首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fundamental challenge in understanding the global nitrogen cycle is the quantification of denitrification on large heterogeneous landscapes. Because floodplains are important sites for denitrification and nitrogen retention, we developed a generalized floodplain biogeochemical model to determine whether dams and flood‐control levees affect floodplain denitrification by altering floodplain inundation. We combined a statistical model of floodplain topography with a model of hydrology and nitrogen biogeochemistry to simulate floods of different magnitude. The model predicted substantial decreases in NO3‐N processing on floodplains whose overbank floods have been altered by levees and upstream dams. Our simulations suggest that dams may reduce nitrate processing more than setback levees. Levees increased areal floodplain denitrification rates, but this effect was offset by a reduction in the area inundated. Scenarios that involved a levee also resulted in more variability in N processing among replicate floodplains. Nitrate loss occurred rapidly and completely in our model floodplains. As a consequence, total flood volume and the initial mass of nitrate reaching a floodplain may provide reasonable estimates of total N processing on floodplains during floods. This finding suggests that quantifying the impact of dams and levees on floodplain denitrification may be possible using recent advances in remote sensing of floodplain topography and flood stage. Furthermore, when considering flooding over the long‐term, the cumulative N processed by frequent smaller floods was estimated to be quite large relative to that processed by larger, less frequent floods. Our results suggest that floodplain denitrification may be greatly influenced by the pervasive anthropogenic flood‐control measures that currently exist on most majors river floodplains throughout the world, and may have the potential to be impacted by future changes in flood probabilities that will likely occur as a result of climate shifts.  相似文献   

2.
Floods are fundamental for the maintenance of floodplain biodiversity. As a result, well-functioning floodplains are characterized by a high spatio-temporal heterogeneity. Most floodplain-organisms need this shifting landscape mosaic to fulfil their environmental requirements and display a range of adaptations to survive floods. However, in temperate areas, where winter floods are common, extraordinary floods occurring in summer, a period of high physiological activity, may seriously impact the floodplain fauna. This is especially true for guilds characterized by low mobility, such as molluscs. Here we examined the immediate and longer-term response of Elbe grassland molluscs to the extreme 2002 Elbe summer flood in terms of abundance, diversity, and community composition by comparing pre- and post-flood data collected with identical methods. The flood favoured the colonization of aquatic species and led to a shift of the community towards a more hydrophilic composition. Both diversity and abundance increased significantly in the first year following the flood but decreased later gradually to the pre-flood levels. The high spatio-temporal habitat heterogeneity played an important part in the maintenance of mollusc diversity by increasing refuge opportunities and favouring the maintenance of various mollusc communities with different environmental requirements within the floodplain. Handling editor: S. I. Dodson  相似文献   

3.
Abstract. Question: Along river floodplains lower distribution limits of plant species seem largely determined by their tolerance to rarely occurring floods in the growing season. Such distribution patterns remain fixed for many years suggesting additional effects of winter floods at lower positions. Our objective was to investigate the direct and indirect effects of winter floods on colonization of floodplains in a series of field experiments. Location: River Rhine, The Netherlands. Methods: We measured the direct effects of winter floods on seedling survival and seed removal and survival at low and high floodplain elevation. Indirect effects of winter flooding through changes in the soil were investigated by measuring seedling emergence on soil transplants that were exchanged between high and low floodplain elevation. To investigate indirect effects of floods on the germination environment through changes in the vegetation structure, we measured the effects of vegetation removal on recruitment of sown species. Results: Recruitment was seed limited at both floodplain elevations. An additional effect of vegetation removal on seedling emergence was also observed. Soil types from both zones did not differently affect seedling emergence. Seeds were not removed from the soil surface by a single winter flood. Moreover, seeds remained viable in the soil for at least two years, while the experimental plots were flooded several times during the experimental period. During one of those floods a thick sand layer was deposited at the low zone and subsequently no seedlings were observed anymore. Conclusions: Colonization of low floodplain zones in years between subsequent summer floods is prevented by seed limitation while the direct effects of winter floods are limited except for irregularly occurring sand depositions.  相似文献   

4.
In the past decade, extreme hydrological events were expressed with extreme droughts and floods in temperate regions. The aim of this paper is to explain how such changes in hydrology can influence cyanobacterial populations in floodplain ecosystems. We therefore analyzed a 6-year (2003–2008) study of the phytoplankton in the Kopački Rit floodplain, one of the largest natural floodplains in the middle section of the Danube River (Europe). During the studied period, the shallow floodplain lake shifted between a state of turbid water, characterized by high phytoplankton biomass and regular appearance of cyanobacteria blooms, to a state of clear water with very low phytoplankton biomass and absence of cyanobacteria, and back to the turbid state. Apparently, the major forces driving the cyclic shift were closely related to extremely high and long-lasting flood events. Significant increase in water level, low hydraulic residence time of water, decrease in transparency and low-light climate, together with mass developed aquatic macrophyte vegetation in the whole inundated floodplain were unfavorable conditions for growth and proliferation of cyanobacteria. With the establishment of the flood regime characterized by long-lasting periods without flooding, in-lake processes prevailed leading to cyanobacterial bloom. The most successful were filamentous non-N-fixing cyanobacteria tolerant to mixed and low-light conditions (Planktothrix and Limnothrix) and invasive species Cylindrospermopsis raciborskii. Their massive development led to the establishment of a phytoplankton steady state. All our results demonstrate that the altered intensity and frequency of flood events will have pronounced effects on the appearance of cyanobacterial blooms and generally on alternative stable states in the floodplain. Relating to this, management objectives should be focused on qualifications of changes in hydrology and projecting those effects for potential floodplain restoration.  相似文献   

5.
Summary Large overbank flood events play an important role in maintaining large‐scale ecological processes and connectivity along and across the floodplains and between the rivers and their floodplains in the southern Murray‐Darling Basin. However, the regulation of rivers means that extensive overbank flooding can only occur in the rare circumstance of extreme flood events. Recent environmental water allocations have focussed on the largest floodplain blocks (‘icon’ sites) and a small set of specific values (e.g. colonial nesting waterbirds), as well as on trialling fine‐scale manipulation of infrastructure (e.g. pumping) to water relatively small areas. There has been no comprehensive systematic assessment of the entire floodplain and its wider set of flood‐dependent natural assets (such as ecosystems and species; herein referred to as ‘natural values’) to maximise the effectiveness of environmental water use and to catalogue values likely to be lost. This paper describes an assessment of some 220 000 ha found to support flood‐dependent natural values in Victoria. We mapped the geographic distribution and estimated components of the flooding requirements (natural flooding frequency, and maximum period without flooding and minimum duration of each flooding event before significant deterioration) for each natural value. Using an example of one stretch of the River Murray, we show how the resultant spatial data can be used with floodplain inundation modelling to compare the outcomes of real or planned environmental watering events; potentially providing tools for management agencies to conserve a wider range of floodplain values than is currently the case. That is, water managers and the public can see what ecosystems and threatened species are intended to be maintained by environmental watering and what values are intended to be abandoned across the whole floodplain, rather than just seeing the small subset of values and ‘icon’ sites that are intended to be maintained. Examples are provided to illustrate how information about the location, water requirements and extent covered by potential floods for specific values can be used to build adaptive watering strategies for areas as large as the whole floodplain.  相似文献   

6.
High levels of sub‐speciation in Australian mesic zone taxa have been attributed to the creation of biogeographic barriers by Pleistocene expansion of the arid zone. However, several of these barriers also align with major floodplains. The Carpentarian Barrier in the Gulf Plains (GUP) – one of Australia's most significant biogeographic barriers – experiences extreme floods on a sub‐decadal timescale. These floods rise suddenly, cover thousands of square kilometres to a depth of several metres and can take weeks to subside. We investigated whether these floods have shaped community composition. If this is the case, species that are particularly vulnerable to extreme flooding – understorey animals and woody plants, particularly shrubs – should be under‐represented, and grasslands should be over‐represented on GUP floodplains. We used Akaike selection of logistic models to assess influence of floodplains and other potential drivers on grassland distribution and shrub abundance, and on representation of understorey fauna. We also compared post‐flood faunal records with the bioregional data set to assess influence of the 2009 flood on representation of understorey reptiles. Grasslands and shrub‐free vegetation were significantly over‐represented and understorey fauna significantly under‐represented on floodplains, even when the influences of other factors were taken into account. Understorey Gekkota were absent from – and understorey skinks under‐represented in – recently flooded areas. Hence, floods appear to have shaped community composition on GUP floodplains by selectively displacing and/or destroying woody plants – particularly shrubs – and understorey animals. Our findings demonstrate association rather than causality, but show that further examination of the ecological and biogeographic impacts of extreme flooding is warranted. Influence of floods on the Australian biota should be considered an ongoing ecological and evolutionary driver, and one that is likely to intensify as extreme floods are expected to become more frequent under climate change.  相似文献   

7.
In fluvial systems, the interactions between rivers and groundwater significantly affect various ecological structures (for example, riparian vegetation) and functions. To examine the effects of hydrological exchange between groundwater and surface water on the distribution of aquatic invertebrates within a riverine landscape, we investigated the main stem, tributaries, and various surface and subsurface waters of two floodplains of a southern Alpine river (Brenno, Switzerland) in terms of their physicochemical, hydraulic, substratum, and faunal characteristics. The origins of the water were investigated by analyzing geomorphic settings and physicochemical variables. The two floodplains had different hydrological regimes. The middle floodplain was dominated by lateral inputs and exfiltration of hillslope groundwater from two different subcatchments. Bank filtration of river water sustained subsurface water only close to the channel. The aquatic habitats of the middle floodplain formed a rather homogeneous group with high taxon richness and intrahabitat diversities. These aquatic habitats resembled mountain springbrooks in their physicochemical characteristics and faunal compositions. In the lower floodplain, the exchange between river water and groundwater was more extensive. The aquatic floodplain habitats of the lower floodplain were fed mainly by deep and shallow alluvial groundwater, hyporheic exfiltration, and partly by surface water. In contrast to aquatic habitats of the middle floodplain, habitats of the lower floodplain showed a low intrahabitat and a high interhabitat diversity in terms of both substrate characteristics and faunal compositions. For both floodplains, ordination analyses showed a high concordance between the structure of the invertebrate community and the characteristics of the environmental habitat, including chemical, geomorphic, and hydraulic variables. Ordinations grouped aquatic habitats according to the origins of the waters. Taxon richness was related to local structural diversity, but species turnover was related to differential vertical and lateral connectivity. Exfiltration of groundwaters provided aquatic floodplain habitats for several specialized species. The results of this study show the significance of the river–groundwater connectivity for the creation of the habitat mosaic that sustains biodiversity in floodplains and thus have important implications for managing the ecological integrity of floodplains.  相似文献   

8.
Sweet  R. J.  Nicholas  A. P.  Walling  D. E.  Fang  X. 《Hydrobiologia》2003,494(1-3):177-183
This paper outlines a novel two-stage procedure for estimating medium-term (ca. 40 years) rates of overbank sedimentation on British lowland floodplains, and exploring the relationship between floodplain morphology, floodwater hydraulics and fine sediment storage. The first stage utilises a two-dimensional hydraulic model that solves the depth-averaged shallow water equations over a high resolution topographic grid. This model is used to predict distributed patterns of flow depth and velocity within floodplain reaches approximately 0.4–0.6 km in length for floods of varying magnitude. These hydraulic data are then used, in conjunction with a simple sediment transport and deposition model, to estimate rates and patterns of floodplain sedimentation. This procedure was applied to a series of eight sites on the floodplain of the River Culm, Devon, UK, with contrasting morphological characteristics (e.g., channel sinuosity, channel numbers and dimensions, bankfull discharge, floodplain width, etc). The hydraulic modelling procedure was validated using ground and oblique aerial photography of floodwater inundation patterns. Estimates of medium-term sedimentation derived from 137Cs analysis of floodplain sediment cores were used to calibrate the sediment deposition model. Results indicate that within-reach variability in sedimentation rates reflects small-scale topographic controls on local flow characteristics and sediment transport and deposition processes. In contrast, between-reach variations in total sediment storage are largely a product of downstream changes in gross valley floor morphology and flood frequency. Preliminary estimates of the total sediment flux to the floodplain of the River Culm for the basin as a whole are consistent with previous estimates and highlight the importance of floodplain sedimentation as a component of the overall catchment sediment budget.  相似文献   

9.
It is generally assumed that floods during the growing season have a strong impact on the distribution of grassland plant species in river floodplains but this proposition has never been tested. We examined the survival and growth responses of twenty species, originating from mid- and high-level floodplain grasslands along the River Rhine in the Netherlands, to total submergence for a maximum of two months in an outdoor flooding experiment. Plant survival and biomass reduction with flooding duration was determined as well as biomass recovery after de-submergence.
Our results indicate that species survival is the most prominent factor correlated with species distribution in floodplain areas. Relatively flood tolerant species occurred mainly at low elevations along the floodplain while more flood sensitive species were restricted to high parts of the floodplain gradient. Biomass reduction rates during submergence were only marginally significantly correlated with species lower distribution boundaries along the flooding gradient. Biomass recovery rate was significantly correlated with species distribution patterns in the field only after 2 weeks of complete submergence, but not after 4 and 8 weeks. Our results suggest that the more flood tolerant species can have various ways to survive and recover from flooding, ranging from low rates of biomass loss and low recovery to relatively high rates of biomass loss and quick recovery.
Our results are consistent with the notion that disturbance by floods during the growing season is an important determinant of species lower distribution boundaries in river floodplains. They also suggest that high survival under flooding may be achieved by different physiological mechanisms. Such mechanisms are discussed in this paper.  相似文献   

10.
Past research has provided compelling evidence that variation in flooding duration is the predominant factor underlying plant species distribution along elevation gradients in river floodplains. The role of seasonal variation in flooding, however, is far from clear. We addressed this seasonal effect for 10 grassland species by testing the hypothesis that all species can survive longer when flooded in winter than when flooded in summer. We carried out an inundation experiment under simulated conditions of summer and winter flooding in the greenhouse. The results showed that all species survived longer under winter floods than under summer floods. However, responses upon flooding were species-specific. All summer flood-tolerant species had high tolerance for winter floods as well, but summer flood sensitive species survived either a little longer, or dramatically longer when flooded under simulated winter conditions. Next, we examined whether winter or summer survival best predicted the lower distribution limits of the species as measured in a natural flooding gradient after an extremely long winter flood. We found a strong significant relationship between the lower distribution limits of species in the field and their tolerance to summer floods, although we measured the lower limits 14 years after the latest major summer flood. In contrast, no such significant relationship existed with species tolerance to winter floods. Some relatively intolerant species occurred at much higher floodplain elevations as was expected from their tolerance to winter inundation in the experiments. This suggests that zonation patterns as created by occasional summer floods may be maintained for a long time, probably due to the limited ability of species to re-colonise lower positions in the floodplain.  相似文献   

11.
Riverine floodplains play many important roles in river ecosystems. However, many floodplains have suffered degradation or loss of ecological function due to excessive river improvements or through changes in agricultural systems. As a result, many floodplain restoration projects are being conducted worldwide. One of the many methods being implemented to restore floodplain vegetation is flood water seed dispersal. In this technique, precisely estimating the effect of seed dispersal by flood water is important in order to achieve successful floodplain revegetation. Here, we focus our attention on sediment transport by flood water into the Azamenose Swamp, a restored floodplain. We attempt to estimate the function of seed deposition in the restored floodplain and explain how the seeds are deposited in the floodplain by flood water. The result suggests that the restored floodplain functions as a more appropriate deposition site for seeds than the riverbanks of the main river. It was also found that the distance from the inflow site and the weight of the sediment were related to seed deposition.  相似文献   

12.
Floodplains in the Pacific Coastal Ecoregion (PCE) stem from steep eroding mountain landscapes in a rain forest environment, and sustain a rich array of natural resources. Like floodplains elsewhere, many of the approximately 200 coastal river valleys are profoundly altered by flow regulation and land conversion for agriculture and urban development, and these activities have contributed to widespread declines in anadromous fishes and environmental quality. Some of the coastal river valleys, however, still retain many of their natural features, thereby providing important reference sites. Understanding fundamental biophysical processes underpinning natural floodplain characteristics is essential for successfully protecting and restoring ecological integrity, including inherent goods and services. This article examines factors underpinning the ecological characteristics of PCE floodplains, particularly riparian soils and trees. Drawing on over two decades of research and literature, we describe the spatial and temporal characteristics of physical features for alluvial PCE floodplains, examine the importance of sediment deposition and associated biogeochemical processes in floodplain soil formation, quantify vegetative succession and production dynamics of riparian trees, discuss how epiphytes, marine-derived nutrients, and soil processes contribute to tree production, describe the roles and importance of large dead wood in the system, the role of termites in its rapid decomposition, and show how large wood contributes to vegetative succession. These highly interconnected features and associated processes are summarized in a model of system-scale drivers and changes occurring over several centuries. Collectively, this integrated perspective has strong implications for floodplain rehabilitation, and we identify appropriate metrics for evaluating floodplain condition and functions. We draw heavily from our own experience on several well-studied rivers, recognizing additional studies are needed to evaluate the generality of concepts presented herein. As in any complex adaptive system, fundamental uncertainties remain and constraints imposed by the legacies of past human actions persist. Nevertheless, the evolving knowledge base is improving conservation strategies of lightly modified floodplains and is supporting the incorporation of emerging process-based perspectives into the rehabilitation of heavily modified systems.  相似文献   

13.
Floodplain ecosystems are biodiversity hotspots and supply multiple ecosystem services. At the same time they are often prone to human pressures that increasingly impact their intactness. Multifunctional floodplain management can be defined as a management approach aimed at a balanced supply of multiple ecosystem services that serve the needs of the local residents, but also those of off-site populations that are directly or indirectly impacted by floodplain management and policies. Multifunctional floodplain management has been recently proposed as a key concept to reconcile biodiversity and ecosystem services with the various human pressures and their driving forces. In this paper we present biophysics and management history of floodplains and review recent multifunctional management approaches and evidence for their biodiversity effects for the six European countries Ireland, the Netherlands, Germany, Slovakia, Hungary and the Ukraine. Multifunctional use of floodplains is an increasingly important strategy in some countries, for instance in the Netherlands and Hungary, and management of floodplains goes hand in hand with sustainable economic activities resulting in flood safety and biodiversity conservation. As a result, biodiversity is increasing in some of the areas where multifunctional floodplain management approaches are implemented. We conclude that for efficient use of management resources and ecosystem services, consensual solutions need to be realized and biodiversity needs to be mainstreamed into management activities to maximize ecosystem service provision and potential human benefits. Multifunctionality is more successful where a broad range of stakeholders with diverse expertise and interests are involved in all stages of planning and implementation.  相似文献   

14.
Our aim was to search for specific seed germinative strategies related to flooding escape in Setaria parviflora, a common species across the Americas. For this purpose, we investigated induction after floods, in relation to fluctuating temperature requirements for germination in seeds from mountain, floodplain and successional grasslands. A laboratory experiment was conducted in which seeds were imbibed or immersed in water at 5°C. Seeds were also buried in flood-prone and upland grasslands and exhumed during the flooding season. Additionally, seeds were buried in flooded or drained grassland mesocosms. Germination of exhumed seeds was assayed at 25°C or at 20°C/30°C in the dark or in the presence of red light pulses. After submergence or soil flooding, a high fraction (>32%) of seeds from the floodplain required fluctuating temperatures to germinate. In contrast, seeds from the mountains showed maximum differences in germination between fluctuating and constant temperature treatment only after imbibition (35%) or in non-flooded soil conditions (40%). The fluctuating temperature requirement was not clearly related to the foregoing conditions in the successional grassland seeds. Maximum germination could also be attained with red light pulses to seeds from mountain and successional grasslands. Results show that the fluctuating temperature requirement might help floodplain seeds to germinate after floods, indicating a unique feature of the dormancy of S. parviflora seeds from floodplains, which suggests an adaptive advantage aimed at postponing emergence during inundation periods. In contrast, the fluctuating temperature required for germination among seeds from mountain and successional grasslands show its importance for gap detection.  相似文献   

15.
Topographic diversity is an important component of environmental heterogeneity. Topographic diversity within the Upper Mississippi River floodplain has been degraded because of modifications for navigation improvement. Efforts aimed at restoring topographic diversity in the Upper Mississippi River floodplain have been extensive but have not focused on reversing the effects of forest loss and degradation. We investigated habitat features associated with Cerulean Warbler (Setophaga cerulea) locations both within and outside of river floodplains and hypothesized this species would select topographically diverse habitats. Both topographic diversity and the distance to the upland forest/floodplain forest interface were useful predictors of Cerulean Warbler presence. We conclude that incorporation of topographic diversity into floodplain forest restoration planning would likely benefit Cerulean Warblers and the other species with similar habitat requirements. Incorporating topographic diversity into floodplain forest conservation planning will be challenging on major rivers that serve multiple purposes.  相似文献   

16.
SUMMARY. 1. Inputs, movements and exchanges of particulate organic matter were measured on two contrasting floodplains of the Ogeechee River, Georgia, U.S.A. A model, which incorporated measurements of standing crop, respiration, litterfall, inundation, and litter processing rates, was used to estimate annual exchanges of organic matter between the river and floodplains.
2. Annual litterfall was higher on the East floodplain than on the lower elevation West floodplain (902 v. 784 g ash-free-dry-mass [AFDM] m−2).
3. Experiments with tagged leaves and sticks demonstrated that litter was readily displaced during floods. The distance and direction of displacement varied within and between floodplains but tended to be higher closer to the river and was generally parallel to the river.
4. The model indicated that both floodplains lost organic matter to the river. The lower elevation floodplain (East) lost more organic matter to the river (208 g AFDM m−2 year−1) than did the higher elevation (West) floodplain (79g AFDM m−2 year−1).
5. Inputs of organic matter from the floodplain to the river exceeded the amount of litterfall typically entering heavily forested high gradient headwater streams (5.5 v. 0.4-0.6 kg AFDM m−2 year−1).
6. Floodplain organic matter inputs may exert a greater influence upon structure and function within these streams than do upstream inputs or primary production. Consequently, current conceptualizations of stream structure and function need to be modified to account for the effects of floodplain inputs on stream channel processes within large, low-gradient rivers.  相似文献   

17.
18.
Extreme climatic events and anthropic disturbances affect the hydrological regime of Amazonian rivers and connected floodplain forests. This study aims to investigate the impacts of the Balbina hydroelectric power plant on the floodplain forests of the Uatumã River, in the Central Amazon. For this, tree age and diameter increment from the most abundant tree species of three different topographic levels were obtained and analyzed in the affected area downstream of the Balbina dam (Uatumã River) and compared to an undisturbed site (Abacate River, affluent) considering age structure and mean diameter increments between the topographic levels and the two systems. The occurrence of old trees is much lower at the disturbed site compared to the undisturbed system. Especially at the middle topography of the Uatumã site, we observed tree species with high mean diameter increment indicating a strong disturbance. We suggest that the disturbances may be associated with extreme hydro‐climatic events, such as extreme droughts that occurred during the El Niño years 1925/26 and 1982/83 and that these events may increase vulnerability of igapó floodplains to wildfires. Abstract in Portuguese is available with online material.  相似文献   

19.
Predicted changes in the timing and magnitude of storms have the potential to amplify water quality challenges associated with agricultural runoff. In agricultural streams of the Midwestern US, floodplain restoration has the potential to enhance inorganic nitrogen (N) removal by increasing the bioreactive surface area for microbially-mediated denitrification. The restoration of inset floodplains via construction of the two-stage ditch increases denitrification compared to channelized systems, however, little is known about how denitrification on restored floodplains compares to those formed naturally when stream channel management lapses. We used sacrificial microcosm incubations and membrane-inlet mass spectrometry (MIMS) to compare denitrification rates in floodplain soils collected along transects in both naturalized and restored floodplains; longitudinal transects spanned two zones in the active floodplain (near-stream, NS vs. middle, MID) and a third zone that reflected upland conditions in the riparian buffer strip (UP). Denitrification rates were 35–49% higher in the restored, inset floodplains compared to naturalized floodplains. Variation in denitrification rates were primarily explained by soil organic matter (OM) and OM was > 20% higher in restored floodplains than naturalized, highlighting the contrasts between stable, constructed floodplains with heterogeneous, depositional bars typical of naturalizing channels. Consequently, restored inset floodplains could remove > 70% more N than the naturalized floodplains during similar storm inundation events.  相似文献   

20.
In natural systems, the chemistry of floodplain waters is a function of the source of the water, which is influenced by geomorphic features of riparian wetlands. However, anthropogenic disturbances may alter both geomorphic features and the natural balance of water mixing in the floodplain. The aim of this study was to classify riparian wetlands and characterize their water characteristics in one reach of the Middle Ebro River to assess the hydrochemical functioning of the system. In order to accomplish that goal, water samples were collected at 40 sampling sites during low-water conditions and two floods of different magnitude. Moreover, geomorphic characteristics of riparian wetlands were also analyzed to interpret the results at broader spatio-temporal scales. Three group of wetlands were identified using multivariate ordination: (1) major and secondary channels highly connected to the river by surface water, containing weakly ionized water with high nitrate levels during floods; (2) secondary channels and artificial ponds located in riparian forests near the river, most of which were affected by river seepage during the examined events. This type of sites had high major ions concentrations and elevated spatial variability with respect to nutrient concentrations during floods; (3) Siltated oxbow lakes, whose hydrogeochemical features seemed to be unaffected by factors related to river fluctuations. Total dissolved solids, major ion (sulfate, chloride, sodium, calcium, magnesium, and potassium) and nutrient (nitrate, ammonium and organic nitrogen, and phosphate) depended upon the relationships between surface and subsurface water flows. Seasonal changes and geomorphic characterization indicated that a strong functional dependence of floodplain wetlands close to the main river channel is established, whereas most of the floodplain area remains disconnected from river dynamics. Moreover, the effect of nitrate-enriched agricultural runoff seems to affect water quality and hydrochemical gradients of the system. Based on our results, we propose different types of actions for the management of the Ebro River flow to ensure a more natural ecological functioning of its floodplains. Handling editor: P. Viaroli  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号