首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PAK11 is 1 of more than 15 members in a gene family that encodes K(+)-channel pore-forming subunits in Paramecium tetraurelia. Microinjection of PAK11 DNA into macronuclei of wild-type cells results in clonal transformants that exhibit hyperexcitable swimming behaviors reminiscent of certain loss-of-K(+)-current mutants. PAK2, a distant homolog of PAK11, does not have the same effect. But PAK1, a close homolog of PAK11, induces the same hyperexcitability. Cutting the PAK11 open reading frame (ORF) with restriction enzymes before injection removes this effect entirely. Microinjection of PAK11 ORF flanked by the calmodulin 5' and 3' UTRs also induces the same hyperexcitable phenotype. Direct examination of transformed cells under voltage clamp reveals that two different Ca(2+)-activated K(+)-specific currents are reduced in amplitude. This reduction does not correlate with a deficit of PAK11 message, since RNA is clearly produced from the injected transgenes. Insertion of a single nucleotide at the start of the PAK11 ORF does not affect the RNA level but completely abolishes the phenotypic transformation. Thus, the reduction of K(+) currents by the expression of the K(+)-channel transgenes reported here is likely to be the consequence of a post-translational event. The complexity of behavioral changes, possible mechanisms, and implications in Paramecium biology are discussed.  相似文献   

2.
The effects of K(+)-channel blockers on synaptic transmission in dunce (dnc), a Drosophila learning and memory mutant, were investigated. Larvae dnc mutants lack facilitation and post-tetanic potentiation (PTP) at their motor end-plates; dnc mutants are also deficient in a form of phosphodiesterase, and exhibit abnormally high levels of cyclic adenosine 3',5'-monophosphate (cAMP). A two-microelectrode voltage-clamp was used to record end-plate currents and spontaneous end-plate currents from longitudinal ventrolateral third-instar larval muscle. The K(+)-channel blockers 3,4-diaminopyridine (3,4-DAP) and tetraethylammonium (TEA), at micromolar concentrations, caused a reversible decrease in end-plate current amplitudes both in wild-type and mutant end-plates. In the presence of blockers, a period of high-frequency stimulation (tetanus) of the nerve gave way to a transient increase in the end-plate currents of dnc mutants resembling facilitation and PTP in normal end-plates; 3,4-DAP and TEA also restored facilitation and PTP in normal end-plates after incubation with a non-hydrolysable analogue of cAMP (8Br-cAMP). It is suggested that a specific K+ conductance might be relevant to the lack of synaptic plasticity at the dnc neuromuscular synapses.  相似文献   

3.
We examined the contribution of K(+)-channel activity on basal tone and adenosine-mediated relaxation of coronary arterioles isolated from sexually mature male and female miniature swine. Arterioles (approximately 100-200 microm ID) isolated from the apical region of the heart were cannulated and studied using videodimensional analysis under constant intraluminal pressure. Coronary arterioles from male and female pigs demonstrated similar levels of basal tone and reductions in basal diameter in response to the K(+)-channel blockers 4-aminopyridine (4-AP; 1 mM), tetraethylammonium (1 mM), and glibenclamide (Glib; 10 microM), with 4-AP producing significantly greater constriction than tetraethylammonium or Glib. After endothelin-induced preconstriction, relaxation responses to adenosine were not significantly different between coronary arterioles of male and female pigs. Inhibition of 4-AP-sensitive channels significantly impaired adenosine-mediated relaxation in arterioles from male but not female pigs. However, inhibition of K(+) channels with iberiotoxin (100 nM) or Glib had no effect on adenosine-induced relaxation in either sex. Results obtained in the presence of nitric oxide synthase inhibition suggest a potential interaction of 4-AP-sensitive channels and nitric oxide at low adenosine concentrations. In conclusion, our data indicate that 4-AP-sensitive channels 1) contribute significantly to basal tone in coronary arterioles of both male and female pigs, 2) contribute to adenosine-mediated relaxation in male but not female pigs, and 3) can contribute to adenosine-induced relaxation independent of nitric oxide production in male pigs. These data are consistent with a significant role for voltage-dependent K(+) channels in adenosine-mediated relaxation of coronary arterioles from males.  相似文献   

4.
We have used whole-cell patch clamp to determine the temperature dependence of the conductance and gating kinetics of the voltage-gated potassium channel in quiescent, human peripheral blood T lymphocytes. Threshold for activation, steady-state inactivation, and the reversal potential are the same at 22 degrees and 37 degrees C. However, the time-constants for activation, inactivation, deactivation, and release from inactivation are quite sensitive to temperature, changing by at least a factor of five in each case over this range of temperatures. The onset of cumulative inactivation at 22 degrees and 37 degrees C reflects the time-course of deactivation. Peak outward current is approximately twofold greater at 37 degrees C than at 22 degrees C; this increase is also manifest at the single channel level. Energies of activation for conductance, activation, inactivation, deactivation, and release from inactivation are 8.2, 22.1, 25.0, 36.2, and 42.2 kcal/mol, respectively. No new channels were observed at 37 degrees C, and there was no evidence for alteration of the K+ conductance by putative modulators at 22 or 37 degrees C.  相似文献   

5.
6.
We examined the ionic mechanisms underlying the responses of canine trachealis to superoxide (generated in vitro by using xanthine oxidase or added exogenously) and peroxide (generated spontaneously in vitro by the dismutation of superoxide or added exogenously). Although neither had any effect on resting tone, both triggered relaxations in carbachol-precontracted tissues. These relaxations were eliminated by catalase but were much less sensitive to the hydroxyl radical scavenger dimethylthiourea, indicating they were mediated primarily by peroxide. These relaxations were decreased in magnitude and/or slowed by nifedipine (10(-6) M), ouabain (10(-6) M), or tetraethylammonium (25 mM), but not by 4-aminopyridine (5 mM), and were small or absent in tissues precontracted with 30 mM KCl. Finally, peroxide triggered membrane hyperpolarization and elevated cytosolic concentration of Ca(2+) (primarily via release from the internal store). Thus peroxide-mediated relaxations seem to involve Ca(2+) release, opening of Ca(2+)-dependent K(+) channels, hyperpolarization, closure of Ca(2+) channels, and relaxation. In addition, some other free radical (hydroxyl radical?) may activate the Na(+)-K(+) pump, also hyperpolarizing the membrane and causing relaxation.  相似文献   

7.
ATP-sensitive K(+)-channel run-down is Mg2+ dependent   总被引:8,自引:0,他引:8  
ATP-sensitive K(+)-channel currents were recorded from isolated membrane patches and voltage-clamped CRI-G1 insulin-secreting cells. Internal Mg2+ ions inhibited ATP-K+ channels by a voltage-dependent block of the channel current and decrease of open-state probability. The run-down of ATP-K+ channel activity was also shown to be [Mg2+]i dependent, being almost abolished in Mg2(+)-free conditions. Substitution of Mn2+ for Mg2+ did not prevent run-down, nor did the presence of phosphate-donating nucleotides, a protease or phosphatase inhibitor or replacement of Cl- by gluconate.  相似文献   

8.
The relationships of the electrical to the mechanical responses of the canine trachealis muscle during stimulation of its cholinergic nerves or exposure to exogenous acetylcholine were recorded in the single or the double sucrose gap. At 27 degrees C, the responses to a train of stimuli consisted of a transient depolarization excitatory junction potential of 10-30 mV followed by fading oscillations and contractions. When stimulus parameters were varied in the single sucrose gap, contractions were more closely associated with the occurrence of and varied in duration with the oscillations rather than with the amplitude of the EJP. Acetylcholine superfused at a concentration of 10(-6) M for 30 s caused a prolonged depolarization of 10-20 mV, but a much larger contraction than could be elicited by nerve stimulation. None of the responses to acetylcholine was significantly affected by the Ca channel antagonists, nifedipine, nitrendipine, or verapamil in Ca channel blocking concentrations. When tissues were exposed to a Ca-free medium, the excitatory junction potentials and oscillations rapidly disappeared, but the electrical and mechanical responses to acetylcholine persisted and only gradually disappeared with repetitive exposures. Furthermore, in a medium with normal Ca2+ in the double sucrose gap, depolarization by 10-15 mV with an applied current caused no contraction, and repolarization to the normal membrane potential during acetylcholine-induced contraction caused no relaxation. Tetraethylammonium ion (20 mM) depolarized the membrane, increased membrane resistance, and enhanced the secondary oscillations and contractions after field stimulation. No other K(+)-channel blocker tested (Ba2+, apamin, 4-aminopyridine, glibenclamide, charybdotoxin) had the effect of prolonging secondary oscillations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To examine mechanisms underlying developmental changes in pulmonary vascular tone, we tested the hypotheses that 1) maturation-related changes in the ability of the pulmonary vasculature to respond to hypoxia are intrinsic to the pulmonary artery (PA) smooth muscle cells (SMCs); 2) voltage-gated K(+) (K(v))-channel activity increases with maturation; and 3) O(2)-sensitive Kv2.1 channel expression and message increase with maturation. To confirm that maturational differences are intrinsic to PASMCs, we used fluorescence microscopy to study the effect of acute hypoxia on cytosolic Ca(2+) concentration ([Ca(2+)](i)) in SMCs isolated from adult and fetal PAs. Although PASMCs from both fetal and adult circulations were able to sense an acute decrease in O(2) tension, acute hypoxia induced a more rapid and greater change in [Ca(2+)](i) in magnitude in PASMCs from adult compared with fetal PAs. To determine developmental changes in K(v)-channel activity, the effects of the K(+)-channel antagonist 4-aminopyridine (4-AP) were studied on fetal and adult PASMC [Ca(2+)](i). 4-AP (1 mM) caused PASMC [Ca(2+)](i) to increase by 94 +/- 22% in the fetus and 303 +/- 46% in the adult. K(v)-channel expression and mRNA levels in distal pulmonary arteries from fetal, neonatal, and adult sheep were determined through the use of immunoblotting and semiquantitative RT-PCR. Both Kv2.1-channel protein and mRNA expression in distal pulmonary vasculature increased with maturation. We conclude that there are maturation-dependent changes in PASMC O(2) sensing that may render the adult PASMCs more responsive to acute hypoxia.  相似文献   

10.
Developmental changes in electrocardiogram (ECG) andresponse to selective K+ channelblockers were assessed in conscious, unsedated neonatal (days 1, 7, 14) and adult male mice(>60 days of age). Mean sinus R-R interval decreased from 120 ± 3 ms in day 1 to 110 ± 3 ms inday 7, 97 ± 3 ms inday 14, and 81 ± 1 ms in adultmice (P < 0.001 by ANOVA; all 3 groups different from day 1). Inparallel, the mean P-R interval progressively decreased duringdevelopment. Similarly, the mean Q-T interval decreased from 62 ± 2 ms in day 1 to 50 ± 2 ms inday 7, 47 ± 8 ms inday 14 neonatal mice, and 46 ± 2 ms in adult mice (P < 0.001 byANOVA; all 3 groups are significantly different fromday 1).Q-Tc was calculated asQ- interval.Q-Tc significantly shortened from179 ± 4 ms in day 1 to 149 ± 5 ms in day 7 mice(P < 0.001). In addition, the J junction-S-T segment elevation observed in day1 neonatal mice resolved by day14. Dofetilide (0.5 mg/kg), the selective blocker ofthe rapid component of the delayed rectifier(IKr) abolished S-T segment elevation and prolonged Q-T andQ-Tc intervals in day 1 neonates but not in adult mice.In contrast, 4-aminopyridine (4-AP, 2.5 mg/kg) had no effect onday 1 neonates but in adults prolongedQ-T and Q-Tc intervals andspecifically decreased the amplitude of a transiently repolarizingwave, which appears as an r' wave at the end of the apparent QRSin adult mice. In conclusion, ECG intervals and configuration changeduring normal postnatal development in the mouse.K+ channel blockers affect themouse ECG differently depending on age. These data are consistent withthe previous findings that the dofetilide-sensitiveIKr is dominantin day 1 mice, whereas 4-AP-sensitivecurrents, the transiently repolarizingK+ current, and the rapidlyactivating, slowly inactivating K+current are the dominant K+currents in adult mice. This study provides background information useful for assessing abnormal development in transgenic mice.

  相似文献   

11.
12.
Total crypt volume has been estimated by analysis of photographic images of intact viable crypts isolated from guinea-pig small intestine. Exposing these crypts to a hypotonic medium, led to transient swelling followed by regulatory volume decrease (RVD) in 12-20 min. RVD was blocked by inhibitors of K+ and Cl- conductance, suggesting that it occurs by activation of K+ and Cl- permeability pathways and loss of these ions.  相似文献   

13.
Effects of KCNQ channel blockers on K(+) currents in vestibular hair cells   总被引:2,自引:0,他引:2  
Linopirdine and XE991, selectiveblockers of K+ channels belonging to the KCNQ family, wereapplied to hair cells isolated from gerbil vestibular system and tohair cells in slices of pigeon crista. In type II hair cells, bothcompounds inhibited a slowly activating, slowly inactivating componentof the macroscopic current recruited at potentials above 60 mV. Thedissociation constants for linopirdine and XE991 block were <5µM. A similar component of the current was also blocked by 50 µMcapsaicin in gerbil type II hair cells. All three drugs blocked acurrent component that showed steady-state inactivation and abiexponential inactivation with time constants of ~300 ms and 4 s. Linopirdine (10 µM) reduced inward currents through thelow-voltage-activated K+ current in type I hair cells, butconcentrations up to 200 µM had little effect on steady-state outwardK+ current in these cells. These results suggest that KCNQchannels may be present in amniote vestibular hair cells.

  相似文献   

14.
15.
We studied the contractile response elicited by platelet-activating factor (PAF) administered intra-arterially into the tracheal circulation of 34 dogs in vivo. A method that avoided tachyphylaxis encountered in prior investigations was developed for isometric measurement of multiple dose-response effects. PAF was a very potent contractile agent; active tension was elicited with 10(-11) mol ia PAF. To determine the mechanism by which contraction was induced, dose-response curves were generated in groups of five animals each treated with either 0.5 mg/kg (approximately 1.5 X 10(-5) mol) iv + 10(-3) mg/kg (3 X 10(-8) mol) ia atropine, 5 mg/kg iv indomethacin (INDO), or 7.5 mg/kg iv hexamethonium (HEX). After pretreatment with atropine, contraction still was elicited with 10(-11) mol ia PAF. However, maximal contraction was only 16.2 +/- 2.74 g/cm (vs. 35.7 +/- 5.74 g/cm for untreated controls; P less than 0.02). The dose at which maximal contraction was elicited after atropine was 10(-7) mol ia (vs. 1.9 X 10(-9) mol for controls; P less than 0.001). Pretreatment with INDO caused minimal attenuation, and HEX had no effect on the response elicited by ia PAF. We demonstrate a method for assessing the effects of PAF in central airways that avoids tachyphylaxis and permits dose-response studies in the same animal. We also demonstrate that PAF is an extremely potent mediator that elicits tracheal smooth muscle contraction at least in part by postganglionic activation of parasympathetic nerves. A direct contractile effect of PAF which is not related to secretion of products of the cyclooxygenase pathway is also suggested.  相似文献   

16.
The sensitivity of K(ATP) channels to high-affinity block by sulfonylureas and to stimulation by K(+) channel openers and MgADP (PCOs) is conferred by the regulatory sulfonylurea receptor (SUR) subunit, whereas ATP inhibits the channel through interaction with the inward rectifier (Kir6.2) subunit. Phosphatidylinositol 4, 5-bisphosphate (PIP(2)) profoundly antagonized ATP inhibition of K(ATP) channels expressed from cloned Kir6.2+SUR1 subunits, but also abolished high affinity tolbutamide sensitivity. By stabilizing the open state of the channel, PIP(2) drives the channel away from closed state(s) that are preferentially affected by high affinity tolbutamide binding, thereby producing an apparent loss of high affinity tolbutamide inhibition. Mutant K(ATP) channels (Kir6. 2[DeltaN30] or Kir6.2[L164A], coexpressed with SUR1) also displayed an "uncoupled" phenotype with no high affinity tolbutamide block and with intrinsically higher open state stability. Conversely, Kir6. 2[R176A]+SUR1 channels, which have an intrinsically lower open state stability, displayed a greater high affinity fraction of tolbutamide block. In addition to antagonizing high-affinity block by tolbutamide, PIP(2) also altered the stimulatory action of the PCOs, diazoxide and MgADP. With time after PIP(2) application, PCO stimulation first increased, and then subsequently decreased, probably reflecting a common pathway for activation of the channel by stimulatory PCOs and PIP(2). The net effect of increasing open state stability, either by PIP(2) or mutagenesis, is an apparent "uncoupling" of the Kir6.2 subunit from the regulatory input of SUR1, an action that can be partially reversed by screening negative charges on the membrane with poly-L-lysine.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号