共查询到20条相似文献,搜索用时 0 毫秒
1.
Vasiliki Mazi Nikos Cosmidis Michael Loukas Yannis Clonis Eleftherios Zouros 《Biochemical genetics》1998,36(7-8):259-269
Purified alcohol dehydrogenases from olive fruitflies of genotypes SS, II, and SI were biochemicallycompared. The enzymes were found to differ in thespecific activity, in the influence of pH andtemperature on activity, and in the affinity with differentsubstrate-alcohols. The probable relationships of thesefindings with the dramatic changes in allele frequenciesobserved when natural populations are introduced in the laboratory are discussed. 相似文献
2.
3.
Charles A. Downs Viet D. Dang Nicholle M. Johnson Nancy D. Denslow Abdel A. Alli 《Journal of cellular biochemistry》2018,119(1):599-606
Exosomes are nano‐sized vesicles that are secreted into the extracellular environment. These vesicles contain various biological effector molecules that can regulate intracellular signaling pathways in recipient cells. The aim of this study was to examine a correlation between exosomal cathepsin B activity and the receptor for advanced glycation end‐products (RAGE). Type 1 alveolar epithelial (R3/1) cells were treated with or without hydrogen peroxide and exosomes isolated from the cell conditioned media were characterized by NanoSight analysis. Lipidomic and proteomic analysis showed exosomes released from R3/1 cells exposed to oxidative stress induced by hydrogen peroxide or vehicle differ in their lipid and protein content, respectively. Cathepsin B activity was detected in exosomes isolated from hydrogen peroxide treated cells. The mRNA and protein expression of RAGE increased in cultured R3/1 cells treated with exosomes containing active cathepsin B while depletion of exosomal cathepsin B attenuated RAGE mRNA and protein expression. These results suggest exosomal cathepsin B regulates RAGE in type 1 alveolar cells under conditions of oxidative stress. J. Cell. Biochem. 119: 599–606, 2018. © 2017 Wiley Periodicals, Inc. 相似文献
4.
5.
6.
Triptolide, a diterpene triepoxide, is one of the major components of most functional extracts of Tripterygium wilfordii Hook f, which is known to have various biological effects, including immunosuppressive, anti-inflammatory and anti-tumor functions. We studied the inhibitory effect of triptolide on endotoxemia (ETM)-induced oxidative stress, which was induced in C57BL/6 mice by lipopolysaccharide (LPS) and D-galactosamine (D-GalN). Pretreatment with triptolide decreased the reactive oxygen species (ROS) levels, mortality rate and liver injury after LPS/D-GalN injection. We utilized comprehensive proteomics to identify alterations in liver protein expression during pretreatment with triptolide or N-acetylcysteine (NAC) after LPS/D-GalN injection, 44 proteins were found to be related to oxidative stress, mitochondria, metabolism and signal transduction, and 23 proteins of them seemed to be significantly up- or down-regulated. Furthermore, both triptolide and NAC inhibited activation of c-jun NH2-terminal kinases (JNK) and mitogen-activated protein kinase p38 (p38), phosphorylation of inhibitor of nuclear factor-kappa B (IκB) and activation of nuclear factor-κB (NF-κB). These results demonstrated that triptolide inhibited the activation of JNK and p38 by decreasing ROS levels, which in turn inhibited the hepatic injury. In addition, we set and validated the phosphorylation model of extracellular signal-regulated kinase (ERK) and proposed that triptolide probably induced ERK phosphorylation through inhibiting its dephosphorylation rates. These results showed that triptolide can effectively reduce the oxidative stress and partially rescue the damage in the liver induced by LPS/D-GalN. 相似文献
7.
Peishen Zhao Caroline Nunn Suneela Ramineni John R. Hepler Peter Chidiac 《Journal of cellular biochemistry》2013,114(6):1414-1423
RGS14 is a 60 kDa protein that contains a regulator of G protein signaling (RGS) domain near its N‐terminus, a central region containing a pair of tandem Ras‐binding domains (RBD), and a GPSM (G protein signaling modulator) domain (a.k.a. Gi/o‐Loco binding [GoLoco] motif) near its C‐terminus. The RGS domain of RGS14 exhibits GTPase accelerating protein (GAP) activity toward Gαi/o proteins, while its GPSM domain acts as a guanine nucleotide dissociation inhibitor (GDI) on Gαi1 and Gαi3. In the current study, we investigate the contribution of different domains of RGS14 to its biochemical functions. Here we show that the full‐length protein has a greater GTPase activating activity but a weaker inhibition of nucleotide dissociation relative to its isolated RGS and GPSM regions, respectively. Our data suggest that these differences may be attributable to an inter‐domain interaction within RGS14 that promotes the activity of the RGS domain, but simultaneously inhibits the activity of the GPSM domain. The RBD region seems to play an essential role in this regulatory activity. Moreover, this region of RGS14 is also able to bind to members of the B/R4 subfamily of RGS proteins and enhance their effects on GPCR‐activated Gi/o proteins. Overall, our results suggest a mechanism wherein the RBD region associates with the RGS domain region, producing an intramolecular interaction within RGS14 that enhances the GTPase activating function of its RGS domain while disfavoring the negative effect of its GPSM domain on nucleotide dissociation. J. Cell. Biochem. 114: 1414–1423, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
8.
Li‐Na Wang Shi‐Wen Tong Huai‐Dong Hu Feng Ye Sang‐Lin Li Hong Ren Da‐Zhi Zhang Rong Xiang Yi‐Xuan Yang 《Journal of cellular biochemistry》2012,113(12):3762-3772
Quantitative proteomics can be used as a screening tool for identification of differentially expressed proteins as potential biomarkers for cancers. Here, we comparatively analyzed the proteome profiles of ovarian cancer tissues and normal ovarian epithelial tissues. Using the high‐throughput proteomic technology of isobaric tags for relative and absolute quantitation (iTRAQ)‐coupled with two‐dimensional‐liquid chromatography‐tandem mass spectrometry, 1,259 unique proteins were identified. Of those, 205 were potentially differentially expressed between ovarian cancer and normal ovarian tissues. Several of the potentially differentially expressed proteins were validated by Western blotting and real‐time quantitative RT‐PCR analyses. Furthermore, up‐regulation of KRT8, PPA1, IDH2, and S100A11 were validated in ovarian tissue microarrays by immunohistochemistry. Silencing of S100A11 expression suppressed the migration and invasion properties of ovarian cancer cells in vitro. Our study represents the successful application of iTRAQ technology to an investigation of ovarian cancer. Many of the potentially differentially expressed proteins identified had not been linked to ovarian cancer before, and provide valuable novel insights into the underlying mechanisms of carcinogenesis in human ovarian cancer. J. Cell. Biochem. 113: 3762–3772, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
9.
In addition to its roles in sugar metabolism, fructose‐1,6‐bisphosphate aldolase (aldolase) has been implicated in cellular functions independent from these roles, termed “moonlighting functions.” These moonlighting functions likely involve the known aldolase–actin interaction, as many proteins with which aldolase interacts are involved in actin‐dependent processes. Specifically, aldolase interacts both in vitro and in cells with Wiskott–Aldrich Syndrome Protein (WASP), a protein involved in controlling actin dynamics, yet the function of this interaction remains unknown. Here, the effect of aldolase on WASP‐dependent processes in vitro and in cells is investigated. Aldolase inhibits WASP/Arp2/3‐dependent actin polymerization in vitro. In cells, knockdown of aldolase results in a decreased rate of cell motility and cell spreading, two WASP‐dependent processes. Expression of exogenous aldolase rescues these defects. Whether these effects of aldolase on WASP‐dependent processes were due to aldolase catalysis or moonlighting functions is tested using aldolase variants defective in either catalytic or actin‐binding activity. While the actin‐binding deficient aldolase variant is unable to inhibit actin polymerization in vitro and is unable to rescue cell motility defects in cells, the catalytically inactive aldolase is able to perform these functions, providing evidence that aldolase moonlighting plays a role in WASP‐mediated processes. J. Cell. Biochem. 114: 1928–1939, 2013. © 2013 Wiley Periodicals, Inc. 相似文献
10.
Claudio Napoli Alberto Zullo Antonietta Picascia Teresa Infante Francesco Paolo Mancini 《Journal of cellular biochemistry》2013,114(1):7-20
In recent years, the diagnosis of cardiovascular disease (CVD) has increased its potential, also thanks to mass spectrometry (MS) proteomics. Modern MS proteomics tools permit analyzing a variety of biological samples, ranging from single cells to tissues and body fluids, like plasma and urine. This approach enhances the search for informative biomarkers in biological samples from apparently healthy individuals or patients, thus allowing an earlier and more precise diagnosis and a deeper comprehension of pathogenesis, development and outcome of CVD to further reduce the enormous burden of this disease on public health. In fact, many differences in protein expression between CVD‐affected and healthy subjects have been detected, but only a few of them have been useful to establish clinical biomarkers because they did not pass the verification and validation tests. For a concrete clinical support of MS proteomics to CVD, it is, therefore, necessary to: ameliorate the resolution, sensitivity, specificity, throughput, precision, and accuracy of MS platform components; standardize procedures for sample collection, preparation, and analysis; lower the costs of the analyses; reduce the time of biomarker verification and validation. At the same time, it will be fundamental, for the future perspectives of proteomics in clinical trials, to define the normal protein maps and the global patterns of normal protein levels, as well as those specific for the different expressions of CVD. J. Cell. Biochem. 114: 7–20, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
11.
Young‐Joo Jeon Jumi Kim Jin Hyoung Cho Hyung‐Min Chung Jung‐Il Chae 《Journal of cellular biochemistry》2016,117(5):1112-1125
12.
Dexiang Zhu Jie Wang Li Ren Yan Li Bin Xu Ye Wei Yunshi Zhong Xinzhe Yu Shenyong Zhai Dr. Jianmin Xu Xinyu Qin 《Journal of cellular biochemistry》2013,114(2):448-455
No ideal serum biomarker currently exists for the early diagnosis of colorectal cancer (CRC). Magnetic bead‐based fractionation coupled with MALDI‐TOF MS was used to screen serum samples from CRC patients, healthy controls, and other cancer patients. A diagnostic model with five proteomic features (m/z 1778.97, 1866.16, 1934.65, 2022.46, and 4588.53) was generated using Fisher algorithm with best performance. The Fisher‐based model could discriminate CRC patients from the controls with 100% (46/46) sensitivity and 100% (35/35) specificity in the training set, 95.6% (43/45) sensitivity and 83.3% (35/42) specificity in the test set. We further validated the model with 94.4% (254/269) sensitivity and 75.5% (83/110) specificity in the external independent group. In other cancers group, the Fisher‐based model classified 25 of 46 samples (54.3%) as positive and the other 21 as negative. With FT‐ICR‐MS, the proteomic features of m/z 1778.97, 1866.16, 1934.65, and 2022.46, of which intensities decreased significantly in CRC, were identified as fragments of complement C3f. Therefore, the Fisher‐based model containing five proteomic features was able to effectively differentiate CRC patients from healthy controls and other cancers with a high sensitivity and specificity, and may be CRC‐specific. Serum complement C3f, which was significantly decreased in CRC group, may be relevant to the incidence of CRC. J. Cell. Biochem. 114: 448–455, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
13.
Marissa L. Cann Ian M. McDonald Michael P. East Gary L. Johnson Lee M. Graves 《Journal of cellular biochemistry》2017,118(11):3595-3606
14.
15.
Ye F Zhang H Yang YX Hu HD Sze SK Meng W Qian J Ren H Yang BL Luo MY Wu X Zhu W Cai WJ Tong JB 《Journal of cellular biochemistry》2011,112(10):3002-3014
Adipose tissue is critical in obesity and type II diabetes. Blocking of adipocyte differentiation is one of the anti-obesity strategies targeting on strong rise in fat storage and secretion of adipokine(s). However, the molecular basis of adipocyte differentiation and its regulation remains obscure. Therefore, we exposed 3T3-L1 cell line to appropriate hormonal inducers as adipocyte differentiation model. Using iTRAQ-coupled 2D LC-MS/MS, a successfully exploited high-throughput proteomic technology, we nearly quantitated 1,000 protein species and found 106 significantly altered proteins during adipocyte differentiation. The great majority of differentially expressed proteins were related to metabolism enzymes, structural molecules, and proteins involved in signal transduction. In addition to previously reported differentially expressed molecules, more than 20 altered proteins previously unknown to be involved with adipogenic process were firstly revealed (e.g., HEXB, DPP7, PTTG1IP, PRDX5, EPDR1, SPNB2, STEAP3, TPP1, etc.). The partially differential proteins were verified by Western blot and/or real-time PCR analysis. Furthermore, the association of PCX and VDAC2, two altered proteins, with adipocyte conversion was analyzed using siRNA method, and the results showed that they could contribute considerably to adipogenesis. In conclusion, our data provide valuable information for further understanding of adipogenesis. 相似文献
16.
《Redox report : communications in free radical research》2013,18(2):60-66
AbstractThe objective of this work was to examine the time-dependent pro-oxidant versus antioxidant effect of various doses of vitamin E used commonly in experimental studies. Erythrocyte activity of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and plasma lipid peroxidation levels were investigated following biweekly intramuscular administration of 100, 300 and 600 mg/kg of vitamin E at a baseline time point, and additionally at 2, 4 and 6 weeks after initiating treatment. Vitamin E had an antioxidant effect when administered at low doses over short time periods, and increased the activity of antioxidant enzymes. At higher doses and over longer time periods, it increased the level of lipid peroxidation, and attenuated the activity of antioxidant enzymes. These results suggest that time-dependent variations in vitamin E effects should be considered in design and interpretation of experimental antioxidant studies, as well as during clinical trials. 相似文献
17.
18.
19.
Guo‐Yan Liu Jing‐Xian Shi Song‐Lin Shi Fan Liu Gang Rui Xiao Li Li‐Bin Gao Xiao‐Ling Deng Qi‐Fu Li 《Journal of cellular biochemistry》2017,118(12):4697-4707
20.
Shuliang Chen Xiao Yu Quan Lei Lixin Ma Deyin Guo 《Journal of cellular biochemistry》2013,114(10):2323-2333