首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The benefits of antioxidants on human health are usually ascribed to their potential ability to remove reactive oxygen species providing protection against oxidative stress. In this paper the free radicals scavenging activities of nine 6‐methyl 3‐chromonyl derivatives (CMs) were evaluated for the first time by the chemiluminescence, electron paramagnetic resonance, spin trapping and 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH?) methods. The total antioxidant capacity was also measured using a ferric‐ferrozine reagent. Compounds having a hydrogen atom at the N3‐position of the β‐ring were effective in quenching CL resulted from the KO2/18‐crown‐6‐ether system (a source of superoxide anion radical, ) in a dose‐dependent manner over the range of 0.05–1 mmol/L [IC50 ranged from 0.353 (0.04) to 0.668 (0.05) mmol/L]. The examined compounds exhibited a significant scavenging effect towards hydroxyl radicals (HO? HO?), produced by the Fenton reaction, and this ranged from 24.0% to 61.0%, at the concentration of 2.5 mmol/L. Furthermore, the compounds examined were also found to inhibit DPPH? and this ranged from 51.9% to 97.4% at the same concentration. In addition, the use of the total antioxidant capacity assay confirmed that CM compounds are able to act as reductants. According to the present study, CM compounds showed effective in vitro free radical scavenging activity and may be considered as potential therapeutics to control diseases of oxidative stress‐related etiology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Objective: Obesity is a major risk factor for the development of type 2 diabetes. Tumor necrosis factor (TNF)‐α is a candidate gene for the development of both obesity and insulin resistance. We investigated whether a common polymorphism in the promoter region (?308 G/A) of the TNF‐α gene was associated with increased risk for the development of insulin resistance and cardiovascular disease in an obese Australian population. Research Methods and Procedures: Obese, non‐diabetic subjects (146 women and 34 men) were genotyped with polymerase chain reaction‐restriction fragment length polymorphism techniques, and anthropometric and biochemical measurements were analyzed. A homeostasis model assessment (HOMA) score was used to gauge the level of insulin resistance. Results: The frequencies of the G allele and the A allele were 0.759 and 0.241, respectively. Subjects homozygous for the A allele had higher fasting insulin levels (226 vs. 131 pM; p < 0.001), higher HOMA scores (10.2 vs. 5.3; p < 0.001), higher systolic blood pressure (143 vs. 129 mm Hg; p = 0.02), and lower high‐density lipoprotein (HDL) cholesterol (1.13 vs. 1.25 mM; p = 0.04) than did subjects homozygous for the G allele. Whereas an association between insulin resistance and body mass index or waist circumference was seen in all subjects, a highly significant negative correlation of HDL cholesterol to HOMA scores (r = ?0.710; p < 0.001) occurred in subjects with the A allele only. Discussion: The ?308 G/A TNF‐α gene variant conveys an increased risk for the development of insulin resistance in obese subjects. The presence of low HDL cholesterol levels further increases the risks associated with insulin resistance in carriers of the A allele.  相似文献   

3.
In the present study, the 5‐HT2A and 5‐HT1A receptors functional activity and 5‐HT2A receptor gene expression were examined in the brain of ASC/Icg and congenic AKR.CBAD13Mit76C mouse strains (genetically predisposed to catalepsy) in comparison with the parental catalepsy‐resistant AKR/J and catalepsy‐prone CBA/Lac mouse strains. The significantly reduced 5‐HT2A receptor functional activity along with decreased 5‐HT2A receptor gene expression in the frontal cortex was found in all mice predisposed to catalepsy compared with catalepsy‐resistant AKR/J. 5‐HT2A agonist DOI (0.5 and 1 mg/kg, i.p.) significantly reduced catalepsy in ASC/Icg and CBA/Lac, but not in AKR.CBAD13Mit76C mice. Essential increase in 5‐HT1A receptor functional activity was shown in catalepsy‐prone mouse strains in comparison with catalepsy‐resistant AKR/J mice. However, in AKR.CBAD13Mit76C mice it was lower than in ASC/Icg and CBA/Lac mice. The inter‐relation between 5‐HT2A and 5‐HT1A receptors in the regulation of catalepsy was suggested. This suggestion was confirmed by prevention of DOI anticataleptic effect in ASC/Icg and CBA/Lac mice by pretreatment with 5‐HT1A receptor antagonist p‐MPPI (3 mg/kg, i.p.). At the same time, the activation of 5‐HT2A receptor led to the essential suppression of 5‐HT1A receptor functional activity, indicating the opposite effect of 5‐HT2A receptor on pre‐ and postsynaptic 5‐HT1A receptors. Thus, 5‐HT2A/5‐HT1A receptor interaction in the mechanism of catalepsy suppression in mice was shown.  相似文献   

4.
In order to assign the absolute configurations of 8‐tert‐butyl‐2‐hydroxy‐7‐methoxy‐8‐methyl‐9‐oxa‐6‐azaspiro[4.5]dec‐6‐en‐10‐one ( 2a , 2b ), their esters ( 5a , 5b , 5c , 5d ) with (R)‐ or (S)‐2‐methoxyphenylacetic acid ( 4a , 4b ) have been synthesized. The absolute configurations of these compounds have been determined on the basis of NOESY correlations between the protons of the tert‐butyl group and the cyclopentane fragment of the molecules. The crucial part of this analysis was assignment of the absolute configuration at C‐5. Additionally, by calculation of the chemical shift anisotropy, δRS, for the relevant protons, it was also possible to confirm the absolute configurations at the C‐2 centres of compounds 2a , 2b and 5a , 5b , 5c , 5d . Chirality, 25:422–426, 2013.© 2013 Wiley Periodicals, Inc.  相似文献   

5.
6.
G protein‐coupled receptors (GPCRs) have been found to trigger G protein‐independent signalling. However, the regulation of G protein‐independent pathways, especially their desensitization, is poorly characterized. Here, we show that the G protein‐independent 5‐HT4 receptor (5‐HT4R)‐operated Src/ERK (extracellular signal‐regulated kinase) pathway, but not the Gs pathway, is inhibited by GPCR kinase 5 (GRK5), physically associated with the proximal region of receptor’ C‐terminus in both human embryonic kidney (HEK)‐293 cells and colliculi neurons. This inhibition required two sequences of events: the association of β–arrestin1 to a phosphorylated serine/threonine cluster located within the receptor C‐t domain and the phosphorylation, by GRK5, of β–arrestin1 (at Ser412) bound to the receptor. Phosphorylated β‐arrestin1 in turn prevented activation of Src constitutively bound to 5‐HT4Rs, a necessary step in receptor‐stimulated ERK signalling. This is the first demonstration that β‐arrestin1 phosphorylation by GRK5 regulates G protein‐independent signalling.  相似文献   

7.
Acetyl‐11‐keto‐β‐boswellic acid (AKBA), an active triterpenoid compound from the extract of Boswellia serrate, has been reported previously in our group to alleviate fibrosis in vascular remodelling. This study aimed to elucidate the in vivo and in vitro efficacy and mechanism of AKBA in renal interstitial fibrosis. The experimental renal fibrosis was produced in C57BL/6 mice via unilateral ureteral obstruction (UUO). Hypoxia‐induced HK‐2 cells were used to imitate the pathological process of renal fibrosis in vitro. Results showed that the treatment of AKBA significantly alleviated UUO‐induced impairment of renal function and improved the renal fibrosis by decreasing the expression of TGF‐β1, α‐SMA, collagen I and collagen IV in UUO kidneys. In hypoxia‐induced HK‐2 cells, AKBA displayed remarkable cell protective effects and anti‐fibrotic properties by increasing the cell viability, decreasing the lactate dehydrogenase (LDH) release and inhibiting fibrotic factor expression. Moreover, in obstructed kidneys and HK‐2 cells, AKBA markedly down‐regulated the expression of TGFβ‐RI, TGFβ‐RII, phosphorylated‐Smad2/3 (p‐Smad2/3) and Smad4 in a dose‐dependent fashion while up‐regulated the expression of Klotho and Smad7 in the same manner. In addition, the effects of AKBA on the Klotho/TGF‐β/Smad signalling were reversed by transfecting with siRNA‐Klotho in HK‐2 cells. In conclusion, our findings provide evidence that AKBA can effectively protect kidney against interstitial fibrosis, and this renoprotective effect involves the Klotho/TGF‐β/Smad signalling pathway. Therefore, AKBA could be considered as a promising candidate drug for renal interstitial fibrosis.  相似文献   

8.
1‐O‐Hexyl‐2,3,5‐trimethylhydroquinone (HTHQ), a lipophilic phenolic agent, has an antioxidant activity and reactive oxygen species (ROS) scavenging property. However, the role of HTHQ on cerebral ischaemic/reperfusion (I/R) injury and the underlying mechanisms remain poorly understood. In the present study, we demonstrated that HTHQ treatment ameliorated cerebral I/R injury in vivo, as demonstrated by the decreased infarct volume ration, neurological deficits, oxidative stress and neuronal apoptosis. HTHQ treatment increased the levels of nuclear factor erythroid 2–related factor 2 (Nrf2) and its downstream antioxidant protein, haeme oxygenase‐1 (HO‐1). In addition, HTHQ treatment decreases oxidative stress and neuronal apoptosis of PC12 cells following hypoxia and reperfusion (H/R) in vitro. Moreover, we provided evidence that PC12 cells were more vulnerable to H/R‐induced oxidative stress after si‐Nrf2 transfection, and the HTHQ‐mediated protection was lost in PC12 cells transfected with siNrf2. In conclusion, these results suggested that HTHQ possesses neuroprotective effects against oxidative stress and apoptosis after cerebral I/R injury via activation of the Nrf2/HO‐1 pathway.  相似文献   

9.
10.
This article describes an application of the host‐guest chiral recognition approach called tweezer methodology for the determination of the absolute configuration of 3‐hydroxy‐β‐lactams. These substrates represent challenging cases due to their chemical reactivity, the presence of multiple stereogenic centers and several functional groups which offer various possibilities of binding to the Zn‐porphyrin host. OPLS‐2005, the force field used in this work to predict the interporphyrin twist, modeled correctly the host‐guest complexation mechanism and revealed conformational details of the bound substrates. The computational study also suggested that in cases where an increase in the magnitude of the stereodifferentiation and an intense experimental CD are observed, the bound conformation of the conjugates are hydrogen bonded. The present investigation provides evidence that when the tweezer method is assisted by the OPLS‐2005 based computational approach, it can be successfully applied to the configurational and conformational elucidation of multi‐functional compounds with multiple stereogenic centers. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
12.
13.
A sensitive and simple spectrofluorimetric method has been developed and validated for the determination of the anti‐epileptic drug carbamazepine (CBZ) in its dosage forms. The method was based on a nucleophilic substitution reaction of CBZ with 4‐chloro‐7‐nitrobenzo‐2‐ oxa‐1,3‐diazole (NBD‐Cl) in borate buffer (pH 9) to form a highly fluorescent derivative that was measured at 530 nm after excitation at 460 nm. Factors affecting the formation of the reaction product were studied and optimized, and the reaction mechanism was postulated. The fluorescence–concentration plot is rectilinear over the range of 0.6–8 µg/mL with limit of detection of 0.06 µg/mL and limit of quantitation of 0.19 µg/mL. The method was applied to the analysis of commercial tablets and the results were in good agreement with those obtained using the reference method. Validation of the analytical procedures was evaluated according to ICH guidelines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Microbial activities and the versatility gained through adaptation to xenobiotic compounds are the main biological forces to counteract environmental pollution. The current results present a new adaptive mechanism that is mediated through posttranslational modifications. Strains of Delftia acidovorans incapable of growing autochthonously on 2,4‐dichlorophenoxyacetate (2,4‐D) were cultivated in a chemostat on 2,4‐D in the presence of (R)‐2‐(2,4‐dichlorophenoxy)propionate. Long‐term cultivation led to enhanced 2,4‐D degradation, as demonstrated by improved values of the Michaelis–Menten constant Km for 2,4‐D and the catalytic efficiency kcat/Km of the initial degradative key enzyme (R)‐2‐(2,4‐dichlorophenoxy)propionate/α‐ketoglutarate‐dependent dioxygenases (RdpA). Analyses of the rdpA gene did not reveal any mutations, indicating a nongenetic mechanism of adaptation. 2‐DE of enzyme preparations, however, showed a series of RdpA forms varying in their pI. During adaptation increased numbers of RdpA variants were observed. Subsequent immunoassays of the RdpA variants showed a specific reaction with 2,4‐dinitrophenylhydrazine (DNPH), characteristic of carbonylation modifications. Together these results indicate that posttranslational carbonylation modified the substrate specificity of RdpA. A model was implemented explaining the segregation of clones with improved degradative activity within the chemostat. The process described is capable of quickly responding to environmental conditions by reversibly adapting the degradative potential to various phenoxyalkanoate herbicides.  相似文献   

16.
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.  相似文献   

17.
《Chirality》2017,29(6):294-303
(+)‐R ,R ‐D‐84 ((+)‐R ,R ‐4‐(2‐benzhydryloxyethyl)‐1‐(4‐fluorobenzyl)piperidin‐3‐ol) is a promising pharmacological tool for the dopamine transporter (DAT), due to its high affinity and selectivity for this target. In this study, an analytical method to ascertain the enantiomeric purity of this compound was established. For this purpose, a high‐performance liquid chromatographic (HPLC) method, based on a cellulose derived chiral stationary phase (CSP) was developed. The method was characterized concerning its specificity, linearity, and range. It was shown that the method is suitable to determine an enantiomeric excess of up to 99.8%. With only a few adjustments, this analytical CSP‐HPLC method is also well suited to separate (+)‐R ,R ‐D‐84 from its enantiomer in a semipreparative scale.  相似文献   

18.
Human leucocyte antigen (HLA)‐G has seven isoforms, of which HLA‐G1‐G4 are membrane‐bound and HLA‐G5‐G7 are soluble. Previous studies reinforced HLA‐G expression was strongly related to poor prognosis in different types of cancers. Among these studies, the monoclonal antibody (mAb) 4H84 was used which detects all HLA‐G isoform heavy chain; unfortunately, leaves the specific types of isoforms expressed in lesions undistinguished and its clinical significance needs to be clarified. To explore clinical significance of lesion soluble HLA‐G (sHLA‐G) in non‐small‐cell lung cancer (NSCLC), mAb 5A6G7 recognizing HLA‐G5/‐G6 molecules was used. Tumour cell sHLA‐G expression in 131 primary NSCLC lesions (66 squamous cell carcinoma, 55 adenocarcinoma and 10 adenosquamous carcinoma) were analysed with immunohistochemistry. Data showed that sHLA‐G expression was observed in 34.0% (45/131) of the NSCLC lesions, which was unrelated to patient age, sex, lymph nodal status, tumour–node–metastasis stage and patient survival. However, tumour cell sHLA‐G expression in lesions was predominately observed in adenocarcinoma lesions (73.0%, 40/55) which was significantly higher than that in squamous cell carcinoma (6.0%, 4/66) and adenosquamous carcinoma lesions (10.0%, 1/10, P < 0.001). The area under the receiver operating characteristic curve for lesion sHLA‐G was 0.833 (95% CI: 0.754–0.912, P < 0.001) for adenocarcinoma versus squamous cell carcinoma. Our findings for the first time showed that tumour cell sHLA‐G was predominately expressed in lung adenocarcinoma, which could be a useful biomarker to discriminate adenocarcinoma from squamous cell carcinoma in NSCLC patients.  相似文献   

19.
Seven‐transmembrane receptors (7TMRs) are involved in nearly all aspects of chemical communications and represent major drug targets. 7TMRs transmit their signals not only via heterotrimeric G proteins but also through β‐arrestins, whose recruitment to the activated receptor is regulated by G protein‐coupled receptor kinases (GRKs). In this paper, we combined experimental approaches with computational modeling to decipher the molecular mechanisms as well as the hidden dynamics governing extracellular signal‐regulated kinase (ERK) activation by the angiotensin II type 1A receptor (AT1AR) in human embryonic kidney (HEK)293 cells. We built an abstracted ordinary differential equations (ODE)‐based model that captured the available knowledge and experimental data. We inferred the unknown parameters by simultaneously fitting experimental data generated in both control and perturbed conditions. We demonstrate that, in addition to its well‐established function in the desensitization of G‐protein activation, GRK2 exerts a strong negative effect on β‐arrestin‐dependent signaling through its competition with GRK5 and 6 for receptor phosphorylation. Importantly, we experimentally confirmed the validity of this novel GRK2‐dependent mechanism in both primary vascular smooth muscle cells naturally expressing the AT1AR, and HEK293 cells expressing other 7TMRs.  相似文献   

20.
The heart‐specific isoform of 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase (PFKFB2) is an important regulator of glycolytic flux in cardiac cells. Here, we present the crystal structures of two PFKFB2 orthologues, human and bovine, at resolutions of 2.0 and 1.8 Å, respectively. Citrate, a TCA cycle intermediate and well‐known inhibitor of PFKFB2, co‐crystallized in the 2‐kinase domains of both orthologues, occupying the fructose‐6‐phosphate binding‐site and extending into the γ‐phosphate binding pocket of ATP. This steric and electrostatic occlusion of the γ‐phosphate site by citrate proved highly consequential to the binding of co‐complexed ATP analogues. The bovine structure, which co‐crystallized with ADP, closely resembled the overall structure of other PFKFB isoforms, with ADP mimicking the catalytic binding mode of ATP. The human structure, on the other hand, co‐complexed with AMPPNP, which, unlike ADP, contains a γ‐phosphate. The presence of this γ‐phosphate made adoption of the catalytic ATP binding mode impossible for AMPPNP, forcing the analogue to bind atypically with concomitant conformational changes to the ATP binding‐pocket. Inhibition kinetics were used to validate the structural observations, confirming citrate's inhibition mechanism as competitive for F6P and noncompetitive for ATP. Together, these structural and kinetic data establish a molecular basis for citrate's negative feed‐back loop of the glycolytic pathway via PFKFB2. Proteins 2016; 85:117–124. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号