首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of pharmaceutically active compounds in surface and ground water is of concern due to the adverse effects they may have on human health, aquatic life, and the environment, emphasizing the importance of their removal from the water compartment. Activated carbon adsorption has proven to be effective for the removal of several types of inorganic and organic contaminants either as a stand-alone polishing step or in combination with other conventional and advanced water and wastewater treatment systems. This paper discusses the current status of the removal of pharmaceuticals from water using activated carbon derived from numerous precursors, providing an in-depth review of the multitude of factors (adsorbent properties, adsorbate properties, operating conditions) affecting the adsorption process, from the preparation of the activated carbon to its regeneration. A critical assessment of the existing literature is presented, highlighting research and development needs that may ultimately lead to a more comprehensive and sustainable use of activated carbon for the removal of pharmaceuticals from the water environment.  相似文献   

2.
This laboratory scale experiment was designed to study the suitability of organic wastes from paper and food seasoning industries to improve the soil organic carbon for rice cultivation. Lignin-rich wastewater from paper industry and nitrogen-rich effluent from a food industry at suitably lower concentrations were used at two levels of green manure to enhance the soil organic carbon fraction over time. Both the groups of soils with or without Sesbania were incubated under submerged condition at 25 degrees C for 15 days. Wastewaters from paper industry (WP), food industry (WS), and a combination of WP+WS were added separately to both the treatment groups in flasks. After 103 days of incubation, from all the three treatments and control, total organic carbon and alkali-soluble organic carbon fractions were analyzed. Results indicated that in all the three treatments containing green manure amended with industrial wastewaters, the organic carbon content increased significantly. The alkali-soluble organic carbon fraction was increased by 59% in the soil amended with green manure containing WS and by 31% in the treatment without green manure compared to control. The paper mill waste water namely, WP, increased the organic carbon only in the soil containing green manure by 63%. The combined treatment of WP+WS with green manure increased alkali-soluble organic carbon fraction by 90% compared to control, while in the treatment without green manure, the organic carbon increase was 71%. Overall, the combined treatment WP+WS with green manure could increase the alkali-soluble organic carbon fraction more than all other treatments. Hence, wastewater rich in organics from paper and food industries can be efficiently used to temporarily increase the soil organic carbon content.  相似文献   

3.
Bioregeneration is defined as the renewal of the adsorptive capacity of activated carbon by microorganisms for further adsorption. Bioregeneration of activated carbon increases the service-life of activated carbons. It is traditionally believed that bioregeneration occurs as a result of a concentration gradient between the carbon and the bulk liquid. Therefore, bioregeneration can only occur for compounds that readily desorb. Some researchers suggest that also exo-enzymes act in bioregeneration. Bioregeneration has been demontrated in offline systems, which involve desorption and biological removal of adsorbed organic matter in a closed-loop recirculating batch system. It has also been shown that bioregeneration of carbon occurs during the time course of wastewater treatment processes that are based on biological activated carbons (BACs). However, most of the studies aiming at quantifying bioregeneration were performed using offline systems because of difficulties encountered in quantifying bioregeneration during BAC treatments of wastewater. Bioregeneration is dependent on several factors including biodegradability, adsorbability and desorbability of sorbate, characteristics of activated carbon and process configuration, and it can be optimized by varying the operational conditions. In this review, we are addressing the enhancement of biological treatment by activated carbon, the definition and mechanisms of biological regeneration, the relationship between adsorption reversibility and bioregeneration, the factors affecting bioregeneration, the methods for determination and quantification of bioregeneration and the mathematical models of bioregeneration. Future research is still required to determine the optimum conditions for an increased bioregeneration. Particularly, factors such as the activated carbon type, nature of the microbial community and optimum process configuration need further investigation. The validity and efficiency of exo-enzymatic activities on bioregeneration should still be investigated.  相似文献   

4.
A study was performed to characterize a sample of reverse-forward, tar-sand combustion process water, and to conduct an initial evaluation of activated sludge treatment of the process water. No pretreatment of the wastewater was considered necessary prior to biological oxidation other than addition of ca. 0.006M caustic/L influent to maintain reactor pH in the desired range of 7.0-7.5. The process water was treated successfully by biological oxidation, achieving an 88% reduction of both COD and soluble organic carbon and a 97% reduction of BOD. The disposition of about 150 organic compounds was evaluated and it was shown that a variety of carboxylic acids and aromatic compounds were removed by treatment. Quinolines and certain higher molecular weight carboxylic acids were not removed as effectively as other compounds. These preliminary results should assist in the design of future investigations with tar-sand process water for purposes of optimizing process treatment and improving sample characterization.  相似文献   

5.
研究水体环境因素(温度、光照和pH)、小分子有机碳和有机氮化合物对一株具有高效脱氮潜力的沼泽红假单胞菌(Rhodopseudomonas palustris)CQV97在无机三态氮共存体系中脱除无机三态氮的影响规律。结果显示,该菌株在20~40℃,500~5 000lux,pH 6.0~9.0环境条件下,能够脱除高浓度无机三态氮(其中亚硝氮不低于40mg·L-1),表明该菌株具有较强的适应复杂环境的能力;以乙酸钠/乙醇为唯一碳源时,该菌株能有效地去除无机三态氮,而以葡萄糖为唯一碳源时,能有效去除硝氮,但不能去除氨氮,亚硝氮明显积累,表明环境中小分子有机碳源影响菌体对无机三态氮的去除能力;体系中添加高浓度(120mg·L-1)蛋白胨或尿素时,由于有机氮降解的释氨作用,菌体对氨氮的去除能力受到明显抑制,氨氮积累明显,13d时氨氮去除率仅分别为16%(蛋白胨)和6%(尿素),但硝氮和亚硝氮的去除能力并没有受到明显影响。异位处理实际水体结果表明,菌株可使水体中氨氮含量明显降低、硝氮和亚硝氮被完全去除。综上,沼泽红假单胞菌CQV97菌株环境适应能力强,具有高效脱除水体无机三态氮的应用潜力,这为进一步开发高效脱氮微生物制剂及其合理使用奠定了基础。  相似文献   

6.
The bioremediation of water system contaminated with phenolic compounds having endocrine-disrupting activity,i.e. 2,4-dichlorophenol, 2,4-dichlorophenoxy acetic acid (2,4-D), and 2,4,5-trichlorophenoxy acetic acid (2,4,5-T), was investigated by using ozone oxidation and activated sludge treatment. Ozone oxidation (ozonation time: 30 min) followed by activated sludge treatment (incubation time: 5 days) was an efficient treatment method for the conversion of phenolic compounds in water into carbon dioxide and decreased the value of total organic carbon (TOC) up to about 10% of initial value. Furthermore, 2,4-D was dissolved in water containing salt,i.e. artificial seawater (ASW), and this water was used as model coastal water contaminated with phenolic compounds. The activated sludge treatment (incubation time: 5 days) could consume significantly organic acids produced from 2,4-D in the model costal water by the ozone oxidation (ozonation time: 30 min) and decrease the value of TOC up to about 35% of initial value.  相似文献   

7.
Summary Wastewater from fiber board manufacture consisting in a mixture of Pinus radiata, Eucaliptus globulus and Laureliopsis phillipiana (tepa) (3:1:1) has been studied in laboratory scale activated sludge reactors with organic load rate range of 50–1700 gCOD/m3.d. A stable operation at high organic load rate with hydraulic retention time of one day was achieved. Purification efficiencies up to 90 % of COD removal could be achieved in an activated sludge treatment of fiber board wastewater working with 1 day HRT for wood log cooking wastewater and with 4 days HRT when glueing wastewater is added to the cooking wastewater treatment. Suspended solids, color and phenol concentration were negligible in the efluent of the activated sludge system.  相似文献   

8.
The effect of addition of organic carbon sources (acetic acid and waste activated sludge alkaline fermentation liquid) on anaerobic–aerobic (low dissolved oxygen, 0.15–0.45 mg/L) biological municipal wastewater treatment was investigated. The results showed that carbon source addition affected not only the transformations of polyhydroxyalkanoates (PHA), glycogen, nitrogen and phosphorus, but the net removal of nitrogen and phosphorus. The removal efficiencies of TN and TP were, respectively, 61% and 61% without organic carbon source addition, 81% and 95% with acetic acid addition, and 83% and 97% with waste activated sludge alkaline fermentation liquid addition. It seems that the alkaline fermentation liquid of waste biosolids generated in biological wastewater treatment plant can be used to replace acetic acid as an additional carbon source to improve the anaerobic–aerobic (low dissolved oxygen) municipal wastewater nutrients removal although its use was observed to cause a slight increase of effluent BOD and COD concentrations.  相似文献   

9.
Every day, pulp and paper mills in the USA discharge millions of liters of wastewater. Primary and secondary treatment of this wastewater often enriches it with phosphorus, resulting in uncontrolled eutrophication of receiving water bodies. A new method of tertiary wastewater treatment uses controlled growth of algae in a photobioreactor to sequester phosphorus into algal biomass, which is then harvested. This typically requires addition of a nitrogen fertilizer (nitrate, ammonium, or urea) to the water. We show on the laboratory scale that chitin can be used as an alternative source of nitrogen for the tertiary treatment of pulp mill wastewater using algae. We demonstrate that phosphorus can be efficiently removed from pulp wastewater using algae and chitin. Furthermore, phosphorus removal with chitin did not result in an increase in dissolved nitrogen in the wastewater because it is insoluble, unlike conventional nitrogen fertilizers. Despite its insolubility, it has recently been found that many diverse algae and cyanobacteria can use it as a source of nitrogen. Chitin has many advantages over conventional nitrogen fertilizers for use in wastewater treatment technologies. It is the second-most abundant natural polymer and is a waste product of the shellfish industry. Chitin is sustainable, inexpensive, and carbon neutral. Thus, chitin improves the sustainability and carbon footprints associated with water treatment, while the production of commercially attractive algal biomass helps to offset costs associated with the water treatment system itself.  相似文献   

10.
Chen T  Wu C  Liu R 《Bioresource technology》2011,102(19):9236-9240
Steam reforming of two kinds of bio-oil from rice husks fast pyrolysis was conducted for hydrogen production at three temperatures (650, 750 and 850 °C) with Ni-based catalyst in a fixed-bed reactor. The gas composition and organic compounds in liquid condensate were detected by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), respectively. In addition, the carbon deposition was also investigated. The results showed that the mole fraction range of hydrogen was within 55.8-61.3% at all temperatures and more hydrogen was produced at the higher temperature. The highest H? efficiency of bio-oil steam reforming was 45.33% when extra water was added. The bio-oil with lower content of chemical compounds has a higher H? efficiency, but its hydrogen volume was less. Analysis of the liquid condensate showed that most of the organic compounds were circularity compounds. The carbon deposition can decrease the bio-oil conversion, and it was easier to form at the temperature of 750 °C.  相似文献   

11.
Developments in odour control and waste gas treatment biotechnology: a review   总被引:27,自引:0,他引:27  
Waste and wastewater treatment processes produce odours, which can cause a nuisance to adjacent populations and contribute significantly to atmospheric pollution. Sulphurous compounds are responsible for acid rain and mist; many organic compounds of industrial origin contribute to airborne public health concerns, as well as environmental problems. Waste gases from industry have traditionally been treated using physicochemical processes, such as scrubbing, adsorption, condensation, and oxidation, however, biological treatment of waste gases has gained support as an effective and economical option in the past few decades. One emergent technique for biological waste gas treatment is the use of existing activated sludge plants as bioscrubbers, thus treating the foul air generated by other process units of the wastewater treatment system on site, with no requirement for additional units or for interruption of wastewater treatment. Limited data are available regarding the performance of activated sludge diffusion of odorous air in spite of numerous positive reports from full-scale applications in North America. This review argues that the information available is insufficient for precise process design and optimization, and simultaneous activated sludge treatment of wastewater and airborne odours could be adopted worldwide.  相似文献   

12.
Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation.  相似文献   

13.
A process train consisting of the following sequence of unit processes, a berl-saddle-packed anaerobic filter, an expanded bed, granular activated carbon anaerobic filter, and an activated sludge nitrification system was evaluated for the treatment of a synthetically prepared coal gasification wastewater. The first-stage anaerobic filter resulted in very little removal of organic matter and no methane production. Excellent reduction in organic matter occurred in the granular activated carbon anaerobic filter. The removal mechanism was initially adsorptive and near the end of the study, removal of organic matter was primarily through conversion to methane gas. It is felt that the success of the activated carbon anaerobic filter was due to the ability of the activated carbon to sequester some components of the wastewater that were toxic to the mixed culture of anaerobic microorganisms. The activated sludge nitrification system resulted in complete ammonia oxidation and was very efficient in final effluent polishing.  相似文献   

14.
Endocrine-disrupting phenolic compounds in the water were degraded by laccase fromTrametes sp. followed by activated sludge treatment. The effect of temperature on the degradation of phenolic compounds and the production of organic compounds were investigated using endocrine-disrupting chemicals such as bisphenol A, 2,4-dichlorophenol, and diethyl phthalate. Bisphenol A and 2,4-dichlorophenol disappeared completely after the laccase treatment, but no disappearance of diethyl phthalate was observed. The Michaelis-Menten type equation was proposed to represent the degradation rate of bisphenol A by the lacasse under various temperatures. After the laccase treatment of endocrine-disrupting chemicals, the activated sludge treatment was attempted and it could convert about 85 and 75% of organic compounds produced from bisphenol A and 2,4-dichlorophenol into H2O and CO2, respectively.  相似文献   

15.
The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon.  相似文献   

16.
《Process Biochemistry》2010,45(3):355-362
The purpose of this paper is to clarify the effect of the two different GAC types (steam activated or chemically activated) on DOC biodegradation in biological activated carbon (BAC) columns. For this purpose, raw water taken from a surface reservoir was fed to continuous-flow lab-scale biofiltration columns which were run for more than 18,000 bed volumes. The effect of pre-ozonation on DOC removal was also evaluated. Experimental results showed that biological activity inside the BAC columns extended the service life and the choice of filter material was crucial in BAC systems. The DOC biodegradation was higher in thermally activated carbon columns compared to the chemically activated one. The ability of GAC to better adsorb and retain organic compounds increased the chance of biodegradation. Contrary to expectations, pre-ozonation did not significantly enhance DOC biodegradation. Despite the high increase in biodegradable dissolved organic carbon (BDOC) upon ozonation, overall DOC biodegradation efficiencies did not differ from raw water. Overall, the DOC biodegradation in columns was higher than in most of the studies. This observation was primarily attributed to the low specific ultraviolet absorption (SUVA) values in raw water indicating a high biodegradability.  相似文献   

17.
The recovery of an organic carbon source from a waste activated sludge by using alkaline hydrolysis and radiation treatment was studied, and the feasibility of the solubilized sludge carbon source for a biological denitrification was also investigated. The effects of an alkaline treatment and gamma-ray irradiation on a biodegradability enhancement of the sludge were also studied. A modified continuous bioreactor for a denitrification (MLE reactor) was operated by using a synthetic wastewater for 47 days. Alkaline treatment of pH 10 and gamma-ray irradiation of 20 kGy were found to be the optimum carbon source recovery conditions. COD removal of 84% and T-N removal of 51% could be obtained by using the solubilized sludge carbon source through the MLE denitrification process. It can be concluded that the carbon source recovered from the waste activated sludge was successfully employed as an alternative carbon source for a biological denitrification.  相似文献   

18.
《Process Biochemistry》1999,34(5):429-439
Fenton’s oxidation and activated carbon adsorption were examined as pretreatment processes for dyestuff wastewater having high salinity, colour, and non-biodegradable organic concentrations. In this work, each wastewater stream produced by individual production processes was classified as streams R1, R2, and R3. The stream having a value of BOD5/COD lower than 0.4 was pretreated by Fenton’s oxidation or activated carbon adsorption to increase the ratio of BOD5/COD which indicates biodegradability. For Fenton’s oxidation with one stream having a value of BOD5/COD lower than 0.4, the optimal reaction pH was 3.0 and the minimum dosing concentration (mg l−1) of H2O2:FeSO4·7H2O was 700:3500. Stream R3, which consisted mainly of methanol was efficiently treated by activated carbon adsorption. The ratio of BOD5/COD was also increased to 0.432 and 0.31 from 0.06 in Fenton’s oxidation and activated carbon adsorption, respectively. A biological treatment system using a fixed bed reactor was also investigated to enhance biological treatment efficiency at various hydraulic retention times, pretreatment conditions by Fenton’s reagent and salt concentrations by dyestuff wastewater. In addition, the efficiency of Fenton’s oxidation as a post-treatment system was also investigated to present a total treatment process of dyestuff wastewater. As the influent COD and salinity were increased, the effluent SS and COD were consequently increased. However, as the microorganisms became adapted to the changed influent condition, the treatment efficiency of the fixed bed reactor quickly recovered under the high COD and salinity since the microorganisms were well adapted to toxic influent conditions. A wastewater treatment process consisting of chemical oxidation, activated carbon adsorption, fixed bed biofilm process and Fenton’s oxidation as a post-treatment system can be useful to treat dyestuff wastewater having high salinity, colour, and non-biodegradable organic concentration.  相似文献   

19.
随着有机氟化物在各领域的广泛应用,含氟有机废水处理面临巨大挑战。活性污泥作为有机废水处理的核心技术之一,微生物在其中发挥着极其重要的作用。本综述首先聚焦在活性污泥微生物群落多样性、组成、结构和功能及其与含氟废水类型、处理工艺和处理效率之间的关系,进而讨论了功能微生物降解/转化有机氟化物的途径和作用机制,最后展望了结合分离培养降解有机氟化物的关键微生物,以及微生物组学技术解析活性污泥微生物群落构建、互作、代谢等核心问题,以提高对含氟有机废水微生物降解机理的认识,优化含氟有机废水处理工艺。  相似文献   

20.
Adsorbable organic halides (AOX) are generated in the pulp and paper industry during the bleaching process. These compounds are formed as a result of reaction between residual lignin from wood fibres and chlorine/chlorine compounds used for bleaching. Many of these compounds are recalcitrant and have long half-life periods. Some of them show a tendency to bioaccumulate while some are proven carcinogens and mutagens. Hence, it is necessary to remove or degrade these compounds from wastewater. Physical, chemical and electrochemical methods reported to remove AOX compounds are not economically viable. Different types of aerobic, anaerobic and combined biological treatment processes have been developed for treatment of pulp and paper industry wastewater. Maximum dechlorination is found to occur under anaerobic conditions. However, as these processes are designed specifically for reducing COD and BOD of wastewater, they do not ensure complete removal of AOX. This paper reviews the anaerobic biological treatments developed for pulp and paper industry wastewater and also reviews the specific micro-organisms reported to degrade AOX compounds under anaerobic conditions, their nutritional and biochemical requirements. It is imperative to consider these specific micro-organisms while designing an anaerobic treatment for efficient removal of AOX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号