首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The strength of healing full-thickness incised dermal wounds in P/J mice was less than that of CD-1 mice although the strength of intact skin was similar for each strain. Five days after surgery, P/J mice had wounds with tensile strengths of 65 +/- 18g while CD-1 mice had wounds with strengths of 85 +/- 15g. The wound breaking strength of P/J mice was restored to normal values (86 +/- 18g) by administering glucan. The consequence of defective monocytes in wound repair is discussed in reference to P/J mice.  相似文献   

3.
Several lines of in vitro evidence suggest the potential role of IFN-gamma in angiogenesis and collagen deposition, two crucial steps in the wound healing process. In this report, we examined the role of IFN-gamma in the skin wound healing process utilizing WT and IFN-gamma KO mice. In WT mice, excisional wounding induced IFN-gamma mRNA and protein expression by infiltrating macrophages and T cells, with a concomitant enhancement of IL-12 and IL-18 gene expression. Compared with WT mice, IFN-gamma KO mice exhibited an accelerated wound healing as evidenced by rapid wound closure and granulation tissue formation. Moreover, IFN-gamma KO mice exhibited enhanced angiogenesis with augmented vascular endothelial growth factor mRNA expression in wound sites, compared with WT mice, despite a reduction in the infiltrating neutrophils, macrophages, and T cells. IFN-gamma KO mice also exhibited accelerated collagen deposition with enhanced production of TGF-beta1 protein in wound sites, compared with WT mice. Furthermore, the absence of IFN-gamma augmented the TGF-beta1-mediated signaling pathway, as evidenced by increases in the levels of total and phosphorylated Smad2 and a reciprocal decrease in the levels of Smad7. These results demonstrate that there is crosstalk between the IFN-gamma/Stat1 and TGF-beta1/Smad signaling pathways in the wound healing process.  相似文献   

4.
Macrophages play a crucial role in all stages of cutaneous wound healing responses and dysregulation of macrophage function can result in derailed wound repair. The phenotype of macrophages is influenced by the wound microenvironment and evolves during healing from a more pro-inflammatory (M1) profile in early stages, to a less inflammatory pro-healing (M2) phenotype in later stages of repair. The aim of the current study was to investigate the potential of exogenous administration of M2 macrophages to promote wound healing in an experimental mouse model of cutaneous injury. Bone marrow derived macrophages were stimulated in-vitro with IL-4 or IL-10 to obtain two different subsets of M2-polarized cells, M2a or M2c respectively. Polarized macrophages were injected into full-thickness excisional skin wounds of either C57BL/6 or diabetic db/db mice. Control groups were injected with non-polarized (M0) macrophages or saline. Our data indicate that despite M2 macrophages exhibit an anti-inflammatory phenotype in-vitro, they do not improve wound closure in wild type mice while they delay healing in diabetic mice. Examination of wounds on day 15 post-injury indicated delayed re-epithelialization and persistence of neutrophils in M2 macrophage treated diabetic wounds. Therefore, topical application of ex-vivo generated M2 macrophages is not beneficial and contraindicated for cell therapy of skin wounds.  相似文献   

5.
Skin injury evokes both innate and adaptive immune responses to restore tissue integrity. TLRs play a critical role in host responses to injurious insults. Previous studies demonstrated that RNAs released from damaged tissues served as endogenous ligands for TLR3. In this study, we investigated the involvement of TLR3 in skin restoration after injury. Full excisional wounds were created on the skin of mice with TLR3 deficiency. We found that skin wound closure in TLR3(-/-) mice was significantly delayed compared with control littermates. Wound healing parameters, including re-epithelialization, granulation formation, and neovascularization, were decreased in TLR3(-/-) mice. Further studies revealed that the absence of TLR3 led to defective recruitment of neutrophils and macrophages, in association with decreased expression of the chemokines, MIP-2/CXCL2, MIP-1α/CCL3, and MCP-1/CCL2, in the wound. Moreover, in wild type mice, the mRNA level and protein content of TLR3 was significantly upregulated in wounded skins and silencing of TLR3 signal adaptor Toll/IL-1R domain-containing adapter inducing IFN-β with small interfering RNA retarded wound closure. These results indicate an essential role for TLR3 and Toll/IL-1R domain-containing adapter inducing IFN-β in wound healing by regulating chemokine production and recruitment of myeloid cells to wound for tissue repair.  相似文献   

6.
Impaired wound healing can lead to scarring, and aesthetical and functional problems. The cytoprotective haem oxygenase (HO) enzymes degrade haem into iron, biliverdin and carbon monoxide. HO‐1 deficient mice suffer from chronic inflammatory stress and delayed cutaneous wound healing, while corneal wound healing in HO‐2 deficient mice is impaired with exorbitant inflammation and absence of HO‐1 expression. This study addresses the role of HO‐2 in cutaneous excisional wound healing using HO‐2 knockout (KO) mice. Here, we show that HO‐2 deficiency also delays cutaneous wound closure compared to WT controls. In addition, we detected reduced collagen deposition and vessel density in the wounds of HO‐2 KO mice compared to WT controls. Surprisingly, wound closure in HO‐2 KO mice was accompanied by an inflammatory response comparable to WT mice. HO‐1 induction in HO‐2 deficient skin was also similar to WT controls and may explain this protection against exaggerated cutaneous inflammation but not the delayed wound closure. Proliferation and myofibroblast differentiation were similar in both two genotypes. Next, we screened for candidate genes to explain the observed delayed wound closure, and detected delayed gene and protein expression profiles of the chemokine (C‐X‐C) ligand‐11 (CXCL‐11) in wounds of HO‐2 KO mice. Abnormal regulation of CXCL‐11 has been linked to delayed wound healing and disturbed angiogenesis. However, whether aberrant CXCL‐11 expression in HO‐2 KO mice is caused by or is causing delayed wound healing needs to be further investigated.  相似文献   

7.
Wound healing is a highly ordered process, requiring complex and coordinated interactions involving peptide growth factors of which transforming growth factor-beta (TGF-beta) is one of the most important. Nitric oxide is also an important factor in healing and its production is regulated by inducible nitric oxide synthase (iNOS). We have earlier shown that curcumin (diferuloylmethane), a natural product obtained from the plant Curcuma longa, enhances cutaneous wound healing in normal and diabetic rats. In this study, we have investigated the effect of curcumin treatment by topical application in dexamethasone-impaired cutaneous healing in a full thickness punch wound model in rats. We assessed healing in terms of histology, morphometry, and collagenization on the fourth and seventh days post-wounding and analyzed the regulation of TGF-beta1, its receptors type I (tIrc) and type II (tIIrc) and iNOS. Curcumin significantly accelerated healing of wounds with or without dexamethasone treatment as revealed by a reduction in the wound width and gap length compared to controls. Curcumin treatment resulted in the enhanced expression of TGF-beta1 and TGF-beta tIIrc in both normal and impaired healing wounds as revealed by immunohistochemistry. Macrophages in the wound bed showed an enhanced expression of TGF-beta1 mRNA in curcumin treated wounds as evidenced by in situ hybridization. However, enhanced expression of TGF-beta tIrc by curcumin treatment observed only in dexamethasone-impaired wounds at the 7th day post-wounding. iNOS levels were increased following curcumin treatment in unimpaired wounds, but not so in the dexamethasone-impaired wounds. The study indicates an enhancement in dexamethasone impaired wound repair by topical curcumin and its differential regulatory effect on TGF-beta1, it's receptors and iNOS in this cutaneous wound-healing model.  相似文献   

8.
Disorders of wound healing characterized by impaired or delayed re-epithelialization are a serious medical problem. These conditions affect many tissues, are painful, and are difficult to treat. In this study, using cornea as a model, we demonstrate for the first time the importance of carbohydrate-binding proteins galectins-3 and -7 in re-epithelialization of wounds. In two different models of corneal wound healing, re-epithelialization of wounds was significantly slower in galectin-3-deficient (gal3(-/-)) mice compared with wild-type (gal3(+/+)) mice. In contrast, there was no difference in corneal epithelial wound closure rates between galectin-1-deficient and wild-type mice. Quantitation of the bromodeoxyuridine-labeled cells in gal3(+/+) and gal3(-/-) corneas revealed that corneal epithelial cell proliferation rate is not perturbed in gal3(-/-) corneas. Exogenous galectin-3 accelerated re-epithelialization of wounds in gal3(+/+) mice but, surprisingly, not in the gal3(-/-) mice. Gene expression analysis using cDNA microarrays revealed that healing corneas of gal3(-/-) mice contain markedly reduced levels of galectin-7 compared with those of gal3(+/+) mice. More importantly, unlike galectin-3, galectin-7 accelerated re-epithelialization of wounds in both gal3(-/-) and gal3(+/+) mice. In corresponding experiments, recombinant galectin-1 did not stimulate the corneal epithelial wound closure rate. The extent of acceleration of re-epithelialization of wounds with both galectin-3 and galectin-7 was greater than that observed in most of the published studies using growth factors. These findings have broad implications for developing novel therapeutic strategies for treating nonhealing wounds.  相似文献   

9.
Wound healing in a pre-existing Th2-dominated skin milieu was assessed by using an epidermal specific interleukin-4 (IL-4) transgenic (Tg) mouse model, which develops a pruritic inflammatory skin condition resembling human atopic dermatitis. Our results demonstrated that IL-4 Tg mice had delayed wound closure and re-epithelialization even though these mice exhibited higher degrees of epithelial cell proliferation. Wounds in IL-4 Tg mice also showed a marked enhancement in expression of inflammatory cytokines/chemokines, elevated infiltration of inflammatory cells including neutrophils, macrophages, CD3+ lymphocytes, and epidermal dendritic T lymphocytes. In addition, these mice exhibited a significantly higher level of angiogenesis as compared to wild type mice. Furthermore, wounds in IL-4 Tg mice presented with larger amounts of granulation tissue, but had less expression and deposition of collagen. Taken together, an inflamed skin condition induced by IL-4 has a pronounced negative influence on the healing process. Understanding more about the pathogenesis of wound healing in a Th2- dominated environment may help investigators explore new potential therapeutic strategies.  相似文献   

10.
An increasing number of patients are being treated with growth hormone (GH) for the enhancement of body growth but also as an anti-aging strategy. However, the side effects of GH have been poorly defined. In this study we determined the effect of GH on wound repair and its mechanisms of action at the wound site. For this purpose, we performed wound healing studies in transgenic mice overexpressing GH. Full thickness incisional and excisional wounds of transgenic animals developed extensive, highly vascularized granulation tissue. However, wound bursting strength was not increased. Wound closure was strongly delayed as a result of enhanced granulation tissue formation and impaired wound contraction. The latter effect is most likely due to a significantly reduced number of myofibroblasts at the wound site. By using in vitro studies with stressed collagen lattices, we identified GH as an inhibitor of transforming growth factor beta-induced myofibroblast differentiation, resulting in a reduction in fibroblast contractile activity. These results revealed novel roles of GH in angiogenesis and myofibroblast differentiation, which are most likely not mediated via insulin-like growth factors at the wound site. Furthermore, our data suggested that systemic GH treatment is detrimental for wound healing in healthy individuals.  相似文献   

11.
Myofibroblasts respond to an array of signals from mitogens and cytokines during the course of wound healing following a myocardial infarction (MI), and these signals may coordinate ventricular myofibroblast proliferation. Furthermore, myofibroblasts are contractile and contribute to wound contraction by imparting mechanical tension on surrounding extracellular matrix. Although TGF-beta(1), CT-1, and PDGF-BB participate in various stages of post-MI wound healing, their combined net effect(s) on myofibroblast function is unknown. We investigated myofibroblast proliferation, expression of cell cycle proteins, and contractile function of cells treated with TGF-beta(1) and/or CT-1. We confirmed that TGF-beta(1) (10 ng/ml) suppresses proliferation of these cells, whereas CT-1 (10 ng/ml) and, for comparative purposes, PDGF-BB (1 ng/ml) treatments were associated with proliferation. Specific TGF-beta(1) treatment ablated CT-1-induced myofibroblast proliferation. TGF-beta(1) effects were specific, as they were suppressed by either TGF-beta-neutralizing antibody or viral Smad7 overexpression. TGF-beta(1) treatment also increased expression of p27 and decreased expression of cyclin E and Cdk2 in primary cells. CT-1 (10 ng/ml) treatment of myofibroblasts had no effect on collagen gel deformation versus controls, whereas TGF-beta(1) (10 ng/ml) and PDGF (10 ng/ml) treatments were associated with significant cell contraction; again, TGF-beta(1)-mediated contraction was unaffected by CT-1. Alone, CT-1 and TGF-beta(1) treatments exert opposing effects on myofibroblast function, whereas in combination TGF-beta(1)-mediated effects supersede those of CT-1 (and PDGF-BB). Thus TGF-beta(1) and CT-1 exert differential effects on myofibroblast proliferation and contraction in vitro, and we suggest that a balance of these effects may be important for the execution of normal cardiac wound healing.  相似文献   

12.
Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice   总被引:1,自引:0,他引:1  
Mirza R  Koh TJ 《Cytokine》2011,56(2):256-264
The hypothesis of this study was that cells of the monocyte/macrophage lineage (Mo/Mp) exhibit an impaired transition from pro-inflammatory to pro-healing phenotypes in wounds of diabetic mice, which contributes to deficient healing. Mo/Mp isolated from excisional wounds in non-diabetic db/+ mice exhibited a pro-inflammatory phenotype on day 5 post-injury, with high level expression of the pro-inflammatory molecules interleukin-1β, matrix metalloprotease-9 and inducible nitric oxide synthase. Wound Mo/Mp exhibited a less inflammatory phenotype on day 10 post-injury, with decreased expression of the pro-inflammatory molecules and increased expression of the alternative activation markers CD206 and CD36. In contrast, in db/db mice, the pro-inflammatory phenotype persisted through day 10 post-injury and was associated with reduced expression of insulin-like growth factor-1, transforming growth factor-β1 and vascular endothelial growth factor. Reduced levels of these growth factors in wounds of db/db mice may have contributed to impaired wound closure, reduced granulation tissue formation, angiogenesis and collagen deposition. The persistent pro-inflammatory wound Mo/Mp phenotype in db/db mice may have resulted from elevated levels of pro-inflammatory interleukin-1β and interferon-γ and reduced levels of anti-inflammatory interleukin-10 in the wound environment. Our findings are consistent with the hypothesis that dysregulation of Mo/Mp phenotypes contributes to impaired healing of diabetic wounds.  相似文献   

13.
Our studies demonstrated that Heme oxygenase (HO), in particular, the constitutive HO-2, is critical for a self-resolving inflammatory and repair response in the cornea. Epithelial injury in HO-2 null mice leads to impaired wound closure and chronic inflammation in the cornea. This study was undertaken to examine the possible relationship between HO-2 and the recruitment of neutrophils following a corneal surface injury in wild type (WT) and HO-2 knockout (HO-2(-/-)) mice treated with Gr-1 monoclonal antibody to deplete peripheral neutrophils. Epithelial injury was performed by removing the entire corneal epithelium. Infiltration of inflammatory cell into the cornea in response to injury was higher in HO-2(-/-) than in WT. However, the rate of corneal wound closure following neutrophil depletion was markedly inhibited in both WT and HO-2(-/-) mice by 60% and 85%, respectively. Neutropenia induced HO-1 expression in WT but not in HO-2(-/-) mice. Moreover, endothelial cells lacking HO-2 expressed higher levels of the Midkine and VE-cadherin and displayed strong adhesion to neutrophils suggesting that perturbation in endothelial cell function caused by HO-2 depletion underlies the increased infiltration of neutrophils into the HO-2(-/-) cornea. Moreover, the fact that neutropenia worsened epithelial healing of the injured cornea in both WT and HO-2(-/-) mice suggest that cells other than neutrophils contribute to the exaggerated inflammation and impaired wound healing seen in the HO-2 null cornea.  相似文献   

14.
Wound healing is a multistep phenomenon that relies on complex interactions between various cell types. Calpains are ubiquitously expressed proteases regulating several processes including cellular adhesion and motility as well as inflammation and angiogenesis. Calpains can be targeted by inhibitors, and their inhibition was shown to reduce organ damage in various disease models. We aimed to assess the role of calpains in skin healing and the potential benefit of calpain inhibition on scar formation. We used a pertinent model where calpain activity is inhibited only in lesional organs, namely transgenic mice overexpressing calpastatin (CPST), a specific natural calpain inhibitor. CPST mice showed a striking delay in wound healing particularly in the initial steps compared to wild types (WT). CPST wounds displayed reduced proliferation in the epidermis and delayed re-epithelization. Granulation tissue formation was impaired in CPST mice, with a reduction in CD45+ leukocyte infiltrate and in CD31+ blood vessel density. Interestingly, wounds on WT skin grafted on CPST mice (WT/CPST) showed a similar delayed healing with reduced angiogenesis and inflammation compared to wounds on WT/WT mice demonstrating the implication of calpain activity in distant extra-cutaneous cells during wound healing. CPST wounds showed a reduction in alpha-smooth muscle actin (αSMA) expressing myofibroblasts as well as αSMA RNA expression suggesting a defect in granulation tissue contraction. At later stages of skin healing, calpain inhibition proved beneficial by reducing collagen production and wound fibrosis. In vitro, human fibroblasts exposed to calpeptin, a pan-calpain inhibitor, showed reduced collagen synthesis, impaired TGFβ-induced differentiation into αSMA-expressing myofibroblasts, and were less efficient in a collagen gel contraction assay. In conclusion, calpains are major players in granulation tissue formation. In view of their specific effects on fibroblasts a late inhibition of calpains should be considered for scar reduction.  相似文献   

15.
The regulation of macrophage phenotype by neutrophils was studied in the s.c. polyvinyl alcohol sponge wound model in mice made neutropenic by anti-Gr-1 Ab, as well as in cell culture. Wounds in neutropenic mice contained 100-fold fewer neutrophils than those in nonneutropenic controls 1 day after sponge implantation. Wound fluids from neutropenic mice contained 68% more TNF-alpha, 168% more IL-6, and 61% less TGF-beta1 than those from controls. Wound fluid IL-10 was not different between the two groups, and IL-4 was not detected. Intracellular TNF-alpha staining was greater in cells isolated from neutropenic wounds than in those from control wounds. The hypothesis that wound neutrophil products modulate macrophage phenotype was tested in Transwell cocultures of LPS-stimulated J774A.1 macrophages and day 1 wound cells (84% neutrophils/15% macrophages). Overnight cocultures accumulated 60% less TNF-alpha and IL-6 than cultures of J774A.1 alone. The suppression of cytokine release was mediated by a soluble factor(s), because culture supernatants from wound cells inhibited TNF-alpha and IL-6 release from LPS-stimulated J774A.1 cells. Culture supernatants from purified wound neutrophils equally suppressed TNF-alpha release from LPS-stimulated J774A.1 cells. Wound cell supernatants also suppressed TNF-alpha and superoxide release from murine peritoneal macrophages. The TNF-alpha inhibitory factor has a molecular mass <3000 Da and is neither PGE2 nor adenosine. The present findings confirm a role for neutrophils in the regulation of innate immune responses through modulation of macrophage phenotype.  相似文献   

16.
Wound healing is a well-regulated but complex process that involves haemostasis, inflammation, proliferation and maturation. Recent reports suggest that microRNAs (miRs) play important roles in dermal wound healing. In fact, miR deregulation has been linked with impaired wound repair. miR-155 has been shown to be induced by inflammatory mediators and plays a central regulatory role in immune responses. We have investigated the potential role of miR-155 in wound healing. By creating punch wounds in the skin of mice, we found an increased expression of miR-155 in wound tissue when compared with healthy skin. Interestingly, analysis of wounds of mice lacking the expression of miR-155 (miR-155−/−) revealed an increased wound closure when compared with wild-type animals. Also, the accelerated wound closing correlated with elevated numbers of macrophages in wounded tissue. Gene expression analysis of wounds tissue and macrophages isolated from miR-155−/− mice that were treated with interleukin-4 demonstrated an increased expression of miR-155 targets (BCL6, RhoA and SHIP1) as well as, the finding in inflammatory zone-1 (FIZZ1) gene, when compared with WT mice. Moreover, the up-regulated levels of FIZZ1 in the wound tissue of miR-155−/− mice correlated with an increased deposition of type-1 collagens, a phenomenon known to be beneficial in wound closure. Our data indicate that the absence of miR-155 has beneficial effects in the wound healing process.  相似文献   

17.
The tetraspanin Tspan8 supports via associated integrins and proteases tumor progression and angiogenesis. To shed light on its activities in non-transformed cells, we generated a Tspan8 knockout (ko) mouse, comparing leukocyte migration, angiogenesis, wound healing and tumor growth with wild type, CD151ko and Tspan8/CD151ko (dbko) mice. CD151ko mice were included as CD151 activities resemble that of Tspan8, and dbko mice to exclude mutual substitution. Tspan8ko and dbko mice show no pathological phenotype. However, delayed type hypersensitivity reactions are mitigated in Tspan8ko mice, angiogenesis is severely impaired in Tspan8ko, CD151ko and dbko mice, with Tspan8 mostly affecting lymphangiogenesis. Distinct contributions of CD151 and Tspan8 to skin wound healing rely on preferentially CD151 anchoring basal keratinocytes and Tspan8 promoting motility. Proliferation of wounded skin keratinocytes is not affected. Metastasis formation of a melanoma and a Tspan8-expressing pancreatic cancer line was impaired in Tspan8ko and dbko mice, pointing towards a contribution of host Tspan8 to tumor progression. In line with the importance of tetraspanins in exosome-mediated intercellular communication, defects became mitigated by Tspan8/CD151-competent serum exosomes, which offers a most promising therapeutic option for chronic wounds and arteriosclerosis.  相似文献   

18.
Chen L  Tredget EE  Wu PY  Wu Y 《PloS one》2008,3(4):e1886
Bone marrow derived mesenchymal stem cells (BM-MSCs) have been shown to enhance wound healing; however, the mechanisms involved are barely understood. In this study, we examined paracrine factors released by BM-MSCs and their effects on the cells participating in wound healing compared to those released by dermal fibroblasts. Analyses of BM-MSCs with Real-Time PCR and of BM-MSC-conditioned medium by antibody-based protein array and ELISA indicated that BM-MSCs secreted distinctively different cytokines and chemokines, such as greater amounts of VEGF-alpha, IGF-1, EGF, keratinocyte growth factor, angiopoietin-1, stromal derived factor-1, macrophage inflammatory protein-1alpha and beta and erythropoietin, compared to dermal fibroblasts. These molecules are known to be important in normal wound healing. BM-MSC-conditioned medium significantly enhanced migration of macrophages, keratinocytes and endothelial cells and proliferation of keratinocytes and endothelial cells compared to fibroblast-conditioned medium. Moreover, in a mouse model of excisional wound healing, where concentrated BM-MSC-conditioned medium was applied, accelerated wound healing occurred compared to administration of pre-conditioned or fibroblast-conditioned medium. Analysis of cell suspensions derived from the wound by FACS showed that wounds treated with BM-MSC-conditioned medium had increased proportions of CD4/80-positive macrophages and Flk-1-, CD34- or c-kit-positive endothelial (progenitor) cells compared to wounds treated with pre-conditioned medium or fibroblast-conditioned medium. Consistent with the above findings, immunohistochemical analysis of wound sections showed that wounds treated with BM-MSC-conditioned medium had increased abundance of macrophages. Our results suggest that factors released by BM-MSCs recruit macrophages and endothelial lineage cells into the wound thus enhancing wound healing.  相似文献   

19.
The role of many growth factors and cytokines in the process of wound healing has been intensively investigated in recent two decades. Among them, transforming growth factor-betas (TGF-betas) are well known to have a potent stimulatory effect on collagen synthesis as shown in various in vivo experimental systems. In the present study, we examined the effects of various growth factors on the promoter activity of the proalpha2 (I) collagen gene (COL1A2) during the wound healing process. For this purpose, we utilized transgenic mice harboring the -17 kb promoter sequence of the mouse COL1A2 linked to either a firefly luciferase or a bacterial beta-galactosidase gene. These mice exhibited normal phenotypic expression and the wound healing process was not impaired. Full thickness wounds were made by punch biopsy. We examined the effects of TGF-beta1, -beta2, -beta3, basic fibroblast growth factor, platelet-derived growth factor, and connective tissue growth factor by applying them locally to the open wound every 2 days. Among the growth factors examined, all of the three isoforms of TGF- exhibited a more potent stimulatory effect on COL1A2 promoter activity than did other factors. In addition, while TGF-beta1 and -beta2 significantly increased the number of fibroblasts which were positive for X-Gal staining, TGF-beta3 treatment did not change the number of beta-galactosidase expressing cells. Accumulation of collagen fibers was observed to the same extent in the mice treated with TGF-beta1 and those with TGF-beta3. These findings suggest that TGF-beta1 and -beta3 have similar but not identical regulatory mechanisms of COL1A2 expression, and that their pathophysiological roles in wound healing might be different from each other.  相似文献   

20.
Wound healing consists of a complex, dynamic and overlapping process involving inflammation, proliferation and tissue remodeling. A better understanding of wound healing process at the molecular level is needed for the development of novel therapeutic strategies. Receptor-interacting protein kinase 3 (RIPK3) controls programmed necrosis in response to TNF-α during inflammation and has been shown to be highly induced during cutaneous wound repair. However, its role in wound healing remains to be demonstrated. To study this, we created dorsal cutaneous wounds on male wild-type (WT) and RIPK3-deficient (Ripk3 -/-) mice. Wound area was measured daily until day 14 post-wound and skin tissues were collected from wound sites at various days for analysis. The wound healing rate in Ripk3 -/- mice was slower than the WT mice over the 14-day course; especially, at day 7, the wound size in Ripk3 -/- mice was 53% larger than that of WT mice. H&E and Masson-Trichrome staining analysis showed impaired quality of wound closure in Ripk3 -/- wounds with delayed re-epithelialization and angiogenesis and defected granulation tissue formation and collagen deposition compared to WT. The neutrophil infiltration pattern was altered in Ripk3 -/- wounds with less neutrophils at day 1 and more neutrophils at day 3. This altered pattern was also reflected in the differential expression of IL-6, KC, IL-1β and TNF-α between WT and Ripk3 -/- wounds. MMP-9 protein expression was decreased with increased Timp-1 mRNA in the Ripk3 -/- wounds compared to WT. The microvascular density along with the intensity and timing of induction of proangiogenic growth factors VEGF and TGF-β1 were also decreased or delayed in the Ripk3 -/- wounds. Furthermore, mouse embryonic fibroblasts (MEFs) from Ripk3 -/- mice migrated less towards chemoattractants TGF-β1 and PDGF than MEFs from WT mice. These results clearly demonstrate that RIPK3 is an essential molecule to maintain the temporal manner of the normal progression of wound closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号