共查询到20条相似文献,搜索用时 15 毫秒
1.
2‐Trifluoromethyl‐2‐Hydroxypropionamide Derivatives as Novel Reversal Agents of ABCG2 (BCRP)‐Mediated Multidrug Resistance: Synthesis and Biological Evaluations 下载免费PDF全文
Rishil J. Kathawala Tianwen Li Danwen Yang Hui‐Qin Guo Dong‐Hua Yang Xiang Chen Changmei Cheng Zhe‐Sheng Chen 《Journal of cellular biochemistry》2017,118(8):2420-2429
2.
ARRY‐334543 Reverses Multidrug Resistance by Antagonizing the Activity of ATP‐Binding Cassette Subfamily G Member 2 下载免费PDF全文
De‐Shen Wang Atish Patel Hong‐May Sim Yun‐Kai Zhang Yi‐Jun Wang Rishil J. Kathawala Hui Zhang Tanaji T. Talele Suresh V. Ambudkar Rui‐Hua Xu Zhe‐Sheng Chen 《Journal of cellular biochemistry》2014,115(8):1381-1391
3.
4.
5.
Qi Zhang Tianfu Li Zhecun Wang Xiaying Kuang Nan Shao Ying Lin 《Journal of cellular and molecular medicine》2020,24(14):8236-8247
Long non‐coding RNAs (lncRNAs) take various effects in cancer mostly through sponging with microRNAs (miRNAs). lncRNA NR2F1‐AS1 is found to promote tumour progression in hepatocellular carcinoma, endometrial cancer and thyroid cancer. However, the role of lncRNA NR2F1‐AS1 in breast cancer angiogenesis remains unknown. In this study, we found lncRNA NR2F1‐AS1 was positively related with CD31 and CD34 in breast cancer through Pearson's correlation analysis, while lncRNA NR2F1‐AS1 transfection promoted human umbilical vascular endothelial cell (HUVEC) tube formation. In breast cancer cells, lncRNA NR2F1‐AS1 enhanced the HUVEC proliferation, tube formation and migration ability through tumour‐conditioned medium (TCM). In zebrafish model, lncRNA NR2F1‐AS1 increased the breast cancer cell‐related neo‐vasculature and subsequently promoted the breast cancer cell metastasis. In mouse model, lncRNA NR2F1‐AS1 promoted the tumour vessel formation, increased the micro vessel density (MVD) and then induced the growth of primary tumour. Mechanically, lncRNA NR2F1‐AS1 increased insulin‐like growth factor‐1 (IGF‐1) expression through sponging miRNA‐338‐3p in breast cancer cells and then activated the receptor of IGF‐1 (IGF‐1R) and extracellular signal‐regulated kinase (ERK) pathway in HUVECs. These results indicated that lncRNA NR2F1‐AS1 could promote breast cancer angiogenesis through IGF‐1/IGF‐1R/ERK pathway. 相似文献
6.
7.
8.
Potent Antiproliferative Effects of 25‐Hydroxy‐16‐ene‐23‐yne‐vitamin D3 That Resists the Catalytic Activity of Both CYP27B1 and CYP24A1 下载免费PDF全文
Steve Y. Rhieu Andrew J. Annalora Erika LaPorta JoEllen Welsh Toshimasa Itoh Keiko Yamamoto Toshiyuki Sakaki Tai C. Chen Milan R. Uskokovic G. Satyanarayana Reddy 《Journal of cellular biochemistry》2014,115(8):1392-1402
9.
Zheyu Li Yoshihiro Oka Akihiro Tsuboi Fumihiro Fujiki Yukie Harada Hiroko Nakajima Tomoki Masuda Yoko Fukuda Mai Kawakatsu Soyoko Morimoto Takamasa Katagiri Naoya Tatsumi Naoki Hosen Toshiaki Shirakata Sumiyuki Nishida Yutaka Kawakami Keiko Udaka Ichiro Kawase Yusuke Oji Haruo Sugiyama 《Microbiology and immunology》2008,52(11):551-558
The Wilms' tumor gene WT1 is overexpressed in various kinds of hematopoietic malignancies as well as solid cancers, and this protein has been demonstrated to be an attractive target antigen for cancer immunotherapy. WT1‐specific CTL epitopes with a restriction of HLA‐A*2402 or HLA‐A*0201 have been already identified. In the present study it has been demonstrated that a 9‐mer WT1‐derived WT1187 peptide, which had already been shown to elicit a WT1‐specific CTL response with a restriction of HLA‐A*0201, can also elicit a CTL response with a restriction of HLA‐A*0206. In all three different HLA‐A*0206+ healthy donors examined, WT1187 peptide‐specific CTL could be generated from peripheral blood mononuclear cells, and the CTL showed cytotoxic activity that depended on dual expression of WT1 and HLA‐A*0206 molecules. The present study describes the first identification of a HLA‐A*0206‐restricted, WT1‐specific CTL epitope. The present results should help to broaden the application of WT1 peptide‐based immunotherapy from only HLA‐A*0201‐positive to HLA‐A*0206‐positive cancer patients as well. 相似文献
10.
Jing Zhao Yimin Feng Hui Yan Yangchao Chen Jinlan Wang Balvin Chua Charles Stuart Deling Yin 《Journal of cellular and molecular medicine》2014,18(8):1562-1570
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease. 相似文献
11.
Effects of 2‐year calorie restriction on circulating levels of IGF‐1, IGF‐binding proteins and cortisol in nonobese men and women: a randomized clinical trial 下载免费PDF全文
Luigi Fontana Dennis T. Villareal Sai K. Das Steven R. Smith Simin N. Meydani Anastassios G. Pittas Samuel Klein Manjushri Bhapkar James Rochon Eric Ravussin John O. Holloszy the CALERIE Study Group 《Aging cell》2016,15(1):22-27
Young‐onset calorie restriction (CR) in rodents decreases serum IGF‐1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anticancer and anti‐aging effects. However, little is known on the effects of CR on the IGF‐1 system and cortisol in humans. To test the sustained effects of CR on these key hormonal adaptations, we performed a multicenter randomized trial of a 2‐year 25% CR intervention in 218 nonobese (body mass index between 22 and 27.8 kg m?2) young and middle‐aged (20–50 years age range) men and women. Average CR during the first 6 months was 19.5 ± 0.8% and 9.1 ± 0.7% over the next 18 months of the study. Weight loss averaged 7.6 ± 0.3 kg over the 2‐years period of which 71% was fat mass loss (P < 0.0001). Average CR during the CR caused a significant 21% increase in serum IGFBP‐1 and a 42% reduction in IGF‐1:IGFBP‐1 ratio at 2 years (P < 0.008), but did not change IGF‐1 and IGF‐1:IGFBP‐3 ratio levels. Serum cortisol concentrations were slightly but significantly increased by CR at 1 year only (P = 0.003). Calorie restriction had no effect on serum concentrations of PDGF‐AB and TGFβ‐1. We conclude, on the basis of the present and previous findings, that, in contrast to rodents, humans do not respond to CR with a decrease in serum IGF‐1 concentration or with a sustained and biological relevant increase in serum cortisol. However, long‐term CR in humans significantly and persistently increases serum IGFBP‐1 concentration. 相似文献
12.
13.
14.
15.
16.
17.
该研究旨在探讨Sp1抑制剂光神霉素A(MithramycinA)对人肺腺癌A549/DDP细胞MRPI表达的影响。不同浓度光神霉素A作用A549/DDP细胞48h后,采用MTT法检测细胞存活率,RealtimeRT-PcR检测印,和MRPI基因表达水平,Westernblotg检测NSp1和MRP1蛋白表达水平。结果显示,300nmol/L光神霉素A作用A549/DDP细胞48h后印,和MRP1mRNA表达水平分别降低31.22%和85.44%,Sp1和MRP1蛋白表达水平分别降低53.27%和40.42%。提示光神霉素A能够通过抑制勋,表达,从而抑制MRP1表达。 相似文献
18.
Synthesis of 3‐Methylidene‐1‐tosyl‐2,3‐dihydroquinolin‐4(1H)‐ones as Potent Cytotoxic Agents 下载免费PDF全文
Jacek Koszuk Tomasz Bartosik Jakub Wojciechowski Wojciech M. Wolf Anna Janecka Joanna Drogosz Angelika Długosz Urszula Krajewska Marek Mirowski Tomasz Janecki 《化学与生物多样性》2018,15(9)
An efficient synthetic strategy to 3‐methylidene‐2,3‐dihydroquinolin‐4(1H)‐ones variously substituted in position 2 has been developed. The title compounds were synthesized in the reaction sequence involving reaction of diethyl methylphosphonate with methyl 2‐(tosylamino)benzoate, condensation of thus formed diethyl 2‐oxo‐2‐(2‐N‐tosylphenyl)ethylphosphonate with various aldehydes followed by successful application of the obtained 3‐(diethoxyphosphoryl)‐1,2‐dihydroquinolin‐4‐ols as Horner–Wadsworth–Emmons reagents for the olefination of formaldehyde. Also, enantioselective approach to the target compounds has been evaluated using 3‐dimenthoxyphosphoryl group as a chiral auxiliary. Single X‐ray crystal analysis of (2S)‐3‐(dimenthoxyphosphoryl)‐2‐phenyl‐1‐tosyldihydroquinolin‐4‐ol revealed the presence of strong resonance‐assisted hydrogen bond (RAHB). The obtained 3‐methylidene‐2,3‐dihydroquinolin‐4(1H)‐ones were then tested for their cytotoxic activity against two leukemia cell lines NALM‐6 and HL‐60 and a breast cancer MCF‐7 cell line. All compounds showed very high cytotoxic activity with the IC50 values mostly below 1 μm in all three cancer cell lines. The selected analogs were also tested on human umbilical vein endothelial cells (HUVEC) and on human mammary gland/breast cells (MCF‐10A) to evaluate their influence on normal cells. Since one of the most serious problems in cancer chemotherapy is the development of drug resistance, the mRNA levels and activity of ABCB1 transporter considered to be the most important factor engaged in drug resistance, were evaluated in MCF‐7 cells treated with two selected analogs. Both compounds were strong ABCB1 transporter inhibitors that could prevent efflux of anticancer drugs from cancer cells. 相似文献
19.
20.
V. S. Naumenko D. V. Bazovkina E. M. Kondaurova E. A. Zubkov A. V. Kulikov 《Genes, Brain & Behavior》2010,9(5):519-524
In the present study, the 5‐HT2A and 5‐HT1A receptors functional activity and 5‐HT2A receptor gene expression were examined in the brain of ASC/Icg and congenic AKR.CBAD13Mit76C mouse strains (genetically predisposed to catalepsy) in comparison with the parental catalepsy‐resistant AKR/J and catalepsy‐prone CBA/Lac mouse strains. The significantly reduced 5‐HT2A receptor functional activity along with decreased 5‐HT2A receptor gene expression in the frontal cortex was found in all mice predisposed to catalepsy compared with catalepsy‐resistant AKR/J. 5‐HT2A agonist DOI (0.5 and 1 mg/kg, i.p.) significantly reduced catalepsy in ASC/Icg and CBA/Lac, but not in AKR.CBAD13Mit76C mice. Essential increase in 5‐HT1A receptor functional activity was shown in catalepsy‐prone mouse strains in comparison with catalepsy‐resistant AKR/J mice. However, in AKR.CBAD13Mit76C mice it was lower than in ASC/Icg and CBA/Lac mice. The inter‐relation between 5‐HT2A and 5‐HT1A receptors in the regulation of catalepsy was suggested. This suggestion was confirmed by prevention of DOI anticataleptic effect in ASC/Icg and CBA/Lac mice by pretreatment with 5‐HT1A receptor antagonist p‐MPPI (3 mg/kg, i.p.). At the same time, the activation of 5‐HT2A receptor led to the essential suppression of 5‐HT1A receptor functional activity, indicating the opposite effect of 5‐HT2A receptor on pre‐ and postsynaptic 5‐HT1A receptors. Thus, 5‐HT2A/5‐HT1A receptor interaction in the mechanism of catalepsy suppression in mice was shown. 相似文献