首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
4.
5.
IgE induction from human cells has generally been considered to be T cell dependent and to require at least two signals: IL-4 stimulation and T cell/B cell interaction. In the present study we report a human system of T cell-independent IgE production from highly purified B cells. When human cells were co-stimulated with a mAb directed against CD40 (mAb G28-5), there was induction of IgE secretion from purified blood and tonsil B cells as well as unfractionated lymphocytes. Anti-CD40 alone failed to induce IgE from blood mononuclear cells or purified B cells. The effect of the combination of anti-CD40 and IL-4 on IgE production was very IgE isotype specific as IgG, IgM, and IgA were not increased. Furthermore, anti-CD40 with IL-5 or PWM did not co-stimulate IgG, IgM, or IgA and in fact strongly inhibited PWM-stimulated IgG, IgM and IgA production from blood or tonsil cells. IgE synthesis induced by anti-CD40 plus IL-4 was IFN-gamma independent as is the in vivo production of IgE in humans; the doses of IFN-gamma that profoundly suppressed IgG synthesis induced by IL-4, or IL-4 plus IL-6, had no inhibitory effect on anti-CD40-induced IgE production. Anti-CD23 and anti-IL-6 also could not block anti-CD40 plus IL-4-induced IgE production, but anti-IL-4 totally blocked their effect. IgE production via CD40 was not due to IL-5, IL-6 or nerve growth factor as none of these synergized with IL-4 to induce IgE synthesis by purified B cells. Finally, we observed that CD40 stimulation alone could enhance IgE production from in vivo-driven IgE-producing cells from patients with very high IgE levels; cells that did not increase IgE production in response to IL-4. Taken together, our data suggest that the signals delivered for IgE production by IL-4 and CD40 stimulation may mimic the pathway for IgE production seen in vivo in human allergic disease.  相似文献   

6.
7.
Activation-induced cytidine deaminase (AID) plays critical roles in Ig class switch recombination and V(H) gene somatic hypermutation. We investigated the role of IL-4 in AID mRNA induction, the signaling transduction involved in IL-4-mediated AID induction, and the effect of CD45 on IL-4-dependent AID expression in human B cells. IL-4 was able to induce AID expression in human primary B cells and B cell lines, and IL-4-induced AID expression was further enhanced by CD40 signaling. IL-4-dependent AID induction was inhibited by a dominant-negative STAT6, indicating that IL-4 induced AID expression via the Janus kinase (JAK)/STAT6 signaling pathway. Moreover, triggering of CD45 with anti-CD45 Abs can inhibit IL-4-induced AID expression, and this CD45-mediated AID inhibition correlated with the ability of anti-CD45 to suppress IL-4-activated JAK1, JAK3, and STAT6 phosphorylations. Thus, in humans, IL-4 alone is sufficient to drive AID expression, and CD40 signaling is required for optimal AID production; IL-4-induced AID expression is mediated via the JAK/STAT signaling pathway, and can be negatively regulated by the JAK phosphatase activity of CD45. This study indicates that the JAK phosphatase activity of CD45 can be induced by anti-CD45 Ab treatment, and this principle may find clinical application in modulation of JAK activation in immune-mediated diseases.  相似文献   

8.
IL-4 is an important B cell survival and growth factor. IL-4 induced the tyrosine phosphorylation of IRS2 in resting B lymphocytes and in LPS- or CD40L-activated blasts. Phosphorylated IRS2 coprecipitated with the p85 subunit of PI 3' kinase in both resting and activated cells. By contrast, association of phosphorylated IRS2 with GRB2 was not detected in resting B cells after IL-4 treatment although both proteins were expressed. However, IL-4 induced association of IRS2 with GRB2 in B cell blasts. The pattern of IL-4-induced recruitment of p85 and GRB2 to IRS2 observed in B cells derived from STAT6 null mice was identical to that observed for normal mice. While IL-4 alone does not induce activation of MEK, a MEK1 inhibitor suppressed the IL-4-induced proliferative response of LPS-activated B cell blasts. These results demonstrate that costimulation of splenic B cells alters IL-4-induced signal transduction independent of STAT6 leading to proliferation. Furthermore, proliferation induced by IL-4 in LPS-activated blasts is dependent upon the MAP kinase pathway.  相似文献   

9.
10.
11.
This study documents the influence of rIL-4, IFN-gamma, and IFN-alpha on the production of IgE-BF and the expression of lymphocyte receptor for IgE or CD23 Ag (Fc epsilon R II) by human mononuclear cells. IL-4 increases the secretion of IgE-binding factor (BF) by highly purified B lymphocytes, adherent cells, and U937 monoblastic cells. The effect of IL-4 on purified B cells is augmented by costimulating the cells with F(ab')2 anti-IgM. IFN-gamma, IL-2, IL-1-alpha, or IL-1 beta and the low m.w. B cell growth factor have no effect on IgE-BF production by purified B cells even when they are used in combination with anti-IgM. Stimulation of purified T cells with IL-4 or IL-4 plus PMA leads to the production of very small amounts of IgE-BF that might well be derived from the contaminating non-T cells. IFN-gamma increases IgE-BF synthesis by unfractionated PBMC, T cell-depleted PBMC, adherent cells, and U937 cells suggesting that it induces monocytes to release IgE-BF, IFN-gamma suppresses the IL-4-induced Fc epsilon R II expression and IgE-BF production by highly purified B cells but not by PBMC or their T cell-depleted fractions. IFN-alpha inhibits IgE-BF production by IFN-gamma-stimulated PBMC and by IL-4-stimulated cells suggesting that it exerts its effect on B cells and on monocytes. Moreover IFN-alpha suppresses the IL-4-induced expression of Fc epsilon R II on B cells. Both IFN-alpha and IFN-gamma suppress the synthesis of IgE by PBMC in response to IL-4. Taken collectively the results indicate that: 1) IL-4 induces IgE-BF production by both B cells and monocytes, 2) IFN-gamma stimulates IgE-BF synthesis by monocytes but suppresses its production by IL-4-stimulated B cells, and finally 3) IFN-alpha inhibits IgE-BF synthesis in response to either IFN-gamma or IL-4.  相似文献   

12.
Zhu L  Wu Y  Wei H  Yang S  Zhan N  Xing X  Peng B 《Cytokine》2012,60(1):171-178
Interleukin (IL)-23 is an essential cytokine involved in the expansion of a novel CD4(+) T helper subset known as Th17, which has been implicated in the pathogenesis of periodontitis recently. Our previous study first identified specialized human periodontal ligament fibroblasts (hPDLFs) as an important production source of IL-23. The present study was undertaken to investigate the effects of the pro-inflammatory and Th17-polarizing mediator IL-1β on hPDLFs-mediated IL-23 p19 production, and the molecular mechanism involved. IL-23 p19 expression was in situ detected in IL-1β-stimulated hPDLFs. IL-1β was capable of stimulating the expression of IL-23 p19 mRNA and protein in cultured hPDLFs, which was attenuated by IL-1 receptor antagonist (IL-1Ra) or myeloid differentiation primary response gene 88 (MyD88) inhibitor. Meanwhile, inhibitors of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) 1/2, c-Jun-N-terminal kinase (JNK), activator protein-1 (AP-1), or nuclear factor-kappaB (NF-κB) significantly suppressed IL-23 p19 production from IL-1β-stimulated hPDLFs. Moreover, IL-1β-initiated AP-1 activation was blocked by p38 MAPK, ERK 1/2, or JNK inhibition, whereas NF-κB activity remained unaltered by all the above pathway specific inhibitors. Thus, these results provide evidence that Th17-polarizing mediator IL-1β up-regulated the expression of IL-23 p19 in hPDLFs via NF-κB signaling and MAPKs-dependent AP-1 pathways. Taken together, our findings indicate that IL-1Ra may be used therapeutically to inhibit Th17-driven inflammatory diseases including periodontitis.  相似文献   

13.
To investigate the effects of in vivo CD23 destabilization on CD23 shedding and IgE production, an anti-CD23 stalk monoclonal (19G5), previously shown to enhance proteolysis of CD23 in vitro, was utilized. Compared to isotype control-treated mice, BALB/cJ mice injected with 19G5 displayed significantly enhanced serum soluble CD23 and IgE. Soluble CD23 and IgE levels were also increased in 19G5-treated C57BL/6J mice (intermediate IgE responders); however, the kinetics of the responses differed between the high (BALB/cJ) and intermediate responder mice, suggesting a potential role for CD23 in regulating IgE responder status. The 19G5-induced IgE response was dependent on IL-4 and independent of CD21 as demonstrated through use of IL-4Ralpha and CD21/35-deficient mice, respectively. Overall, the data provide a direct demonstration for CD23's role in regulating IgE production in vivo and suggest that therapies aimed at stabilizing cell surface CD23 would be beneficial in controlling allergic disease.  相似文献   

14.
Chronic lymphocytic leukemia (CLL) remains incurable with current standard therapy. We have previously reported that an increased expression of interleukin-6 (IL-6) receptor CD126 leads to resistance of CLL cells to chemotherapy and worse prognosis for patients with CLL. In this study, we determine whether autocrine IL-6 production by CLL B cells is associated with poor clinical outcome and explore IL-6-mediated survival mechanism in primary CLL cells. Our results demonstrate that higher levels of autocrine IL-6 are significantly associated with shorter absolute lymphocyte doubling time, patients received treatment, without complete remission, advanced Binet stages, 17p/11q deletion, and shorter time to first time treatment and progression-free survival. IL-6 activated both STAT3 and nuclear factor kappa B (NF-κB) in primary CLL cells. Blocking IL-6 receptor and JAK2 inhibited IL-6-mediated activation of STAT3 and NF-κB. Our study demonstrates that an increased autocrine IL-6 production by CLL B-cells are associated with worse clinical outcome for patients with CLL. IL-6 promotes CLL cell survival by activating both STAT3 and NF-κB through diverse signaling cascades. Neutralizing IL-6 or blocking IL-6 receptor might contribute overcoming the resistance of CLL cells to chemotherapy. We propose that the measurement of autocrine IL-6 could be a useful approach to predict clinical outcome.  相似文献   

15.
IL-4 specifically induced IgE production by peripheral blood lymphocytes or by tonsil or spleen cells from healthy donors. IL-4-induced IgE synthesis was dependent on CD4+ T cells and monocytes and was blocked by IFN-gamma, IFN-alpha, and prostaglandin E-2 (PGE-2). These substances also inhibited IL-4-induced CD23 expression and subsequent release of soluble CD23 (s-CD23). In addition, IgE production was blocked by F(ab')2 fragments of an mAb against CD23. In contrast, IL-5 enhanced IL-4-induced IgE production, provided IL-4 was added at nonsaturating concentrations. This increase in IgE production correlated quantitatively with an enhanced release of s-CD23. Collectively, these results indicate that there is a correlation between s-CD23 release and IgE production. However, s-CD23 fractionated from supernatants of the lymphoblastoid cell line RPMI-8866 was ineffective in inducing IgE production in the absence of IL-4, but acted synergistically with suboptimal concentrations of IL-4. In addition, it is demonstrated that alloreactive T-cell clones produced varying concentrations of IL-4, IL-2, or IFN-gamma upon stimulation. Only supernatants of 2/4 of these T-cell clones induced a low degree of IgE synthesis, but in the presence of anti-IFN-gamma antibodies, all four supernatants induced a strong induction of IgE production. This IgE synthesis was blocked specifically by anti-IL-4 antibodies, indicating that IL-4 is the sole inducer of IgE synthesis. Our findings demonstrate that IL-4-induced IgE production involves complex interactions of T cells, B cells, and monocytes and is positively modulated by IL-5 and s-CD23 but down-regulated by IFN-gamma, IFN-alpha, and PGE-2, respectively.  相似文献   

16.
The IL-6/STAT3 and TNFα/NFκB pathways are emerging as critical mediators of inflammation-associated colon cancer. TNF receptor (TNFR) 2 expression is increased in inflammatory bowel diseases, the azoxymethane/dextran sodium sulfate (AOM/DSS) model of colitis-associated cancer, and by combined interleukin (IL) 6 and TNFα. The molecular mechanisms that regulate TNFR2 remain undefined. This study used colon cancer cell lines to test the hypothesis that IL-6 and TNFα induce TNFR2 via STAT3 and/or NFκB. Basal and IL-6 + TNFα-induced TNFR2 were decreased by pharmacologic STAT3 inhibition. NFκB inhibition had little effect on IL-6 + TNFα-induced TNFR2, but did inhibit induction of endogenous IL-6 and TNFR2 in cells treated with TNFα alone. Chromatin immunoprecipitation (ChIP) revealed cooperative effects of IL-6 + TNFα to induce STAT3 binding to a -1,578 STAT response element in the TNFR2 promoter but no effect on NFκB binding to consensus sites. Constitutively active STAT3 was sufficient to induce TNFR2 expression. Overexpression of SOCS3, a cytokine-inducible STAT3 inhibitor, which reduces tumorigenesis in preclinical models of colitis-associated cancer, decreased cytokine-induced TNFR2 expression and STAT3 binding to the -1,578 STAT response element. SOCS3 overexpression also decreased proliferation of colon cancer cells and dramatically decreased anchorage-independent growth of colon cancer cells, even cells overexpressing TNFR2. Collectively, these studies show that IL-6- and TNFα-induced TNFR2 expression in colon cancer cells is mediated primarily by STAT3 and provide evidence that TNFR2 may contribute to the tumor-promoting roles of STAT3.  相似文献   

17.
We investigated the effect of exosomes secreted from human monocyte-derived dendritic cells (Mo-DCs), which are generated from PBMCs in response to treatment with GM-CSF and IL-4, on naive CD4+ T cell survival in vitro. Exosomes isolated from culture supernatants of Mo-DCs (>90% purity) were purified with anti-HLA-DP, -DQ, -DR-coated paramagnetic beads. Purified exosomes prolonged the survival of naive CD4+ T cells (>98% purity) in vitro. Treatment with neutralizing mAb against HLA-DR significantly decreased the supportive effect of purified exosomes on CD4+ T cell survival. Exosomes increased nuclear translocation of NF-(kappa)B in naive CD4+ T cells, and NF-(kappa)B activation was significantly suppressed by anti-HLA-DR mAb or NF-(kappa)B inhibitor pyrrolidine dithiocarbamate (PDTC). In addition, PDTC inhibited the effect of exosomes on naive CD4+ T cell survival. Thus, exosomes secreted by Mo-DCs appear to support naive CD4+ T cell survival via NF-(kappa)B activation induced by interaction of HLA-DR and TCRs.  相似文献   

18.
Park YD  Kim YS  Jung YM  Lee SI  Lee YM  Bang JB  Kim EC 《Cytokine》2012,60(1):284-293
Increased interleukin (IL)-17 and IL-23 levels exist in the gingival tissue of periodontitis patients, but the precise molecular mechanisms that regulate IL-17 and IL-23 production remain unknown. The aim of this study was to explore the role of SIRT1 signaling on Porphyromonas gingivalis lipopolysaccharide (LPS)-induced IL-17 and IL-23 production in human periodontal ligament cells (hPDLCs). IL-17 and IL-23 production was significantly increased in LPS-treated cells. LPS treatment also led to the upregulation of SIRT1 mRNA and protein expression. LPS-induced IL-17 and IL-23 upregulation was attenuated by pretreatment with inhibitors of phosphoinositide 3-kinase (PI3K), p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK), and NF-κB, as well as neutralizing antibodies against Toll-like receptors (TLRs) 2 and 4. Sirtinol treatment (a known SIRT1 inhibitor) or SIRT1 knockdown by small interfering RNA blocked LPS-stimulated IL-17 and IL-23 expression. Further investigation showed that LPS decreased osteoblast markers (i.e., ALP, OPN, and BSP) and concomitantly increased osteoclast markers (i.e., RANKL and M-CSF). This response was attenuated by inhibitors of the PI3K, p38, ERK, JNK, NF-κB, and SIRT1 pathways. These findings, for the first time, suggest that human periodontopathogen P. gingivalis LPS is implicated in periodontal disease bone destruction and may mediate IL-17 and IL-23 release from hPDLCs. This process is dependent, at least in part, on SIRT1-Akt/PI3K-MAPK-NF-κB signaling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号