesses an ATP-dependent L-carnitine transporter (A. Verheul, F. M. Rombouts, R. R. Beumer, and T. Abee, J. Bacteriol. 177:3205-3212, 1995). The present study reveals that betaine and L-carnitine are taken up by separate highly specific transport systems and support a secondary transport mechanism for betaine uptake in L. monocytogenes. The initial uptake rates of betaine and L-carnitine are not influenced by an osmotic upshock, but the duration of transport of both osmolytes is directly related to the osmotic strength of the medium. Regulation of uptake of both betaine and L-carnitine is subject to inhibition by preaccumulated solute. Internal betaine inhibits not only transport of external betaine but also that of L-carnitine and, similarly, internal L-carnitine inhibits transport of both betaine and L-carnitine. The inhibition is alleviated upon osmotic upshock, which suggests that alterations in membrane structure are transmitted to the allosteric binding sites for betaine and L-carnitine of both transporters at the inner surface of the membrane. Upon osmotic downshock, betaine and L-carnitine are rapidly released by L. monocytogenes as a consequence of activation of a channel-like activity. The osmolyte-sensing mechanism described is new and is consistent with various unexplained observations of osmoregulation in other bacteria.  相似文献   

12.
AIMS: To establish the relative importance of the osmo- and cryoprotective compounds glycine betaine and carnitine, and their transporters, for listerial growth and survival, in foods and during infection. METHODS AND RESULTS: A set of Listeria monocytogenes mutants with single, double and triple mutations in the genes encoding the principal betaine and carnitine uptake systems (gbu, betL and opuC, respectively) was used to determine the specific contribution of each transporter to listerial growth and survival. Food models were chosen to represent high-risk foods of plant and animal origin i.e. coleslaw and frankfurters, which have previously been linked to major human outbreaks of listeriosis. BALB/c mice were used as an in vivo model of infection. Interestingly, while betaine appeared to confer most protection in foods, the hierarchy of transporter importance differs depending on the food type: Gbu>BetL>OpuC for coleslaw, as opposed to Gbu>OpuC>BetL in frankfurters. By contrast in the animal model, OpuC and thus carnitine, appears to play the dominant role, with the remaining systems contributing little to the infection process. CONCLUSIONS: This study demonstrates that the individual contribution of each system appears dependent on the immediate environment. In foods Gbu appears to play the dominant role, while during infection OpuC is most important. SIGNIFICANCE AND IMPACT OF THE STUDY: It is envisaged that this information may ultimately facilitate the design of effective control measures specifically targeting this pathogen in foods and during infection.  相似文献   

13.
The role of glycine betaine and choline in osmoprotection of various Rhizobium, Sinorhizobium, Mesorhizobium, Agrobacterium, and Bradyrhizobium reference strains which display a large variation in salt tolerance was investigated. When externally provided, both compounds enhanced the growth of Rhizobium tropici, Sinorhizobium meliloti, Sinorhizobium fredii, Rhizobium galegae, Agrobacterium tumefaciens, Mesorhizobium loti, and Mesorhizobium huakuii, demonstrating their utilization as osmoprotectants. However, both compounds were inefficient for the most salt-sensitive strains, such as Rhizobium leguminosarum (all biovars), Agrobacterium rhizogenes, Rhizobium etli, and Bradyrhizobium japonicum. Except for B. japonicum, all strains exhibit transport activity for glycine betaine and choline. When the medium osmolarity was raised, choline uptake activity was inhibited, whereas glycine betaine uptake was either increased in R. leguminosarum and S. meliloti or, more surprisingly, reduced in R. tropici, S. fredii, and M. loti. The transport of glycine betaine was increased by growing the cells in the presence of the substrate. With the exception of B. japonicum, all strains were able to use glycine betaine and choline as sole carbon and nitrogen sources. This catabolic function, reported for only a few soil bacteria, could increase competitiveness of rhizobial species in the rhizosphere. Choline dehydrogenase and betaine-aldehyde dehydrogenase activities were present in the cells of all strains with the exception of M. huakuii and B. japonicum. The main physiological role of glycine betaine in the family Rhizobiaceae seems to be as an energy source, while its contribution to osmoprotection is restricted to certain strains.  相似文献   

14.
The success of Listeria monocytogenes as a food-borne pathogen owes much to its ability to survive a variety of stresses, both in the food environment and, after ingestion, within the animal host. Growth at high salt concentrations is attributed mainly to the accumulation of organic solutes such as glycine betaine and carnitine. We characterized L. monocytogenes LO28 strains with single, double, and triple deletions in the osmolyte transport systems BetL, Gbu, and OpuC. When single deletion mutants were tested, Gbu was found to have the most drastic effect on the rate of growth in brain heart infusion (BHI) broth with 6% added NaCl. The highest reduction in growth rate was found for the triple mutant LO28BCG (DeltabetL DeltaopuC Deltagbu), although the mutant was still capable of growth under these adverse conditions. In addition, we analyzed the growth and survival of this triple mutant in an animal (murine) model. LO28BCG showed a significant reduction in its ability to cause systemic infection following peroral coinoculation with the wild-type parent. Altering OpuC alone resulted in similar effects (R. D. Sleator, J. Wouters, C. G. M. Gahan, T. Abee, and C. Hill, Appl. Environ. Microbiol. 67:2692-2698, 2001), leading to the assumption that OpuC may play an important role in listerial pathogenesis. Analysis of the accumulation of osmolytes revealed that betaine is accumulated up to 300 micro mol/g (dry weight) when grown in BHI broth plus 6% NaCl whereas no carnitine accumulation could be detected. Radiolabeled-betaine uptake studies revealed an inability of BGSOE (DeltabetL Deltagbu) and LO28BCG to transport betaine. Indeed, for LO28BCG, no accumulated betaine was found, but carnitine was accumulated in this strain up to 600 micro mol/g (dry weight) of cells, indicating the presence of a possible fourth osmolyte transporter.  相似文献   

15.
The success of Listeria monocytogenes as a food-borne pathogen owes much to its ability to survive a variety of stresses, both in the food environment and, after ingestion, within the animal host. Growth at high salt concentrations is attributed mainly to the accumulation of organic solutes such as glycine betaine and carnitine. We characterized L. monocytogenes LO28 strains with single, double, and triple deletions in the osmolyte transport systems BetL, Gbu, and OpuC. When single deletion mutants were tested, Gbu was found to have the most drastic effect on the rate of growth in brain heart infusion (BHI) broth with 6% added NaCl. The highest reduction in growth rate was found for the triple mutant LO28BCG (ΔbetL ΔopuC Δgbu), although the mutant was still capable of growth under these adverse conditions. In addition, we analyzed the growth and survival of this triple mutant in an animal (murine) model. LO28BCG showed a significant reduction in its ability to cause systemic infection following peroral coinoculation with the wild-type parent. Altering OpuC alone resulted in similar effects (R. D. Sleator, J. Wouters, C. G. M. Gahan, T. Abee, and C. Hill, Appl. Environ. Microbiol. 67:2692-2698, 2001), leading to the assumption that OpuC may play an important role in listerial pathogenesis. Analysis of the accumulation of osmolytes revealed that betaine is accumulated up to 300 μmol/g (dry weight) when grown in BHI broth plus 6% NaCl whereas no carnitine accumulation could be detected. Radiolabeled-betaine uptake studies revealed an inability of BGSOE (ΔbetL Δgbu) and LO28BCG to transport betaine. Indeed, for LO28BCG, no accumulated betaine was found, but carnitine was accumulated in this strain up to 600 μmol/g (dry weight) of cells, indicating the presence of a possible fourth osmolyte transporter.  相似文献   

16.
17.
Previous experiments have evidenced that calcium is functionallyimplicated in glycine uptake by pulvinar motor cells of Mimosapudica L. The present data show that compounds having anticalmodulinproperties, compound 48/80 and the sulfonamide W-7, inhibitedthe amino acid uptake suggesting that a step in this processmay be regulated by calmodulin. H+ excretion by the tissuesand transmembrane potential of the motor cells were not modifiedby these compounds, thus showing that the inhibition of aminoacid uptake was not an indirect consequence of a decrease inthe proton motive force energizing the glycine H+ cotransport.Therefore, the data argue for the implication of calmodulinin a specific Ca2+-regulated reaction. (Received March 2, 1994; Accepted May 6, 1994)  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号