首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Iodinated native bovine parathyroid hormone (bPTH(1-84)) was separated from uniodinated hormone by reversed-phase liquid chromatography techniques after lactoperoxidase labeling. Analysis of iodinated residues after enzymatic digestion indicated that the major labeled product was largely monoiodinated on the sole tyrosine residue. This material retained full bioactivity in an in vitro renal adenylate cyclase assay. Binding of 125I-bPTH(1-84) to rabbit renal membranes at 4 degrees C was proportional to membrane protein concentration and was saturable and dissociable. Radioligand binding was inhibited by concentrations of unlabeled bPTH(1-84) required to stimulate adenylate cyclase in the same membrane preparation but was not inhibited by non-PTH peptides other than adrenocorticotropin at high concentrations (greater than 10 microM). Synthetic NH2-terminal analogues of bPTH(1-84) all elicited approximately equivalent inhibition of radioligand binding which was, however, less potent than unlabeled bPTH(1-84), suggesting a role for the carboxyl region of the molecule in the interaction of bPTH(1-84) with its receptor. Activity of the NH2-terminal agonists was similar to bPTH(1-84) in stimulating adenylate cyclase. Although substitution in sequence position one, of serine in human PTH(1-34) for alanine in bPTH(1-34), reduced activity in the adenylate cyclase assay, inhibition of 125I-bPTH(1-84) binding by both peptides and by an analogue of bPTH(3-34) was equivalent, consistent with a minimal contribution of the first 2 residues for receptor binding of the NH2-terminal region of PTH. The results illustrate the utility of the radiolabeled preparation of native bPTH we have developed and emphasize the importance of probing the PTH receptor with an intact hormone to maximize information concerning the mechanism of PTH action.  相似文献   

2.
A fragment of glucagon encompassing its first six NH2-terminal residues (His-Ser-Gln-Gly-Thr-Phe) binds to the glucagon receptor and stimulates adenylate cyclase activity in rat liver plasma membranes. Glucagon1-6 is a partial agonist since it stimulates, at saturating concentrations, to the extent of 75% of the maximal activity given by the native hormone. The binding affinity and potency of glucagon1-6 are 0.001% the native hormone. Discussed are the implications of these findings on the structure-function relationships required for the action of glucagon and for preparing clinically useful analogs of the hormone.  相似文献   

3.
A membrane fraction enriched in parathyroid hormone (PTH)-sensitive adenylate cyclase and sodium and potassium ion-activated (Na+, K+)-ATPase was prepared from bovine kidney. Tritiated PTH binding to this membrane fraction was dependent on both hormone and membrane protein concentration. Both total and specific binding of the hormone decreased significantly after 5 to 10 min of incubation at 22 degrees. PTH binding was highly specific, being sensitive to inhibition only with active forms of unlabeled hormone (native and 1-34 PTH). Specific binding showed a pH optimum of 7.3 to 7.5. Inhibition of binding of tritiated hormone by unlabeled PTH was also highly effective at pH 6.0, but this apparently specific binding was also inhibited by adrenocorticotropic hormone, insulin, glucagon, and vasopressin. Dissociation of bound hormone was demonstrated, and an apparent dissociation constant of 4.6 X 10(-2) min-1 was obtained. Specific binding was eliminated by pretreatment of the membranes with trypsin. The concentration dependence for inhibition of binding with unlabeled PTH was identical to that for activation of adenylate cyclase in this membrane preparation, and binding was also inhibited by concentrations of calcium in the 0.5 to 2 mM range.  相似文献   

4.
Binding of parathyroid hormone to bovine kidney-cortex plasma membranes   总被引:3,自引:0,他引:3  
1. Plasma membranes were purified from bovine kidney cortex, with a fourfold increase in specific activity of parathyroid hormone-sensitive adenylate cyclase over that in the crude homogenate. The membranes were characterized by enzyme studies. 2. Parathyroid hormone was labelled with (125)I by an enzymic method and the labelled hormone shown to bind to the plasma membranes and to be specifically displaced by unlabelled hormone. Parathyroid hormone labelled by the chloramine-t procedure showed no specific binding. (75)Se-labelled human parathyroid hormone, prepared in cell culture, also bound to the membranes. 3. Parathyroid hormone was shown to retain biological activity after iodination by the enzymic method, but no detectable activity remained after chloramine-t treatment. 4. High concentration of pig insulin inhibited binding of labelled parathyroid hormone to plasma membranes and partially inhibited the hormone-sensitive adenylate cyclase activity in a crude kidney-cortex preparation. 5. EDTA enhanced and Ca(2+) inhibited binding of labelled parathyroid hormone to plasma membranes. 6. Whereas rat kidney homogenates were capable of degrading labelled parathyroid hormone to trichloroacetic acid-soluble fragments, neither crude homogenates nor purified membranes from bovine kidney showed this property. 7. Binding of parathyroid hormone is discussed in relation to metabolism and initial events in hormone action.  相似文献   

5.
1. Renal tubular membranes from rat kidneys were prepared, and adenylate cyclase activity was measured under basal conditions, after stimulation by NaF or salmon calcitonin. Apparent Km value of the enzyme for hormone-linked receptor was close to 1 x 10(-8) M. 2. The system was sensitive to temperature and pH. pH was found to act both on affinity for salmon calcitonin-linked receptor and maximum stimulation, suggesting an effect of pH on hormone-receptor binding and on a subsequent step. 3. KCl was without effect areas whereas CoCl and CaCl2 above 100 muM and MnCl2 above 1 muM inhibited F- -and salmon calcitonin-sensitive adenylate cyclase activities. The Ca2+ inhibition of the response reflected a fall in maximum stimulation and not a loss of affinity of salmon calcitonin-linked receptor for the enzyme. 4. The measurement of salmon calcitonin-sensitive adenylate cyclase activity as a function of ATP concentration showed that the hormone increases the maximum velocity of the adenylate cyclase. GTP, ITP and XTP at 200 muM did not modify basal, salmon calcitonin- and parathyroid hormone-sensitive adenylate cyclase activities. 5. Basal, salmon calcitonin- and F- -sensitive adenylate cyclase activities decreased at Mg2+ concentrations below 10 mM. High concentrations of Mg2+ (100 mM) led to an inhibition of the F- -stimulated enzyme. 6. Salmon calcitonin-linked receptor had a greater affinity for adenylate cyclase than human or porcine calcitonin-linked receptors. There was no additive effect of these three calcitonin peptides whereas parathyroid hormone added to salmon calcitonin increased adenylate cyclase activity, thus showing that both hormones bound to different membrane receptors. Human calcitonin fragments had no effect on adenylate cyclase activity. 7. Salmon calcitonin-stimulated adenylate cyclase activity decreased with the preincubation time. This was due to progressive degradation of the hormone and not to the rate of binding to membrane receptors.  相似文献   

6.
Purification of pork renal cortex membranes yielded a particulate adenylate cyclase retaining good sensitivity to stimulation by parathyroid hormone and glucagon and a modest but significant response to porcine calcitonin. Treatment of this partially purified membrane fraction with 0.5% Lubrol PX and 5 mM NaF released adenylate cyclase activity into a fraction which was not sedimented by centrifugation for 20 min at 37,000 X g or for 2 hours at 100,000 X g and passed through a Millipore filter (0.22 mum pore). This solubilized adenylate cyclase was stimulated by porcine calcitonin and NaF but not by parathyroid hormone or glucagon. On gel filtration (Sephadex G-200) in the presence of 1mM dithiothreitol and 5mM NaF, the major portion of the adenylate cyclase activity eluted with the void volume of the column and showed 2.0-fold stimulation with 10 muM calcitonin. Binding of 125I-labeled porcine calcitonin was demonstrated in the 37,000 X g and the 100,000 X g supernatants. From 74 to 86% of the observed binding could be blocked by the addition of unlabeled porcine calcitonin to the reaction mixture. Addition of salmon calcitonin, parathyroid hormone, or glucagon blocked only 12 to 18% of the binding. The dose-response curves for inhibition of binding of iodinated calcitonin by unlabeled calcitonin and the activation of adenylate cyclase by the hormone each showed 50% maximal effect at a concentration between 4.5 and 8 muM porcine calcitonin and maximal effect at a concentration between 33 and 66 muM porcine calcitonin.  相似文献   

7.
In the presence of 1 microM atrial natriuretic factor (ANF) and low (0.1 mM) Mg2+ concentrations, the initial rate of binding of [3H]guanosine 5'-[beta, gamma-imido)triphosphate [( 3H]p[NH]ppG) to rat lung plasma membranes was increased twofold to threefold. ANF-dependent stimulation of the initial rate of [3H]p[NH]ppG binding was reduced at high (5 mM) Mg2+ concentrations. Preincubation of membranes with p[NH]ppG (5 min at 37 degrees C) eliminated the ANF-dependent effect on [3H]p[NH]ppG binding whereas ANF-dependent [3H]p[NH]ppG binding was unaffected by similar pretreatment with guanosine 5'-[beta-thio]diphosphate (GDP[beta S]). An increase in ANF concentration from 10 pM to 1 microM caused a 40% decrease in forskolin-stimulated or isoproterenol-stimulated adenylate cyclase activities (IC50 5 nM) in rat lung plasma membranes. GTP (100 microM) was obligatory for the ANF-dependent inhibition of adenylate cyclase, which could be completely overcome by the presence of 100 microM GDP[beta S] or the addition of 10 mM Mn2+. Reduction of Na2+ concentration from 120 mM to 20 mM had the same effect. Pertussis toxin eliminated ANF-dependent inhibition of adenylate cyclase by catalyzing ADP-ribosylation of membrane-bound Ni protein (41-kDa alpha subunit of the inhibitory guanyl-nucleotide-binding protein of adenylate cyclase). The data support the notion that one of the ANF receptors in rat lung plasma membranes is negatively coupled to a hormone-sensitive adenylate cyclase complex via the GTP-binding Ni protein.  相似文献   

8.
Two synthetic analogues of bovine parathyroid hormone (PTH) with NH2-terminal modifications, PTH-(3-34) and [desamino-Ala-1]PTH-(1-34), were found to lack agonist activity but to demonstrate antagonist properties when tested in the rat renal cortical adenylyl cyclase assay in vitro against the native hormone or against PTH-(1-34), the active synthetic NH2-terminal tetratriacontapeptide. The inhibition exhibited by these analogues was proportional in degree to the dose of inhibitor, abolished by oxidation of the analogue, reversible by addition of an excess of active hormone, and specific for parathyroid hormone-stimulated renal adenylyl cyclase. No inhibition of basal or sodium fluoride-stimulated renal adenylyl cyclase could be demonstrated. Two other synthetic bovine analogues, PTH-(13-34) and PTH-(1-26), were devoid of agonist and antagonist properties. The over-all results suggest that the requirements for receptor binding of parathyroid hormone are rather broad. Conformational factors or binding interactions involving specific residues, or both seem to require the entire sequence from residue 3 to residue 27 for receptor binding to occur. A dichotomy between receptor binding and adenylyl cyclase activation was demonstrated only by alterations or deletions involving the first 2 NH2-terminal residues of the hormone and emphasizes the importance of these residues in eliciting the biological activity of parathyroid hormone. The two antagonists, [desamino-Ala-1]PTH-(1-34) and PTH-(3-34), should be useful in further analysis of the initial steps in hormone action.  相似文献   

9.
Free flow electrophoresis was employed to separate renal cortical plasma membranes into luminal (brush border microvilli) and contraluminal (basal-lateral membrane) fractions. During the separation adenylate cyclase activity was found to parallel the activity of Na+-K+-activated ATPase, an enzyme which is present in contraluminal but not in luminal membranes. In the basal-lateral membrane fraction the specific activities of adenylate cyclase and Na+-K+-activated ATPase were 4.4 and 4.6 times greater, respectively, than in the brush border fraction. The adenylate cyclase of the basal-lateral membrane fraction was specifically stimulated by parathyroid hormone which maximally increased enzyme activity eightfold. The biologically active (1-34) peptide fragment of paratyhroid hormone produced a 350% increase in adenylate cyclase activity. In contrast, calcitonin, epinephrine and vasopressin maximally stimulated the enzyme by only 55, 35 and 30%, respectively. These results indicate that adenylate cyclase, specifically stimulated by parathyroid hormone, is distributed preferentially in the contraluminal region of the plasma membrane of renal cortical epithelial cells.  相似文献   

10.
Several analogues of the biologically active fragment of bovine parathyroid hormone (bPTH), based on the sequence of the NH2-terminal 34 amino acids, were prepared by solid phase synthesis and bioassayed in the in vitro adenylyl cyclase assay to provide further information concerning structure-activity relations in parathyroid hormone. In two analogues both methionines of the natural hormone were replaced with the sulfur-free and closely isosteric amino acid norleucine (Nle). The synthetic analogue [Nle-8, Nle-18]bPTH-(1-34) was highly active in the in vitro rat adenylyl cyclase bioassay, thus demonstrating that neither of the methionines, found in the native sequence, is indispensable for biological activity. Tyrosine was substituted for phenylalanine at position 34 in the synthesis of two other hormone analogues, [Try-34]bPTH-(1-34) and [Nle-8,Nle-18,Tyr-34]bPTH-(1-34). Both derivatives were exposed to conventional iodination procedures involving use of the oxidant chloramine T. Although iodination of [Try-34]bPTH-(1-34) resulted in virtually complete loss of biological activity, [Nle-8,Nle-18,Tyr-34]-bPTH-(1-34), which lacks methionine, could be exposed to oxidants and labeled efficiently with iodine with retention of nearly complete biological activity. These findings confirm that the loss of biological activity after oxidation of bPTH, as previously observed with the native hormone, is indeed attributable to the oxidation lability of methionine rather than to any other modifications. This sulfur-free, radioiodinated, biologically active analogue of parathyroid hormone may prove useful in studies of interaction of the hormone with the membrane receptors of target tissues and in studies of the metabolism of parathyroid hormone.  相似文献   

11.
The effects of the monokines tumor necrosis factor alpha (TNF) and interleukin 1 (IL 1) on parathyroid hormone (PTH)-responsive adenylate cyclase were examined in clonal rat osteosarcoma cells (UMR-106) with the osteoblast phenotype. Recombinant TNF and IL 1 incubated with UMR-106 cells for 48 hr each produced concentration-dependent inhibition of PTH-sensitive adenylate cyclase, with maximal inhibition of PTH response (40% for TNF, 24% for IL 1) occurring at 10(-8) M of either monokine. Both monokines also decreased adenylate cyclase stimulation by the tumor-derived PTH-related protein (PTHrP). In contrast, TNF and IL 1 had little or no inhibitory effect on receptor-mediated stimulation of adenylate cyclase by isoproterenol and nonreceptor-mediated enzyme activation by cholera toxin and forskolin; both monokines increased prostaglandin E2 stimulation of adenylate cyclase. Binding of the radioiodinated agonist mono-[125I]-[Nle8,18, Tyr34]bPTH-(1-34)NH2 to UMR-106 cells in the presence of increasing concentrations of unlabeled [Nle8,18, Tyr34]bPTH-(1-34)NH2 revealed a decline in PTH receptor density (Bmax) without change in receptor binding affinity (dissociation constant, Kd) after treatment with TNF or IL 1. Pertussis toxin increased PTH-sensitive adenylate cyclase activity but did not attenuate monokine-induced inhibition of PTH response. In time course studies, brief (1 hr) exposure of cells to TNF or IL 1 during early culture was sufficient to decrease PTH response but only after exposed cells were subsequently allowed to grow for prolonged periods. Inhibition of PTH response by monokines was blocked by cycloheximide. The results indicate that TNF and IL 1 impair responsiveness to PTH (and PTHrP) by a time- and protein synthesis-dependent down-regulation of PTH receptors linked to adenylate cyclase.  相似文献   

12.
Biologically active bovine 125I-thyrotropin preparations have been prepared, characterized, and used to evaluate the optimal conditions for thyrotropin binding to bovine thyroid plasma membranes in vitro. Binding of 125I-TSH has a pH optimum around 6.0 and is sensitive to the choice and concentration of buffer. Binding is inhibited by salts, especially those containing magnesium and calcium ions; magnesium concentrations optimal for adenylate cyclase assays (2 to 5 mM) result in 85 to 98% inhibition of binding. Binding is temperature sensitive. At 37 degrees binding has its highest initial level; however, instability of the membrane at this temperature causes a rapid loss of binding activity. Binding at 0 degrees is optimal in 30 min and at the same level as initial binding at 37 degrees; since there is no decrease in binding activity, it has been chosen as the optimal temperature. Thyrotropin, luteinizing hormone, the beta subunit of thyrotropin, and the alpha subunit of thyrotropin have relative binding affinities for the thyrotropin receptors of 100, 10, 2, and less than 0.5, respectively. In all of these characteristics, 125I-thyrotropin at 1.5 x 10(-5) M concentrations has the same properties of binding to bovine plasma membranes as do [3H]thyrotropin preparations which have been previously characterized (Amir, S.M., Carraway, T.F., Jr., Kohn, L.D., and Winand, R.V. (1973) J. Biol. Chem. 248, 4092-4100) and used to study binding at 5 x 10(-6) M concentrations. 125I-TSH binding as a function of hormone concentration results in curved Scatchard plots; however, Hill plots of these same binding data are linear and have a slope of 0.65. Taken together, these data suggest that the heterogeneity in thyrotropin binding constants which is evident in the Scatchard plot reflects a negatively cooperative relationship among the thyrotropin receptor sites, i.e. decreased hormonal affinity as hormone concentrations increase. Adenylate cyclase studies yield kinetic plots which also exhibit negative cooperativity; corrections for thyrotropin bound under the adverse binding conditions of the adenylate cyclase assays suggest that Km values for thyrotropin in this enzymatic assay are compatible with binding constants measured by the 125I-thyrotropin preparations. Tryptic digestion destroys binding activity on the thyroid plasma membrane but releases specific thyrotropin receptor activity into the supernatant phase. Chromatography on Sephadex G-100 indicates that this solubilized receptor fragment has a molecular weight between 15,000 and 30,000.  相似文献   

13.
Characterization of parathyroid hormone fragments produced by cathepsin D   总被引:2,自引:0,他引:2  
Cleavage of parathyroid hormone by cathepsin D was studied. Four primary products were detected and separated by high performance liquid chromatography. Two of the fragments are fluorescent and therefore contain residue 23 (tryptophan). These fragments are NH2-terminal in origin. The other two cross-react with antisera directed against COOH-terminal portions of the hormone; they are the complementary COOH-terminal fragments. Microsequencing and amino acid analysis showed that the two COOH-terminal fragments are 35-84 and 38-84 bovine parathyroid hormone. By CNBr cleavage and amino acid analysis, the two NH2-terminal fragments were shown to be the complementary 1-37 and 1-34 fragments. The 1-37 fragment is transitory and is rapidly hydrolyzed to 1-34, so that only relatively small amounts are detected at any one time. However, 34-84 was not converted to 38-84, although cleavage at other sites in the COOH-terminal fragments was observed with more exhaustive digestion. The 1-34 fragment appears to be the final product of the action of cathepsin D on parathyroid hormone. Both enzymatically produced NH2-terminal fragments were fully active in the renal membrane adenylyl cyclase assay system.  相似文献   

14.
A monoclonal antibody directed against the beta-subunit of dog kidney Na+,K+-ATPase was generated. Immunoblots demonstrate that monoclonal antibody III 18A binds exclusively to the denaturated beta-subunit. Binding experiments with membranes and whole cells reveal that III 18A binds to membranes but not to whole cells, indicating that the antibody binds to a cytoplasmic domain on the native beta-subunit. To localize the antibody-binding epitope, purified membrane-bound enzyme was fragmented by protease treatment. Tryptic digestion yields a 30-kDa fragment of the beta-subunit, which still retains the binding capacity for the antibody. Thus III 18A probably does not bind to the NH2-terminal segment of the protein. On the other hand, fragmentation of the beta-subunit with low concentrations of papain, which is known to yield a 40-kDa NH2-terminal and a 16-kDa COOH-terminal fragment, results in a complete loss of III 18A binding. These results suggest that the antibody-binding epitope is localized at or near a papain cleavage site on the COOH-terminal part of the beta-subunit. This is inconsistent with a structure model of the beta-subunit containing only a single transmembrane hydrophobic segment with a cytoplasmic NH2-terminal portion, but agrees quite well with a hypothetical structure with four intramembrane segments.  相似文献   

15.
Forms of the biologically active N-terminal fragment of bovine parathyroid hormone oxidized at methionine 8, methionine 18, and both positions were prepared, separated from one another, and characterized as described earlier for the native hormone (A. L. Frelinger and J. E. Zull, (1984) J. Biol. Chem. 259, 5507). The biological properties of the oxidized forms were compared to those of the native hormone, using the renal membrane adenylyl cyclase assay. Oxidation at position 18 produced full agonists of the hormone with slightly reduced potency. Oxidation at position 8 produced partial agonists of greatly reduced potency. Oxidation at both positions produced partial agonists of even lower potency. Thus, methionine 8 is implicated both in binding and in activation of adenylyl cyclase, but methionine 18 is implicated only in binding. Further study showed that oxidation of both residues is dependent on the pH, ionic strength, and polarity of the solvent. However, methionine 8 is less easily oxidized than methionine 18. This difference is eliminated in 3 M guanidine-HCl with 1-34 and in 6 M guanidine-HCl with 1-84. On the other hand the difference in reactivity is greatly increased in high ionic strength, with methionine 8 becoming much less reactive. These results suggest that the methionine residues are important in the biologically active conformation of parathyroid hormone and that methionine 8 is less accessible than methionine 18 under certain conditions. These conclusions are discussed in the context of a specific model for the folding of parathyroid hormone.  相似文献   

16.
The histidine residue at the amino terminus of lysine-12 protected glucagon was replaced by its D-isomer by an established semisynthetic strategy to extend a stepwise series of replacements at this position. The product was examined for its secondary structure and its function. Circular dichroism spectra obtained at concentrations from 0.25 to 1.09 mg/ml at pH 10.2 in 0.2 M phosphate buffer were similar to those obtained with native hormone. Competitive binding assays and adenylate cyclase activation assays with partially purified rat liver plasma membranes show this D-His1 analog of glucagon to be a full agonist, causing the same maximum activation of adenylate cyclase as native hormone; but both binding and activation assays show the binding affinity to be diminished about 10-fold. The data suggest that the adjustment of the bonding of the imidazole group to the receptor to bring about transduction results in constraints on the conformation along the peptide sequence which interfere with the peptide adopting the same binding conformation achieved by the native hormone.  相似文献   

17.
The diterpene forskolin has been reported to activate adenylate cyclase in a manner consistent with an interaction at the catalytic unit. However, some of its actions are more consistent with an interaction at the coupling unit that links the hormone receptor to the adenylate cyclase activity. This report adds support to the latter possibility. Under conditions that lead to stimulation of adenylate cyclase in turkey erythrocyte membranes by GTP, forskolin also becomes more active. Additional evidence to support an influence of forskolin upon adenylate cyclase via the GTP-coupling protein N includes the following: (i) forskolin, at submaximal concentrations, leads to enhanced sensitivity and responsiveness of isoproterenol-dependent adenylate cyclase activity in turkey erythrocyte membranes; (ii) under specified conditions, the nucleotide GDP, an inhibitor of the stimulating nucleotide GTP and its analog, guanyl imidodiphosphate (Gpp(NH)p), also markedly inhibits the action of forskolin; (iii) both Gpp(NH)p and forskolin are associated with a decrease in agonist affinity for the beta-adrenergic receptor. However, actions of forskolin in the turkey erythrocyte are not identical to those of GTP: (i) forskolin is never as potent as Gpp(NH)p in activating adenylate cyclase; (ii) the magnitude of synergism between isoproterenol and forskolin is not equal to that observed with isoproterenol and Gpp(NH)p; (iii) at high concentrations, forskolin inhibits antagonist binding to the beta-receptor. Forskolin appears to have several sites of action in the turkey erythrocyte membrane, including an influence upon the adenylate cyclase regulatory protein N.  相似文献   

18.
A preparation of cardiac sarcolemmal membranes is described. These membranes exhibit 9-24-fold purification of (Na+ + K+)-ATPase, potassium-stimulated nitrophenolphosphatase, 5'-nucleotidase, adenylate cyclase, sialic acid content, and beta-receptor number. Sarcolemmal membranes have two classes of binding sites for the calcium entry blocker, bepridil, 70 X 10(12) high-affinity sites/mg, Kd 25-40 nM; and 30 X 10(15) low-affinity sites/mg, Kd 54-70 microM. Binding of bepridil to these sites appears responsible for inhibition of isoprenaline-stimulated and activation of fluoride-stimulated adenylate cyclase. Since basal adenylate cyclase activity is not influenced, bepridil must act not at the catalytic site, but by altering the interactions between beta-receptor and catalytic and regulatory components of adenylate cyclase.  相似文献   

19.
Glucagon was acylated at position 12 using conditions favoring reaction with the epsilon-amino group of lysine. The N epsilon-acetyl, N epsilon-hexanoyl, and N epsilon-decanoyl derivatives were prepared and purified. Secondary structure as measured by circular dichroism was lower in all derivatives than in glucagon, both in 95% methanol and in 25 mM sodium dodecyl sulfate at pH 2 and pH 12. N epsilon-Acetyl glucagon was less active than the native hormone in a radioreceptor assay and higher concentrations of this derivative were required to stimulate the adenylate cyclase activity of rat liver plasma membranes. The maximal extent of cyclase activation by this derivative was less than that found with the native hormone. N epsilon-Hexanoyl glucagon and N epsilon-decanoyl glucagon had greater activity than N epsilon-acetyl glucagon in receptor binding as well as in adenylate cyclase activation, although these two derivatives were not as active as the native hormone. N epsilon-hexanoyl glucagon and N epsilon-decanoyl glucagon were more potent in receptor binding than in adenylate cyclase activation. From these results it appears that the positive charge of the epsilon-amino groups may have a specific role in obtaining maximal biological activity, while the acyl groups contribute to the nonspecific hydrophobic interactions between the hormone and its receptor. In addition, a possible relationship between stabilization of the amphipathic helix in solution and the activity of these and other N epsilon-derivatives of glucagon is discussed.  相似文献   

20.
Membrane fractions obtained from hepatocytes treated with glucagon exhibited a decreased glucagon (with or without GTP)-stimulated adenylate cyclase activity. A maximum effect was seen in around 5 min. No change in the rate of cyclic AMP production was observed for the basal, NaF-, p[NH]ppG (guanosine 5'-[beta, gamma-imido]-triphosphate)- and GTP-stimulated states of the enzyme. The lag observed in the p[NH]ppG-stimulated adenylate cyclase activity of native membranes was abolished when membranes from glucagon-pretreated cells were used. When Mn2+ replaced Mg2+ in the assays, the magnitude of the apparent desensitization was decreased. Mn2+ abolished the lag of onset of p[NH]ppG-stimulated activity in native membranes. The desensitization process was dose-dependent on glucagon, which exhibited a Ka of 4 X 10(-10) M. Depletion of intracellular ATP did not affect this process. It is suggested that this desensitization occurs at the level of the guanine nucleotide-regulatory protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号