首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nearly 40-year debate on the origins of carbon supporting animal production in lotic systems has spawned numerous conceptual theories emphasizing the importance of autochthonous carbon, terrestrial carbon, or both (depending on river stage height). Testing theories has been hampered by lack of adequate analytical methods to distinguish in consumer tissue between ultimate autochthonous and allochthonous carbon. Investigators initially relied on assimilation efficiencies of gut contents and later on bulk tissue stable isotope analysis or fatty acid methods. The newest technique in amino acid, compound specific, stable isotope analysis (AA-CSIA), however, enables investigators to link consumers to food sources by tracing essential amino acids from producers to consumers. We used AA-CSIA to evaluate nutrient sources for 5 invertivorous and 6 piscivorous species in 2 hydrogeomorphically contrasting large rivers: the anastomosing Upper Mississippi River (UMR) and the mostly constricted lower Ohio River (LOR). Museum specimens we analyzed isotopically had been collected by other investigators over many decades (UMR: 1900–1969; LOR: 1931–1970). Our results demonstrate that on average algae contributed 58.5% (LOR) to 75.6% (UMR) of fish diets. The next highest estimated contributions of food sources were from C3 terrestrial plants (21.1 and 11.5% for the LOR and UMR, respectively). Moreover, results from 11 individually examined species consistently demonstrated the importance of algae for most fish species in these trophic guilds. Differences among rivers in relative food source availability resulting from contrasting hydrogeomorphic complexity may account for relative proportions of amino acids derived from algae.  相似文献   

2.
Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies.  相似文献   

3.
Hood  W. Gregory  Naiman  Robert J. 《Plant Ecology》2000,148(1):105-114
We compared the invasibility of riparian plant communities high on river banks with those on floodplain floors for four South African rivers. Analyses of abundant and significant riparian species showed that the floors have 3.1 times more exotic plants than the banks. The percent exotics ranges from 5% to 11% of total species richness for the banks, and from 20% to 30% for the floors. Species richness and percent exotics are negatively correlated for the banks, but not correlated for the floors.Despite great differences in climate, species richness, and landuse history, the percentages of exotic plants in three rivers in the Pacific Northwest of the USA and one river in southwestern France are similar to those in South Africa (24-30% vs. 20-30%, respectively). Furthermore, the high proportions of exotic species in these riparian plant communities are comparable to those reported for vascular plant communities on islands. We conclude that the macro-channel floor regions of the riparian zones of South African rivers are highly vulnerable to invasion by exotic vascular plants.  相似文献   

4.
5.
Efforts to conserve, restore, or otherwise manage large rivers and the services they provide are hindered by limited understanding of the functional dynamics of these systems. This shortcoming is especially evident with regard to trophic structure and energy flow. We used natural abundances of carbon and nitrogen isotopes to examine patterns of material flow in ten large-river food webs characterized by different landscape-scale hydrologic characteristics (low-gradient river, high-gradient river, river stretches downstream of reservoirs, and reservoirs), and tested predictions from three ecosystem concepts commonly applied to large-rivers: The River Continuum Concept, The Flood Pulse Concept and the Riverine Productivity Model. Carbon derived from aquatic C3 plants and phytoplankton were the dominant energy sources supporting secondary consumers across the ten large-river food webs examined, but relative contributions differed significantly among landscape types. For low-gradient river food webs, aquatic C3 plants were the principal carbon source, contributing as much as 80% of carbon assimilated by top consumers, with phytoplankton secondarily important. The estimated relative importance of phytoplankton was greatest for food webs of reservoirs and river stretches downriver from impoundments, although aquatic C3 plants contributed similar amounts in both landscape types. Highest 99th percentile source contribution estimates for C4 plants and filamentous algae (both approximately 40%) were observed for high-gradient river food webs. Our results for low-gradient rivers supported predictions of the Flood Pulse Concept, whereas results for the three other landscape types supported the Riverine Productivity Model to varying degrees. Incorporation of landscape-scale hydrologic or geomorphic characteristics, such as river slope or floodplain width, may promote integration of fluvial ecosystem concepts. Expanding these models to include hydrologically impacted landscapes should lead to a more holistic understanding of ecosystem processes in large-river systems.  相似文献   

6.
7.
Spatial patterns in taxonomic richness and turnover for fish and aquatic macroinvertebrates are compared to assess the relative usefulness of each taxonomic group in mapping biodiversity patterns. Fish and aquatic macroinvertebrate species data for sites down the longitudinal axes of nine rivers in four provinces along the eastern side of South Africa were analysed. Fish and aquatic macroinvertebrate data from previous studies and recent river surveys were used in analyses of species richness and turnover. Fish proved to be not useful for mapping biodiversity patterns, as measured by turnover, whereas aquatic macroinvertebrate species patterns exhibited predictable patterns of turnover with downstream distance. Average turnover rates could be decomposed into turnover of common (‘core’) species, which were accelerated by presence of rare and narrow-range species. Disruptions to the river continuum impacted on the rate of turnover. Consistent with other research on South African rivers, aquatic macroinvertebrate communities could be grouped into upland versus lowland assemblages, and also be defined by longitudinal zones. Fish biodiversity patterns should be viewed at a riverscape scale, whereas macroinvertebrate patterns are more easily discerned at a segment-reach scale, and applied to reflect connectivity and environmental gradients respectively.  相似文献   

8.
This paper addresses the river heterotrophy paradox, “How can animal biomass within riverine food webs be fueled primarily by autochthonous autotrophic production if the ecosystem as a whole is heterotrophic?”. Reviewed, stable isotope data from tropical, temperate, and arctic rivers provide evidence consistent with the revised riverine productivity model (RPM): “The primary, annual energy source supporting overall metazoan production and species diversity in mid‐ to higher‐trophic levels of most rivers (≥4th order) is autochthonous primary production entering food webs via algal‐grazer and decomposer pathways”. The revised RPM does not conflict with the heterotrophy paradox because: (a) the decomposer (microbial loop) food pathway processes most of the transported, allochthonous and autochthonous carbon and, with algal respiration in some cases, is primarily responsible for a river's heterotrophic state (P/R<1); but (b) biomass production of mid‐ to higher‐trophic levels is principally supported by an algal‐grazer (phytoplankton and benthic microalgae) pathway that is only weakly linked to the decomposer pathway. The reason the algal‐grazer pathway supports the majority of metazoan biomass is that allochthonous carbon is mostly recalcitrant, whereas carbon from autochthonous primary production, though much less plentiful, is commonly more labile (easier to assimilate), contains more energy per unit mass, and is typically preferred by metazoa.  相似文献   

9.
We used stable isotopes of carbon, hydrogen and nitrogen to quantify the trophic position and resource use of larval sea lamprey Petromyzon marinus, four benthic macroinvertebrate functional feeding guilds (scraper, shredder, collector and predator) and other fishes in three rivers in eastern Canada. Larval lamprey and most invertebrate guilds foraged as primary consumers in all rivers whereas all other fishes predominantly foraged as secondary consumers. Larval lamprey obtained 75–85% of their resources from allochthonous derived material. This level exceeded all invertebrate guilds, which assimilated approximately 50% allochthonous and 50% autochthonous materials and fishes, which predominantly assimilated between 25% and 60% allochthonous material. Larval lamprey occupied a unique position within the river food webs analysed and show remarkable fidelity to a trophic niche specialising on terrestrially derived detritus.  相似文献   

10.
SUMMARY 1. Many Australian inland rivers are characterised by vast floodplains with a network of anastomosing channels that interconnect only during unpredictable flooding. For much of the time, however, rivers are reduced to a string of disconnected and highly turbid waterholes. Given these features, we predicted that aquatic primary production would be light-limited and the riverine food web would be dependent on terrestrial carbon from floodplain exchanges and direct riparian inputs.
2. To test these predictions, we measured rates of benthic primary production and respiration and sampled primary sources of organic carbon and consumers for stable isotope analysis in several river waterholes at four locations in the Cooper Creek system in central Australia.
3. A conspicuous band of filamentous algae was observed along the shallow littoral zone of the larger waterholes. Despite the high turbidity, benthic gross primary production in this narrow zone was very high (1.7–3.6 g C m−2 day−1); about two orders of magnitude greater than that measured in the main channel.
4. Stable carbon isotope analysis confirmed that the band of algae was the major source of energy for aquatic consumers, ultimately supporting large populations of crustaceans and fish. Variation in the stable carbon and nitrogen isotope signatures of consumers suggested that zooplankton was the other likely major source.
5. Existing ecosystem models of large rivers often emphasise the importance of longitudinal or lateral inputs of terrestrial organic matter as a source of organic carbon for aquatic consumers. Our data suggest that, despite the presence of large amounts of terrestrial carbon, there was no evidence of it being a significant contributor to the aquatic food web in this floodplain river system.  相似文献   

11.
Using natural abundances of stable carbon (δ13C) and nitrogen (δ15N) isotopes, we quantified spatial and temporal patterns of carbon flow through the main channel food web in the lowland section of New Zealand’s longest river, the Waikato River. The study was undertaken with the objective of determining whether the Waikato River conforms to contemporary theoretical concepts regarding carbon flow in large river food webs. Potential organic carbon sources and invertebrate and fish consumers were sampled from three different hydrogeomorphic zones on six occasions, representing a range of seasonal and flow conditions. In line with the predictions of the riverine productivity model and riverine ecosystem synthesis, autochthonous algae and biofilms were the most important basal carbon source contributing to consumer biomass. These were often supported by C3 aquatic macrophytes and allochthonous C3 riparian plants. The relative importance of organic carbon sources differed between zones and appeared to change depending on season, presumably in response to water temperature and flow, particularly in the unconstrained zone of the lower river. We also demonstrate that to draw robust conclusions, consideration must be given to quantifying the isotopic signatures of organisms lower in the food web, as these can change significantly between sampling times and hydrogeomorphic zones.  相似文献   

12.
1. Gut content analyses (GCA) of benthic macroinvertebrates, supplemented by carbon and nitrogen stable isotope analyses (SIA), were used to determine the relative contribution of leaf litter and autochthonous food sources to consumer biomass in five shaded and five unshaded streams in tropical Hong Kong. 2. Only four obligate shredders and two facultative shredders were identified out of 58 morphospecies dissected. Non‐shredder taxa consumed little (<23% food eaten) coarse particulate organic matter (CPOM) in spite of its abundance in streams, and GCA revealed that fine particulate organic matter was the major food (25–99%) of most primary consumers. 3. Stable isotope analysis results were in general agreement with the findings of GCA, and confirmed that three of the four obligate shredders had a high dependence (55–78% of assimilated carbon) on CPOM. 4. Autochthonous energy sources were important in all streams: non‐shredding primary consumers examined, which accounted for 72% of total macroinvertebrate abundance in shaded streams, derived (on average) 61% of their biomass from autochthonous foods; the equivalent values for unshaded streams were 72% (abundance) and 71% (biomass).  相似文献   

13.
14.
Cross system subsidies of energy and materials can be a substantial fraction of food web fluxes in ecosystems, especially when autochthonous production is strongly limited by light or nutrients. We explored whether assimilation of terrestrial energy varied in specific consumer taxa collected from streams of different sizes and resource availabilities. Since headwater streams are often unproductive, we expected that inputs from surrounding terrestrial systems (i.e. leaf litter, terrestrial invertebrates) would be a more important food source for consumers than in mid‐size rivers that have more open canopies and higher amounts of primary production available for consumers. We collected basal resources, invertebrates, and fish along a gradient in stream size in the Adirondack Mountains (NY, USA) and in Trinidad and Tobago and analyzed all samples for hydrogen isotopes as a means of differentiating biomass derived from allochthonous versus autochthonous sources. We found significant differences in allochthonous energy use within individual consumer taxa, showing that some taxa range from being entirely allochthonous to entirely autochthonous depending on where they were collected on the stream size gradient (grazers and collector–gatherer functional feeding groups), while other taxa are relatively fixed in the source of energy they assimilate (shredder and predator functional feeding groups). Consistent with expectations, allochthonous energy use was positively correlated with canopy cover in both regions for most feeding groups, with individuals from small, shaded streams having a more pronounced allochthonous signal than individuals collected from larger streams with less canopy cover. However, consumers in the shredder/detritivore feeding group did not vary among sites in their allochthonous energy use, and had a mostly allochthonous signal regardless of canopy cover and algal biomass. Our results demonstrate that the importance of energy from terrestrial subsidies can vary markedly but are similar in both temperate and tropical streams, suggesting a widely consistent pattern.  相似文献   

15.
Dryland rivers associated with arid and semi-arid land areas offer an opportunity to explore food web concepts and models of energy sources in systems that experience unpredictable flooding and long dry spells. This study investigated the sources of energy supporting three species of fish feeding at different trophic levels within floodplain lagoons of the Macintyre River in the headwaters of the Murray-Darling river system, Australia. Stable isotope analyses revealed that fish consumers derived, on average, 46.9% of their biomass from zooplankton, 38.1% from Coarse Particulate Organic Matter (CPOM) and 24.0% from algae. Ambassis agassizii derived on average 57.6% of its biomass carbon from zooplankton and 20.4–27.8% from algae or CPOM. Leiopotherapon unicolor derived most of its carbon from zooplankton and CPOM (38.3–39.5%), with relatively high contributions from algae compared to the other species (33.3%). An average of 48.4% of the biomass of Nematalosa erebi was derived from zooplankton, with CPOM contributing another 38.1%. Zooplankton was the most important source of organic carbon supporting all three fish species in floodplain lagoons. Phytoplankton, and possibly, particulate organic matter in the seston, are the most likely energy sources for the planktonic suspension feeders (zooplankton) and, consequently, the fish that feed on them. These results indicate a stronger dependence of consumers on autochthonous sources and on locally produced organic matter from the riparian zone (i.e., the Riverine Productivity Model), than on other resources.  相似文献   

16.
Ecosystems are generally linked via fluxes of nutrients and energy across their boundaries. For example, freshwater ecosystems in temperate regions may receive significant inputs of terrestrially derived carbon via autumnal leaf litter. This terrestrial particulate organic carbon (POC) is hypothesized to subsidize animal production in lakes, but direct evidence is still lacking. We divided two small eutrophic lakes each into two sections and added isotopically distinct maize litter to the treatment sections to simulate increased terrestrial POC inputs via leaf litter in autumn. We quantified the reliance of aquatic consumers on terrestrial resources (allochthony) in the year subsequent to POC additions by applying mixing models of stable isotopes. We also estimated lake-wide carbon (C) balances to calculate the C flow to the production of the major aquatic consumer groups: benthic macroinvertebrates, crustacean zooplankton, and fish. The sum of secondary production of crustaceans and benthic macroinvertebrates supported by terrestrial POC was higher in the treatment sections of both lakes. In contrast, total secondary and tertiary production (supported by both autochthonous and allochthonous C) was higher in the reference than in the treatment sections of both lakes. Average aquatic consumer allochthony per lake section was 27–40%, although terrestrial POC contributed less than about 10% to total organic C supply to the lakes. The production of aquatic consumers incorporated less than 5% of the total organic C supply in both lakes, indicating a low ecological efficiency. We suggest that the consumption of terrestrial POC by aquatic consumers facilitates a strong coupling with the terrestrial environment. However, the high autochthonous production and the large pool of autochthonous detritus in these nutrient-rich lakes make terrestrial POC quantitatively unimportant for the C flows within food webs.  相似文献   

17.
1. High light availability and stable base flow during the dry season promote primary production in perennial rivers of the wet–dry tropics, in contrast to production during the wet season which is often limited by turbidity and scouring. The Mitchell River of northern Queensland (Australia) was studied to understand controls on aquatic production and respiration in the dry season in relation to spatial and temporal gradients of light and temperature. 2. At three sites along the river, whole‐ecosystem gross primary production (GPP) and respiration (ER) were measured from diel changes of dissolved oxygen using the open‐channel single station method. Using stable carbon and nitrogen isotope analysis, aquatic consumers and their potential basal food resources were also assessed to determine food web relationships at the beginning and end of the dry season. 3. Nutrient limitation of aquatic net primary production was implied from the oligotrophic conditions and high algal C:N ratios. Rates of GPP were comparable with other tropical and temperate rivers and were regulated by light availability. 4. Respiration rates were high and similar to other tropical and subtropical rivers. Up to 52% of temporal variation of ER was explained by temperature, while P/R was lowest at the downstream site. 5. Benthic algae were the major carbon source for primary and secondary benthic consumers (insects) in the dry season but not for higher consumers (fish and crustaceans). Despite high rates of ER, which were probably supported by decaying terrestrial C3 plant material, this carbon source was not identified as contributing to animal consumer biomass. 6. While benthic algal production in the dry season sustained benthic invertebrates, the importance of external subsidies of carbon along the river, probably from the floodplain, was emphasised for fish and large invertebrates, which evidently were feeding on carbon sources not present in channel waterholes during the dry season.  相似文献   

18.
  1. Our project sought to determine ecological effects of adding low-head dams and levees to large rivers by examining potential changes to aquatic food webs over a 70-year period in the Lower Ohio River (LOR) and Upper Mississippi River (UMR).
  2. We employed museum collections of fish and compound specific stable isotope analysis of amino acids to evaluate long-term changes in primary food sources for multiple species of fish in each river.
  3. Fishes in both rivers depended more on autochthonous than allochthonous carbon sources throughout the 70-year period (based on measurements of isotopic signatures of algae, C3 plants, C4 plants, cyanobacteria, and fungi), but the relative use of different carbon sources differed between the UMR and LOR. Significant but opposite shifts in trophic positions (TP) between rivers over time (higher TP in the UMR; lower in the LOR) were correlated with major anthropogenic changes to habitat structure (e.g. slight decrease in abundance of side channels in the UMR; increase in pool water depth in the LOR) resulting from low-head dam construction. They may also have been influenced by likely increased primary productivity in the UMR from agricultural nitrogen inputs and by possible shifts in the importance of phytoplankton versus benthic algae in the LOR from changes in water depth. Shifts in trophic position and reliance on various food sources were not correlated with variation in discharge, gage height, or temperature.
  4. Although these two rivers have contrasting hydrogeomorphic complexity (UMR is an anastomosing river, while the LOR is a constricted channel river) and different discharge patterns (seasonal versus yearly operation in some cases), both differ substantially from rivers having hydrogeomorphic changes resulting from construction of high dams (>15 m). It is not surprising, therefore, that factors controlling trophic position and reliance on different carbon sources vary among different types of dams and river structures.
  相似文献   

19.
The utilization of food resources by aquatic consumers reflects the structure and functioning of river food webs. In lotic water systems, where food availability and predator–prey relationships vary with gradient changes in physical conditions, understanding diet assimilation by local communities is important for ecosystem conservation. In the subtropical Liuxi River, southern China, the relative contribution of basal resources to the diet assimilation of functional feeding groups (FFGs) was determined by stable carbon (13C) and nitrogen (15N) isotope analyses. The output of Bayesian mixing models showed that diatom‐dominated periphyton (epilithic biofilm), aquatic C3 plants (submerged hydrophytes), and suspended particulate organic matter (SPOM) associated with terrestrial C3 plants contributed the most to the diet assimilation of FFGs in the upper, middle, and lower reaches, respectively. The relative contribution of consumer diet assimilation was weighted by the biomass (wet weight, g/m2) of each FFG to reflect resource utilization at the assemblage level. From the upper to the lower reaches, the spatial variation in the diet assimilation of fish and invertebrate assemblages could be summarized as a longitudinal decrease in periphyton (from 57%–76% to <3%) and an increase in SPOM (from <7% to 51%–68%) with a notable midstream increase in aquatic C3 plants (23%–48%). These results indicate that instream consumers in the Liuxi River rely more on autochthonous production (e.g., periphyton and submerged hydrophytes) than on terrestrially derived allochthonous matter (e.g., terrestrial plants). The pattern of resource utilization by consumers in the mid‐upper Liuxi River is consistent with findings from other open subtropical and neotropical rivers and provides evidence for the riverine productivity model. Our study indicates that protecting inherent producers in rivers (e.g., periphyton and submerged hydrophytes) and restoring their associated habitats (e.g., riffles with cobble substrate) are conducive to aquatic ecosystem management.  相似文献   

20.
We used compound-specific isotope analysis of carbon isotopes in amino acids (AAs) to determine the biosynthetic source of AAs in fish from major tributaries to California's Sacramento-San Joaquin river delta (i.e., the Sacramento, Cosumnes and Mokelumne rivers). Using samples collected in winter and spring between 2016 and 2019, we confirmed that algae are a critical component of floodplain food webs in California's Central Valley. Results from bulk stable isotope analysis of carbon and nitrogen in producers and consumers were adequate to characterize a general trophic structure and identify potential upstream and downstream migration into our study site by American shad Alosa sapidissima and rainbow trout Oncorhynchus mykiss, respectively. However, owing to overlap and variability in source isotope compositions, our bulk data were unsuitable for conventional bulk isotope mixing models. Our results from compound-specific carbon isotope analysis of AAs clearly indicate that algae are important sources of organic matter to fish of conservation concern, such as Chinook salmon Oncorhynchus tshawytscha in California's Central Valley. However, algae were not the exclusive source of energy to metazoan food webs. We also revealed that other sources of AAs, such as bacteria, fungi and higher plants, contributed to fish as well. While consistent with the well-supported notion that algae are critical to aquatic food webs, our results highlight the possibility that detrital subsidies might intermittently support metazoan food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号