首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CONTEXT: The transgenic human islet amyloid polypeptide (HIP) rat model of type 2 diabetes mellitus (T2DM) parallels the functional and structural changes in human islets with T2DM. OBJECTIVE: The transmission electron microscope (TEM) was utilized to observe the ultrastructural changes in islet microcirculation. METHODS: Pancreatic tissue from male Sprague Dawley rats (2, 4, 8, 14 months) were used as controls (SDC) and compared to the 2-, 4-, 8- and 14-month-old HIP rat models. RESULTS: The 2-month-old HIP model demonstrated no islet or microcirculation remodeling changes when compared to the SDC models. The 4-month-old HIP model demonstrated significant pericapillary amyloid deposition and diminution of pericyte foot processes as compared to the SDC models. The 8-month-old model demonstrated extensive islet amyloid deposition associated with pericyte and beta-cell apoptosis when compared with SDC. The 14-month-old HIP model demonstrated a marked reduction of beta-cells and intra-islet capillaries with near complete replacement of islets by amyloidoses. Increased cellularity in the region of the islet exocrine interface was noted in the 4- to 14-month-old HIP models as compared to SDC. In contrast to intra-islet capillary rarefaction there was noticeable angiogenesis in the islet exocrine interface. Pericytes seemed to be closely associated with collagenosis, intra-islet adipogenesis and angiogenesis in the islet exocrine interface. CONCLUSION: The above novel findings regarding the microcirculation and pericytes could assist researchers and clinicians in a better morphological understanding of T2DM and lead to new strategies for prevention and treatment of T2DM.  相似文献   

2.
Islet amyloid polypeptide (IAPP, amylin) is secreted from pancreatic islet beta-cells and converted to amyloid deposits in type 2 diabetes. Conversion from soluble monomer, IAPP 1-37, to beta-sheet fibrils involves changes in the molecular conformation, cellular biochemistry and diabetes-related factors. In addition to the recognised amyloidogenic region, human IAPP (hIAPP) 20-29, the peptides human or rat IAPP 30-37 and 8-20, assume beta-conformation and form fibrils. These three amyloidogenic regions of hIAPP can be modelled as a folding intermediate with an intramolecular beta-sheet. A hypothesis is proposed for co-secretion of proIAPP with proinsulin in diabetes and formation of a 'nidus' adjacent to islet capillaries for subsequent accumulation of secreted IAPP to form the deposit. Although intracellular fibrils have been identified in experimental systems, extracellular deposition predominates in animal models and man. Extensive fibril accumulations replace islet cells. The molecular species of IAPP that is cytotoxic remains controversial. However, since fibrils form invaginations in cell membranes, small non-toxic IAPP fibrillar or amorphous accumulations could affect beta-cell stimulus-secretion coupling. The level of production of hIAPP is important but not a primary factor in islet amyloidosis; there is little evidence for inappropriate IAPP hypersecretion in type 2 diabetes and amyloid formation is generated in transgenic mice overexpressing the gene for human IAPP only against a background of obesity. Animal models of islet amyloidosis suggest that diabetes is induced by the deposits whereas in man, fibril formation appears to result from diabetes-associated islet dysfunction. Islet secretory failure results from progressive amyloidosis which provides a target for new therapeutic interventions.  相似文献   

3.
Blood glucose concentrations are maintained by insulin secreted from beta-cells located in the islets of Langerhans. There are approximately 2000 beta-cells per islet, and approximately one million islets of Langerhans scattered throughout the pancreas. The islet in type 2 diabetes mellitus (T2D) has deficient beta-cell mass due to increased beta-cell apoptosis and islet amyloid derived from islet amyloid polypeptide (IAPP). Accumulating evidence implicates toxic IAPP oligomers in the mediation of beta-cell apoptosis in T2D. Humans, monkeys, and cats express an amyloidogenic toxic form of IAPP and spontaneously develop diabetes characterized by islet amyloid deposits. However, longitudinal studies of islet pathology in humans are impossible, and studies in nonhuman primates and cats are costly and impractical. Rodent IAPP is not amyloidogenic, thus commonly used rodent models of diabetes do not recapitulate islet pathology in humans. To investigate the diabetogenic role of human IAPP (h-IAPP), several mouse models and, more recently, a rat model transgenic for h-IAPP have been developed. Studies in these models have revealed that the toxic effect of h-IAPP on beta-cell apoptosis demonstrates a threshold-dependent effect. Specifically, increasing h-IAPP transgene expression by breeding or induction of insulin resistance leads to increased beta-cell apoptosis and diabetes. These transgenic rodent models for h-IAPP provide an opportunity to elucidate the mechanisms responsible for h-IAPP-induced beta-cell apoptosis further and to test novel approaches to the prevention and treatment of T2D.  相似文献   

4.
Deposition of islet amyloid polypeptide (IAPP) as amyloid is a pathological hallmark of the islet in type 2 diabetes, which is toxic to β-cells. We previously showed that the enzyme neprilysin reduces islet amyloid deposition and thereby reduces β-cell apoptosis, by inhibiting fibril formation. Two other enzymes, matrix metalloproteinase (MMP)-2 and MMP-9, are extracellular gelatinases capable of degrading another amyloidogenic peptide, Aβ, the constituent of amyloid deposits in Alzheimer disease. We therefore investigated whether MMP-2 and MMP-9 play a role in reducing islet amyloid deposition. MMP-2 and MMP-9 mRNA were present in mouse islets but only MMP-9 activity was detectable. In an islet culture model where human IAPP (hIAPP) transgenic mouse islets develop amyloid but nontransgenic islets do not, a broad spectrum MMP inhibitor (GM6001) and an MMP-2/9 inhibitor increased amyloid formation and the resultant β-cell apoptosis. In contrast, a specific MMP-2 inhibitor had no effect on either amyloid deposition or β-cell apoptosis. Mass spectrometry demonstrated that MMP-9 degraded amyloidogenic hIAPP but not nonamyloidogenic mouse IAPP. Thus, MMP-9 constitutes an endogenous islet protease that limits islet amyloid deposition and its toxic effects via degradation of hIAPP. Because islet MMP-9 mRNA levels are decreased in type 2 diabetic subjects, islet MMP-9 activity may also be decreased in human type 2 diabetes, thereby contributing to increased islet amyloid deposition and β-cell loss. Approaches to increase islet MMP-9 activity could reduce or prevent amyloid deposition and its toxic effects in type 2 diabetes.  相似文献   

5.
Type 2 diabetes mellitus (T2DM) is complex metabolic disease that arises as a consequence of interactions between genetic predisposition and environmental triggers. One recently described environmental trigger associated with development of T2DM is disturbance of circadian rhythms due to shift work, sleep loss, or nocturnal lifestyle. However, the underlying mechanisms behind this association are largely unknown. To address this, the authors examined the metabolic and physiological consequences of experimentally controlled circadian rhythm disruption in wild-type (WT) Sprague Dawley and diabetes-prone human islet amyloid polypeptide transgenic (HIP) rats: a validated model of T2DM. WT and HIP rats at 3 months of age were exposed to 10 weeks of either a normal light regimen (LD: 12:12-h light/dark) or experimental disruption in the light-dark cycle produced by either (1) 6-h advance of the light cycle every 3 days or (2) constant light protocol. Subsequently, blood glucose control, beta-cell function, beta-cell mass, turnover, and insulin sensitivity were examined. In WT rats, 10 weeks of experimental disruption of circadian rhythms failed to significantly alter fasting blood glucose levels, glucose-stimulated insulin secretion, beta-cell mass/turnover, or insulin sensitivity. In contrast, experimental disruption of circadian rhythms in diabetes-prone HIP rats led to accelerated development of diabetes. The mechanism subserving early-onset diabetes was due to accelerated loss of beta-cell function and loss of beta-cell mass attributed to increases in beta-cell apoptosis. Disruption of circadian rhythms may increase the risk of T2DM by accelerating the loss of beta-cell function and mass characteristic in T2DM.  相似文献   

6.
Islet amyloid contributes to the loss of beta-cell mass in type 2 diabetes. To examine the roles of glucose and time on amyloid formation, we developed a rapid in vitro model using isolated islets from human islet amyloid polypeptide (hIAPP) transgenic mice. Islets from hIAPP transgenic and non-transgenic mice were cultured for up to 7 days with either 5.5, 11.1, 16.7 or 33.3mmol/l glucose. At various time-points throughout the culture period, islets were harvested for determination of amyloid and beta-cell areas, and for measures of cell viability, insulin content, and secretion. Following culture of hIAPP transgenic islets in 16.7 or 33.3mmol/l glucose, amyloid formation was significantly increased compared to 5.5 or 11.1mmol/l glucose culture. Amyloid was detected as early as day 2 and increased in a time-dependent manner so that by day 7, a decrease in the proportion of beta-cell area in hIAPP transgenic islets was evident. When compared to non-transgenic islets after 7-day culture in 16.7mmol/l glucose, hIAPP transgenic islets were 24% less viable, had decreased beta-cell area and insulin content, but displayed no change in insulin secretion. Thus, we have developed a rapid in vitro model of light microscopy-visible islet amyloid formation that is both glucose- and time-dependent. Formation of amyloid in this model is associated with reduced cell viability and beta-cell loss but adequate functional adaptation. It thus enables studies investigating the mechanism(s) underlying the amyloid-associated loss of beta-cell mass in type 2 diabetes.  相似文献   

7.
The islet in type 2 diabetes is characterized by an approximately 60% beta-cell deficit, increased beta-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). Human IAPP (hIAPP) but not rodent IAPP (rIAPP) forms toxic oligomers and amyloid fibrils in an aqueous environment. We previously reported that overexpression of hIAPP in transgenic rats triggered endoplasmic reticulum (ER) stress-induced apoptosis in beta-cells. In the present study, we sought to establish whether the cytotoxic effects of hIAPP depend on its propensity to oligomerize, rather than as a consequence of protein overexpression. To accomplish this, we established a novel homozygous mouse model overexpressing rIAPP at a comparable expression rate and, on the same background, as a homozygous transgenic hIAPP mouse model previously reported to develop diabetes associated with beta-cell loss. We report that by 10 wk of age hIAPP mice develop diabetes with a deficit in beta-cell mass due to increased beta-cell apoptosis. The rIAPP transgenic mice counterparts do not develop diabetes or have decreased beta-cell mass. Both rIAPP and hIAPP transgenic mice have increased expression of BiP, but only hIAPP transgenic mice have elevated ER stress markers (X-box-binding protein-1, nuclear localized CCAAT/enhancer binding-protein homologous protein, active caspase-12, and accumulation of ubiquitinated proteins). These findings indicate that the beta-cell toxic effects of hIAPP depend on the propensity of IAPP to aggregate, but not on the consequence of protein overexpression.  相似文献   

8.
Deposition of islet amyloid polypeptide (IAPP) as islet amyloid in type 2 diabetes contributes to loss of β-cell function and mass, yet the mechanism for its occurrence is unclear. Neprilysin is a metallopeptidase known to degrade amyloid in Alzheimer disease. We previously demonstrated neprilysin to be present in pancreatic islets and now sought to determine whether it plays a role in degrading islet amyloid. We used an in vitro model where cultured human IAPP (hIAPP) transgenic mouse islets develop amyloid and thereby have increased β-cell apoptosis. Islet neprilysin activity was inhibited or up-regulated using a specific inhibitor or adenovirus encoding neprilysin, respectively. Following neprilysin inhibition, islet amyloid deposition and β-cell apoptosis increased by 54 and 75%, respectively, whereas when neprilysin was up-regulated islet amyloid deposition and β-cell apoptosis both decreased by 79%. To determine if neprilysin modulated amyloid deposition by cleaving hIAPP, analysis of hIAPP incubated with neprilysin was performed by mass spectrometry, which failed to demonstrate neprilysin-induced cleavage. Rather, neprilysin may act by reducing hIAPP fibrillogenesis, which we showed to be the case by fluorescence-based thioflavin T binding studies and electron microscopy. In summary, neprilysin decreases islet amyloid deposition by inhibiting hIAPP fibril formation, rather than degrading hIAPP. These findings suggest that targeting the role of neprilysin in IAPP fibril assembly, in addition to IAPP cleavage by other peptidases, may provide a novel approach to reduce and/or prevent islet amyloid deposition in type 2 diabetes.  相似文献   

9.
Deposition of islet amyloid polypeptide (IAPP) as amyloid in the pancreatic islet occurs in approximately 90% of individuals with Type 2 diabetes and is associated with decreased islet beta-cell mass and function. Human IAPP (hIAPP), but not rodent IAPP, is amyloidogenic and toxic to islet beta-cells. In addition to IAPP, islet amyloid deposits contain other components, including heparan sulfate proteoglycans (HSPGs). The small molecule 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-alpha-D-xylo-hexopyranose (WAS-406) inhibits HSPG synthesis in hepatocytes and blocks systemic amyloid A deposition in vivo. To determine whether WAS-406 inhibits localized amyloid formation in the islet, we incubated hIAPP transgenic mouse islets for up to 7 days in 16.7 mM glucose (conditions that result in amyloid deposition) plus increasing concentrations of the inhibitor. WAS-406 at doses of 0, 10, 100, and 1,000 microM resulted in a dose-dependent decrease in amyloid deposition (% islet area occupied by amyloid: 0.66 +/- 0.14%, 0.10 +/- 0.06%, 0.09 +/- 0.07%, and 0.004 +/- 0.003%, P < 0.001) and an increase in beta-cell area in hIAPP transgenic islets (55.0 +/- 2.6 vs. 60.6 +/- 2.2% islet area for 0 vs. 100 microM inhibitor, P = 0.05). Glycosaminoglycan, including heparan sulfate, synthesis was inhibited in both hIAPP transgenic and nontransgenic islets (the latter is a control that does not develop amyloid), while O-linked protein glycosylation was also decreased, and WAS-406 treatment tended to decrease islet viability in nontransgenic islets. Azaserine, an inhibitor of the rate-limiting step of the hexosamine biosynthesis pathway, replicated the effects of WAS-406, resulting in reduction of O-linked protein glycosylation and glycosaminoglycan synthesis and inhibition of islet amyloid formation. In summary, interventions that decrease both glycosaminoglycan synthesis and O-linked protein glycosylation are effective in reducing islet amyloid formation, but their utility as pharmacological agents may be limited due to adverse effects on the islet.  相似文献   

10.
Islets from patients with type 2 diabetes exhibit β cell dysfunction, amyloid deposition, macrophage infiltration, and increased expression of proinflammatory cytokines and chemokines. We sought to determine whether human islet amyloid polypeptide (hIAPP), the main component of islet amyloid, might contribute to islet inflammation by recruiting and activating macrophages. Early aggregates of hIAPP, but not nonamyloidogenic rodent islet amyloid polypeptide, caused release of CCL2 and CXCL1 by islets and induced secretion of TNF-α, IL-1α, IL-1β, CCL2, CCL3, CXCL1, CXCL2, and CXCL10 by C57BL/6 bone marrow-derived macrophages. hIAPP-induced TNF-α secretion was markedly diminished in MyD88-, but not TLR2- or TLR4-deficient macrophages, and in cells treated with the IL-1R antagonist (IL-1Ra) anakinra. To determine the significance of IL-1 signaling in hIAPP-induced pancreatic islet dysfunction, islets from wild-type or hIAPP-expressing transgenic mice were transplanted into diabetic NOD/SCID recipients implanted with mini-osmotic pumps containing IL-1Ra (50 mg/kg/d) or saline. IL-1Ra significantly improved the impairment in glucose tolerance observed in recipients of transgenic grafts 8 wk following transplantation. Islet grafts expressing hIAPP contained amyloid deposits in close association with F4/80-expressing macrophages. Transgenic grafts contained 50% more macrophages than wild-type grafts, an effect that was inhibited by IL-1Ra. Our results suggest that hIAPP-induced islet chemokine secretion promotes macrophage recruitment and that IL-1R/MyD88, but not TLR2 or TLR4 signaling is required for maximal macrophage responsiveness to prefibrillar hIAPP. These data raise the possibility that islet amyloid-induced inflammation contributes to β cell dysfunction in type 2 diabetes and islet transplantation.  相似文献   

11.
Genetic background is important in determining susceptibility to metabolic abnormalities such as insulin resistance and beta-cell dysfunction. Islet amyloid is associated with reduced beta-cell mass and function and develops in the majority of our C57BL/6J x DBA/2J (F(1)) male human islet amyloid polypeptide (hIAPP) transgenic mice after 1 yr of increased fat feeding. To determine the relative contribution of each parental strain, C57BL/6J (BL6) and DBA/2J (DBA2), to islet amyloid formation, we studied male hIAPP mice on each background strain (BL6, n = 13; and DBA2 n = 11) and C57BL/6J x DBA/2J F(1) mice (n = 17) on a 9% (wt/wt) fat diet for 1 yr. At the end of 12 mo, islet amyloid deposition was quantified from thioflavin S-stained pancreas sections. The majority of mice in all groups developed islet amyloid (BL6: 91%, F(1): 76%, DBA2: 100%). However, the prevalence (%amyloid-positive islets; BL6: 14 +/- 3%, F(1): 44 +/- 8%, DBA2: 49 +/- 9%, P < 0.05) and severity (%islet area occupied by amyloid; BL6: 0.03 +/- 0.01%, F(1): 9.2 +/- 2.9%, DBA2: 5.7 +/- 2.3%, p < or = 0.01) were significantly lower in BL6 than F(1) and DBA2 mice. Increased islet amyloid severity was negatively correlated with insulin-positive area per islet, in F(1) (r(2) = 0.75, P < 0.001) and DBA2 (r(2) = 0.87, P < 0.001) mice but not BL6 mice (r(2) = 0.07). In summary, the extent of islet amyloid formation in hIAPP transgenic mice is determined by background strain, with mice expressing DBA/2J genes (F(1) and DBA2 mice) being more susceptible to amyloid deposition that replaces beta-cell mass. These findings underscore the importance of genetic and environmental factors in studying metabolic disease.  相似文献   

12.
Islet amyloid polypeptide has 37 amino acids and is a major component of amyloid deposition in pancreatic islets of patients with type 2 diabetes mellitus. To determine whether the peptide is involved in the impaired insulin secretion in this type of diabetes mellitus, we synthesized islet amyloid polypeptide and its fragments and examined its effect on insulin secretion. Islet amyloid polypeptide inhibited the glucose-stimulated insulin secretion from isolated rat pancreatic islets, as calcitonin gene-related peptide did, but the fragments failed to inhibit the secretion. Thus, we propose that amyloid deposition may be an important factor in the impairment of insulin secretion in type 2 diabetes mellitus.  相似文献   

13.
Pancreatic islet amyloid deposits in type 2 diabetes are associated with decreased islet beta-cell function. They contain both amylin (islet amyloid polypeptide), the beta-cell-derived unique fibrillogenic component, and heparan sulfate proteoglycans (HSPGs). We hypothesized that beta-cell HSPGs contribute to islet amyloidogenesis. [35S]Sulfate-labeled proteoglycans from islet-derived beta-TC3 cell cultures eluted from diethylaminoethyl Sephacel at 0.35M NaCl. Chromatography on Sepharose CL-4B and SDS-PAGE analysis revealed distinct populations of proteoglycans. Medium HSPGs eluted at K(av) approximately 0.18 and 0.50 with glycosaminoglycan chains of approximately 28 and 19 kDa, respectively. A third population containing chondroitin/dermatan sulfate eluted at K(av) approximately 0.70 with glycosaminoglycan chains of approximately 10 kDa. A single size class of heparan and chondroitin/dermatan sulfate proteoglycans in the cell layer eluted at K(av) approximately 0.40 with glycosaminoglycan chains of approximately 19 kDa. Medium and cell layer proteoglycans bound exclusively to fibrillogenic amylin, as determined by gel mobility shift assays, indicating a possible role for beta-cell-derived proteoglycans in islet amyloid formation.  相似文献   

14.
Type II diabetes mellitus (T2DM) is a disease characterized by progressive deposition of amyloid in the extracellular matrix of β-cells. We investigated the interaction of the islet amyloid polypeptide (IAPP) with lipid model raft mixtures and INS-1E cells using fluorescence microscopy techniques. Following preferential partitioning of IAPP into the fluid lipid phase, the membrane suffers irreversible damage and predominantly circularly-shaped lipid-containing IAPP amyloid is formed. Interaction studies with the pancreatic β-cell line INS-1E revealed that growing IAPP fibrils also incorporate substantial amounts of cellular membranes in vivo. Additionally, the inhibitory effect of the red wine compound resveratrol on IAPP fibril formation has been studied, alluding to its potential use in developing therapeutic strategies against T2DM.  相似文献   

15.
In type 2 diabetes, beta-cell dysfunction is thought to be due to several causes, one being the formation of toxic protein aggregates called islet amyloid, formed by accumulations of misfolded human islet amyloid polypeptide (hIAPP). The process of hIAPP misfolding and aggregation is one of the factors that may activate the unfolded protein response (UPR), perturbing endoplasmic reticulum (ER) homeostasis. Molecular chaperones have been described to be important in regulating ER response to ER stress. In the present work, we evaluate the role of chaperones in a stressed cellular model of hIAPP overexpression. A rat pancreatic beta-cell line expressing hIAPP exposed to thapsigargin or treated with high glucose and palmitic acid, both of which are known ER stress inducers, showed an increase in ER stress genes when compared to INS1E cells expressing rat IAPP or INS1E control cells. Treatment with molecular chaperone glucose-regulated protein 78 kDa (GRP78, also known as BiP) or protein disulfite isomerase (PDI), and chemical chaperones taurine-conjugated ursodeoxycholic acid (TUDCA) or 4-phenylbutyrate (PBA), alleviated ER stress and increased insulin secretion in hIAPP-expressing cells. Our results suggest that the overexpression of hIAPP induces a stronger response of ER stress markers. Moreover, endogenous and chemical chaperones are able to ameliorate induced ER stress and increase insulin secretion, suggesting that improving chaperone capacity can play an important role in improving beta-cell function in type 2 diabetes.  相似文献   

16.
The deposition of fibrillated human islet β-cell peptide islet amyloid polypeptide (hIAPP) into amyloid plaques is characteristic of the pathogenesis of islet cell death during type 2 diabetes. We investigated the effects of the neuroendocrine secretory proteins 7B2 and proSAAS on hIAPP fibrillation in vitro and on cytotoxicity. In vitro, 21-kDa 7B2 and proSAAS blocked hIAPP fibrillation. Structure–function studies showed that a central region within 21-kDa 7B2 is important in this effect and revealed the importance of the N-terminal region of proSAAS. Both chaperones blocked the cytotoxic effects of exogenous hIAPP on Rin5f cells; 7B2 generated by overexpression was also effective. ProSAAS and 7B2 may perform a chaperone role as secretory anti-aggregants in normal islet cell function and in type 2 diabetes.  相似文献   

17.
Radovan D  Smirnovas V  Winter R 《Biochemistry》2008,47(24):6352-6360
Type II diabetes mellitus is a disease which is characterized by peripheral insulin resistance coupled with a progressive loss of insulin secretion that is associated with a decrease in pancreatic islet beta-cell mass and the deposition of amyloid in the extracellular matrix of beta-cells, which lead to islet cell death. The principal component of the islet amyloid is a pancreatic hormone called islet amyloid polypeptide (IAPP). High-pressure coupled with FT-IR spectroscopic and AFM studies were carried out to elucidate further information about the aggregation pathway as well as the aggregate structures of IAPP. To this end, a comparative fibrillation study of IAPP fragments was carried out as well. As high hydrostatic pressure (HHP) is acting to weaken or even prevent hydrophobic self-organization and electrostatic interactions, application of HHP has been used as a measure to reveal the importance of these interactions in the fibrillation process of IAPP and its fragments. IAPP preformed fibrils exhibit a strong polymorphism with heterogeneous structures, a large population of which are rather sensitive to high hydrostatic pressure, thus indicating a high percentage of ionic and hydrophobic interactions and loose packing of these species. Conversely, fragments 1-19 and 1-29 are resistant to pressure treatment, suggesting more densely packed aggregate structures with less void volume and strong cooperative hydrogen bonding. Furthermore, the FT-IR data indicate that fragment 1-29 has intermolecular beta-sheet conformational properties different from those of fragment 1-19, the latter exhibiting polymorphic behavior with more disordered structures and less strongly hydrogen bonded fibrillar assemblies. The data also suggest that hydrophobic interactions and/or less efficient packing of amino acids 30-37 region leads to the marked pressure sensitivity observed for full-length IAPP.  相似文献   

18.
Type 2 diabetes mellitus (T2DM) is characterized by an approximately 60% deficit in beta-cell mass, increased beta-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). Human IAPP (hIAPP) forms oligomers, leading to either amyloid fibrils or toxic oligomers in an aqueous solution in vitro. Either application of hIAPP on or overexpression of hIAPP in cells induces apoptosis. It remains controversial whether the fibrils or smaller toxic oligomers induce beta-cell apoptosis. Rifampicin prevents hIAPP amyloid fibril formation and has been proposed as a potential target for prevention of T2DM. We examined the actions of rifampicin on hIAPP amyloid fibril and toxic oligomer formation as well as its ability to protect beta-cells from either application of hIAPP or endogenous overexpression of hIAPP (transgenic rats and adenovirus-transduced beta-cells). We report that rifampicin (Acocella G. Clin Pharmacokinet 3: 108-127, 1978) prevents hIAPP fibril formation, but not formation of toxic hIAPP oligomers (Bates G. Lancet 361: 1642-1644, 2003), and does not protect beta-cells from apoptosis induced by either overexpression or application of hIAPP. These data emphasize that toxic hIAPP oligomers, rather than hIAPP fibrils, initiate beta-cell apoptosis and that screening tools to identify inhibitors of amyloid fibril formation are likely to be less useful than those that identify inhibitors of toxic oligomer formation. Finally, rifampicin and related molecules do not appear to be useful as candidates for prevention of T2DM.  相似文献   

19.
To examine whether islet amyloid polypeptide (IAPP), other than through amyloid formation, may be of importance in diabetes pathogenesis, IAPP-deficient mice (IAPP(-/-)) were challenged with alloxan (day 0). Diabetes in IAPP(-/-) mice was more severe at day 35, indicated by greater weight loss; glucose levels were higher in alloxan-treated IAPP(-/-) mice, whereas insulin levels were lower, indicating a greater impairment of islet function. Accordingly, glucose levels upon intravenous glucose challenges at days 7 and 35 were consistently higher in alloxan-treated IAPP(-/-) mice. At day 35, insulin mRNA expression, but not beta-cell mass, was lower in untreated IAPP(-/-) mice. Yet, upon alloxan administration, beta-cell mass and numbers of beta-cell-containing islets were significantly more reduced in IAPP(-/-) mice. Furthermore, they displayed exaggerated beta-cell dysfunction, because in their remaining beta-cells, insulin mRNA expression was significantly more impaired and the localization of glucose transporter-2 was perturbed. Thus the lack of IAPP has allowed exaggerated beta-cell cytotoxic actions of alloxan, suggesting that there may be beneficial features of IAPP actions in situations of beta-cell damage.  相似文献   

20.
The expression of a dominant negative glucose-dependent insulinotropic polypeptide receptor (GIPRdn) under the control of the rat pro-insulin gene promoter induces severe diabetes mellitus in transgenic mice. This study aims to gain further insight into the effect of the expression of a dominant negative GIPR on glucose homeostasis and postnatal development of the endocrine pancreas. The diabetic phenotype of GIPRdn transgenic animals was first observed between 14 and 21 days of age (urine glucose>1000 mg/dl). After onset of diabetes, serum glucose was significantly higher and insulin values were significantly lower in GIPRdn transgenic mice vs. non-transgenic littermate controls. Morphometric studies of pancreatic islets and their endocrine cell types were carried out at 10, 30 and 90 days of age. The total islet and total beta-cell volume of transgenic mice was severely reduced as compared to control mice, irrespective of the age at sampling (p<0.05). The total volume of isolated insulin positive cells that were not contained within established islets was significantly reduced in transgenic mice, indicating disturbed islet neogenesis. These findings demonstrate in vivo evidence that intact signaling of G-protein coupled receptors is involved in postnatal islet and beta-cell development and neogenesis of the pancreatic islets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号