首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Structured illumination microscopy is a method that can increase the spatial resolution of wide-field fluorescence microscopy beyond its classical limit by using spatially structured illumination light. Here we describe how this method can be applied in three dimensions to double the axial as well as the lateral resolution, with true optical sectioning. A grating is used to generate three mutually coherent light beams, which interfere in the specimen to form an illumination pattern that varies both laterally and axially. The spatially structured excitation intensity causes normally unreachable high-resolution information to become encoded into the observed images through spatial frequency mixing. This new information is computationally extracted and used to generate a three-dimensional reconstruction with twice as high resolution, in all three dimensions, as is possible in a conventional wide-field microscope. The method has been demonstrated on both test objects and biological specimens, and has produced the first light microscopy images of the synaptonemal complex in which the lateral elements are clearly resolved.  相似文献   

2.
Chung E  Kim D  Cui Y  Kim YH  So PT 《Biophysical journal》2007,93(5):1747-1757
The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The <100 nm penetration depth of evanescence field ensures a thin excitation region resulting in low background fluorescence. We present even higher resolution wide-field biological imaging by use of standing wave total internal reflection fluorescence (SW-TIRF). Evanescent standing wave (SW) illumination is used to generate a sinusoidal high spatial frequency fringe pattern on specimen for lateral resolution enhancement. To prevent thermal drift of the SW, novel detection and estimation of the SW phase with real-time feedback control is devised for the stabilization and control of the fringe phase. SW-TIRF is a wide-field superresolution technique with resolution better than a fifth of emission wavelength or approximately 100 nm lateral resolution. We demonstrate the performance of the SW-TIRF microscopy using one- and two-directional SW illumination with a biological sample of cellular actin cytoskeleton of mouse fibroblast cells as well as single semiconductor nanocrystal molecules. The results confirm the superior resolution of SW-TIRF in addition to the merit of a high signal/background ratio from TIRF microscopy.  相似文献   

3.
Widefield fluorescence microscopy with extended resolution   总被引:1,自引:1,他引:0  
Widefield fluorescence microscopy is seeing dramatic improvements in resolution, reaching today 100 nm in all three dimensions. This gain in resolution is achieved by dispensing with uniform Köhler illumination. Instead, non-uniform excitation light patterns with sinusoidal intensity variations in one, two, or three dimensions are applied combined with powerful image reconstruction techniques. Taking advantage of non-linear fluorophore response to the excitation field, the resolution can be further improved down to several 10 nm. In this review article, we describe the image formation in the microscope and computational reconstruction of the high-resolution dataset when exciting the specimen with a harmonic light pattern conveniently generated by interfering laser beams forming standing waves. We will also discuss extensions to total internal reflection microscopy, non-linear microscopy, and three-dimensional imaging.  相似文献   

4.
A new type of wide-field fluorescence microscopy is described, which produces 100-nm-scale spatial resolution in all three dimensions, by using structured illumination in a microscope that has two opposing objective lenses. Illumination light is split by a grating and a beam splitter into six mutually coherent beams, three of which enter the specimen through each objective lens. The resulting illumination intensity pattern contains high spatial frequency components both axially and laterally. In addition, the emission is collected by both objective lenses coherently, and combined interferometrically on a single camera, resulting in a detection transfer function with axially extended support. These two effects combine to produce near-isotropic resolution. Experimental images of test samples and biological specimens confirm the theoretical predictions.  相似文献   

5.
Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophore chemistry have enabled scientists to see beyond the diffraction barrier, image deeper into live specimens, and acquire images at unprecedented speed. Selective plane illumination microscopy has provided significant gains in the spatial and temporal acquisition of fluorescence specimens several mm in thickness. With commercial systems now available, this method promises to expand on recent advances in 2-photon deep-tissue imaging with improved speed and reduced photobleaching compared to laser scanning confocal microscopy. Superresolution microscopes are also available in several modalities and can be coupled with selective plane illumination techniques. The combination of methods to increase resolution, acquisition speed, and depth of collection are now being married to common microscope systems, enabling scientists to make significant advances in live cell and in situ imaging in real time. We show that light sheet microscopy provides significant advantages for imaging live zebrafish embryos compared to laser scanning confocal microscopy.  相似文献   

6.
A microscope-based flow cytophotometer   总被引:5,自引:0,他引:5  
By means of a new flow chamber, a standard fluorescence microscope with Epi illumination and 100 W mercury arc excitation has been turned into a flow cytophotometer combining high resolution and sensitivity with simplicity of operation. In the flow chamber, cells are passed in a narrow stream through the microscope focus carried by a laminar flow of water running on the open surface of a cover glass which is coupled to the oil immersion microscope objective. Two spectral components of the fluorescence, for example, resulting from specific staining of two different cellular constituents with different dyes, can be measured simultaneously in separate channels so as to produce three-dimensional histograms. The scattered light of the cells is detected in dark field by a second microscope situated opposite the primary objective. Scattered light detection is integrating with regard to scattering angle from 0 degree to 90 degrees. Hence, diffraction pattern effects are eliminated and the light scatter signal is approximately proportional to cell dry weight. The Epi illumination, which implies that excitation and fluorescence collection are parfocal, greatly simplifies instrument adjustment, which is further facilitated by the fact that the cell stream can be viewed at high magnification. Cell measuring time is about 3 microseconds which implies a measuring rate of 3 x 10(3) cells/s at 1% coincidence rate. Sensitivity is sufficient for measuring the DNA content of bacteria (that is, approximately 5 x 10(-15) g/cell) with a coefficient of variance (CV) of about 6%. CV less than 1% is achieved for DNA histograms of mammalian cells. A 5 W argon laser as excitation source facilitates slit scan analysis and increases the sensitivity and measuring rate by one to two orders of magnitude.  相似文献   

7.
Fluorescence lifetime imaging microscopy (FLIM) is a technique that visualizes the excited state kinetics of fluorescence molecules with the spatial resolution of a fluorescence microscope. We present a scanningless implementation of FLIM based on a time- and space-correlated single photon counting (TSCSPC) method employing a position-sensitive quadrant anode detector and wide-field illumination. The standard time-correlated photon counting approach leads to picosecond temporal resolution, making it possible to resolve complex fluorescence decays. This allows parallel acquisition of time-resolved images of biological samples under minimally invasive low-excitation conditions (<10mW/cm2). In this way unwanted photochemical reactions induced by high excitation intensities and distorting the decay kinetics are avoided. Comparably low excitation intensities are practically impossible to achieve with a conventional laser scanning microscope, where focusing of the excitation beam into a tight spot is required. Therefore, wide-field FLIM permits to study Photosystem II (PS II) in a way so far not possible with a laser scanning microscope. The potential of the wide-field TSCSPC method is demonstrated by presenting FLIM measurements of the fluorescence dynamics of photosynthetic systems in living cells of the chlorophyll d-containing cyanobacterium Acaryochloris marina.  相似文献   

8.
An optical microscope capable of measuring time resolved luminescence (phosphorescence and delayed fluorescence) images has been developed. The technique employs two phase-locked mechanical choppers and a slow-scan scientific CCD camera attached to a normal fluorescence microscope. The sample is illuminated by a periodic train of light pulses and the image is recorded within a defined time interval after the end of each excitation period. The time resolution discriminates completely against light scattering, reflection, autofluorescence, and extraneous prompt fluorescence, which ordinarily decrease contrast in normal fluorescence microscopy measurements. Time resolved image microscopy produces a high contrast image and particular structures can be emphasized by displaying a new parameter, the ratio of the phosphorescence to fluorescence. Objects differing in luminescence decay rates are easily resolved. The lifetime of the long lived luminescence can be measured at each pixel of the microscope image by analyzing a series of images that differ by a variable time delay. The distribution of luminescence decay rates is displayed directly as an image. Several examples demonstrate the utility of the instrument and the complementarity it offers to conventional fluorescence microscopy.  相似文献   

9.
Evanescent light—light that does not propagate but instead decays in intensity over a subwavelength distance—appears in both excitation (as in total internal reflection) and emission (as in near-field imaging) forms in fluorescence microscopy. This review describes the physical connection between these two forms as a consequence of geometrical squeezing of wavefronts, and describes newly established or speculative applications and combinations of the two. In particular, each can be used in analogous ways to produce surface-selective images, to examine the thickness and refractive index of films (such as lipid multilayers or protein layers) on solid supports, and to measure the absolute distance of a fluorophore to a surface. In combination, the two forms can further increase selectivity and reduce background scattering in surface images. The polarization properties of each lead to more sensitive and accurate measures of fluorophore orientation and membrane micromorphology. The phase properties of the evanescent excitation lead to a method of creating a submicroscopic area of total internal reflection illumination or enhanced-resolution structured illumination. Analogously, the phase properties of evanescent emission lead to a method of producing a smaller point spread function, in a technique called virtual supercritical angle fluorescence.  相似文献   

10.
Improving the spatial resolution of optical microscopes is important for a vast number of applications in the life sciences. Optical microscopy allows intact samples and living cells to be studied in their natural environment, tasks that are not possible with other microscopy methods (e.g. electron microscopy). Major advances in the past two decades have significantly improved microscope resolution. By using interference and structured light methods microscope resolution has been improved to approximately 100 nm, and with non-linear methods a ten times improvement has been demonstrated to a current resolution limit of approximately 30 nm. These methods bring together old theoretical concepts such as interference with novel non-linear methods that improve spatial resolution beyond the limits that were previously assumed to be unreachable.  相似文献   

11.
Total internal reflection fluorescence microscopy (TIRFM) achieves subdiffraction axial sectioning by confining fluorophore excitation to a thin layer close to the cell/substrate boundary. However, it is often unknown how thin this light sheet actually is. Particularly in objective-type TIRFM, large deviations from the exponential intensity decay expected for pure evanescence have been reported. Nonevanescent excitation light diminishes the optical sectioning effect, reduces contrast, and renders TIRFM-image quantification uncertain. To identify the sources of this unwanted fluorescence excitation in deeper sample layers, we here combine azimuthal and polar beam scanning (spinning TIRF), atomic force microscopy, and wavefront analysis of beams passing through the objective periphery. Using a variety of intracellular fluorescent labels as well as negative staining experiments to measure cell-induced scattering, we find that azimuthal beam spinning produces TIRFM images that more accurately portray the real fluorophore distribution, but these images are still hampered by far-field excitation. Furthermore, although clearly measureable, cell-induced scattering is not the dominant source of far-field excitation light in objective-type TIRF, at least for most types of weakly scattering cells. It is the microscope illumination optical path that produces a large cell- and beam-angle invariant stray excitation that is insensitive to beam scanning. This instrument-induced glare is produced far from the sample plane, inside the microscope illumination optical path. We identify stray reflections and high-numerical aperture aberrations of the TIRF objective as one important source. This work is accompanied by a companion paper (Pt.2/2).  相似文献   

12.
Total internal reflection fluorescence microscopy (TIRFM) achieves subdiffraction axial sectioning by confining fluorophore excitation to a thin layer close to the cell/substrate boundary. However, it is often unknown how thin this light sheet actually is. Particularly in objective-type TIRFM, large deviations from the exponential intensity decay expected for pure evanescence have been reported. Nonevanescent excitation light diminishes the optical sectioning effect, reduces contrast, and renders TIRFM-image quantification uncertain. To identify the sources of this unwanted fluorescence excitation in deeper sample layers, we here combine azimuthal and polar beam scanning (spinning TIRF), atomic force microscopy, and wavefront analysis of beams passing through the objective periphery. Using a variety of intracellular fluorescent labels as well as negative staining experiments to measure cell-induced scattering, we find that azimuthal beam spinning produces TIRFM images that more accurately portray the real fluorophore distribution, but these images are still hampered by far-field excitation. Furthermore, although clearly measureable, cell-induced scattering is not the dominant source of far-field excitation light in objective-type TIRF, at least for most types of weakly scattering cells. It is the microscope illumination optical path that produces a large cell- and beam-angle invariant stray excitation that is insensitive to beam scanning. This instrument-induced glare is produced far from the sample plane, inside the microscope illumination optical path. We identify stray reflections and high-numerical aperture aberrations of the TIRF objective as one important source. This work is accompanied by a companion paper (Pt.2/2).  相似文献   

13.
The use of propagation invariant Bessel beams has enabled high-resolution subcellular light sheet fluorescence microscopy. However, the energy within the concentric side lobe structure of Bessel beams increases significantly with propagation length, generating unwanted out-of-focus fluorescence that enforces practical limits on the imaging field of view size. Here, we present a light sheet fluorescence microscope that achieves 390 nm isotropic resolution and high optical sectioning strength (i.e., out-of-focus blur is strongly suppressed) over large field of views, without the need for structured illumination or deconvolution-based postprocessing. We demonstrate simultaneous dual-color, high-contrast, and high-dynamic-range time-lapse imaging of migrating cells in complex three-dimensional microenvironments, three-dimensional tracking of clathrin-coated pits, and long-term imaging spanning >10 h and encompassing >2600 time points.  相似文献   

14.
Plasmonic gold films (PGF) prepared by vacuum deposition of gold onto quartz slides possess unique property to enhance electromagnetic signal in the near field. Spectral tuning of PGF’s plasmon band to resonance with the electronic spectra of adsorbed molecules provides selective enhancement of fluorescence or surface-enhanced Raman scattering in the far field. Plasmon-enhanced fluorescence (PEF) of mitoxantrone (mitox) as a function of the distance between gold surface and adsorbed molecules for different polarization and incidence angle of exciting light is analyzed in this work. Spectrophotometric data reveal that probability of localized plasmon excitation in gold grains increases with growth of incidence angle for s-polarized and decrease for p-polarized excitation. This fact correlates well with oblate shape of gold particles detected by Atomic force microscope. However, the fluorescence intensity of dyes deposited at fixed distance from gold surface increase with angle of incidence of p-polarized light more noticeably than for s-polarized one. Nevertheless, the behavior of mitox PEF signal upon p-polarized laser excitation and different angle of incidence are similar in appearance to such phenomenon as selective photoelectric effect. According to this observation, the near-field interactions between plasmons and molecule as possible mechanism of PEF is discussed.  相似文献   

15.
A key challenge when imaging living cells is how to noninvasively extract the most spatiotemporal information possible. Unlike popular wide-field and confocal methods, plane-illumination microscopy limits excitation to the information-rich vicinity of the focal plane, providing effective optical sectioning and high speed while minimizing out-of-focus background and premature photobleaching. Here we used scanned Bessel beams in conjunction with structured illumination and/or two-photon excitation to create thinner light sheets (<0.5 μm) better suited to three-dimensional (3D) subcellular imaging. As demonstrated by imaging the dynamics of mitochondria, filopodia, membrane ruffles, intracellular vesicles and mitotic chromosomes in live cells, the microscope currently offers 3D isotropic resolution down to ~0.3 μm, speeds up to nearly 200 image planes per second and the ability to noninvasively acquire hundreds of 3D data volumes from single living cells encompassing tens of thousands of image frames.  相似文献   

16.
E S Wachman  W Niu    D L Farkas 《Biophysical journal》1997,73(3):1215-1222
We have developed a new fluorescence microscope that addresses the spectral and speed limitations of current light microscopy instrumentation. In the present device, interference and neutral density filters normally used for fluorescence excitation and detection are replaced by acousto-optic tunable filters (AOTFs). Improvements are described, including the use of a dispersing prism in conjunction with the imaging AOTF and an oblique-illumination excitation scheme, which together enable the AOTF microscope to produce images comparable to those obtained with conventional fluorescence instruments. The superior speed and spectral versatility of the AOTF microscope are demonstrated by a ratio image pair acquired in 3.5 ms and a micro-spectral absorbance measurement of hemoglobin through a cranial window in a living mouse.  相似文献   

17.
Total internal reflection fluorescence excitation (TIRF) microscopy allows the selective observation of fluorescent molecules in immediate proximity to an interface between different refractive indices. Objective‐type or prism‐less TIRF excitation is typically achieved with laser light sources. We here propose a simple, yet optically advantageous light‐emitting diode (LED)‐based implementation of objective‐type TIRF (LED‐TIRF). The proposed LED‐TIRF condenser is affordable and easy to set up at any epifluorescence microscope to perform multicolor TIRF and/or combined TIRF‐epifluorescence imaging with even illumination of the entire field of view. Electrical control of LED light sources replaces mechanical shutters or optical modulators. LED‐TIRF microscopy eliminates safety burdens that are associated with laser sources, offers favorable instrument lifetime and stability without active cooling. The non‐coherent light source and the type of projection eliminate interference fringing and local scattering artifacts that are associated with conventional laser‐TIRF. Unlike azimuthal spinning laser‐TIRF, LED‐TIRF does not require synchronization between beam rotation and the camera and can be monitored with either global or rolling shutter cameras. Typical implementations, such as live cell multicolor imaging in TIRF and epifluorescence of imaging of short‐lived, localized translocation events of a Ca2+‐sensitive protein kinase C α fusion protein are demonstrated.  相似文献   

18.
We propose a wide-field super-resolved optical microscopic imaging technique based on subwavelength slit arrays embedded in a thin silver film to generate surface plasmon (SP) standing wave interference patterns. These fringes carrying high spatial frequency information serve as excitation profiles to excite the nanoscale fluorescence objects. The super-resolved fluorescence density distribution is reconstructed from a weight sum of a series of fluorescence images with differently phase-shifted SP standing wave illumination. Simulation and experimental results show that the lateral resolution of the reconstructed fluorescence density image is enhanced by 0.28?λ SP in two dimensions, which is twofold better than that of conventional high numerical aperture fluorescence microscopy. This technique benefits from a grating coupler to offer a simple way for the generation and phase shift of SP standing wave excitation profiles in two dimensions. The flat configuration, wide field, and noninvasive nature make this approach suitable for real-time analyzing the fine details of bio-samples in biochip applications.  相似文献   

19.
Light sheet microscopy is an easy to implement and extremely powerful alternative to established fluorescence imaging techniques such as laser scanning confocal, multi-photon and spinning disk microscopy. By illuminating the sample only with a thin slice of light, photo-bleaching is reduced to a minimum, making light sheet microscopy ideal for non-destructive imaging of fragile samples over extended periods of time. Millimeter-sized samples can be imaged rapidly with high resolution and high depth penetration. A large variety of instruments have been developed and optimized for a number of different samples: Bessel beams form thin light sheets for single cells, and selective plane illumination microscopy (SPIM) offers multi-view acquisition to image entire embryos with isotropic resolution. This review explains how light sheet microscopy involves a conceptually new microscope design and how it changes modern imaging in biology.  相似文献   

20.
Due to diffraction, the resolution of imaging emitted light in a fluorescence microscope is limited to about 200 nm in the lateral direction. Resolution improvement by a factor of two can be achieved using structured illumination, where a fine grating is projected onto the sample, and the final image is reconstructed from a set of images taken at different grating positions. Here we demonstrate that with the help of a spatial light modulator, this technique can be used for imaging slowly moving structures in living cells. This article has been submitted as a contribution to the Festschrift entitled “Uncovering cellular sub-structures by light microscopy” in honour of Professor Cremer’s 65th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号