首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Maintenance of cellular proteostasis relies on efficient clearance of defective gene products. For misfolded secretory proteins, this involves dislocation from the endoplasmic reticulum (ER) into the cytosol followed by proteasomal degradation. However, polypeptide aggregation prevents cytosolic dislocation and instead activates ill‐defined lysosomal catabolic pathways. Here, we describe an ER‐to‐lysosome‐associated degradation pathway (ERLAD) for proteasome‐resistant polymers of alpha1‐antitrypsin Z (ATZ). ERLAD involves the ER‐chaperone calnexin (CNX) and the engagement of the LC3 lipidation machinery by the ER‐resident ER‐phagy receptor FAM134B, echoing the initiation of starvation‐induced, receptor‐mediated ER‐phagy. However, in striking contrast to ER‐phagy, ATZ polymer delivery from the ER lumen to LAMP1/RAB7‐positive endolysosomes for clearance does not require ER capture within autophagosomes. Rather, it relies on vesicular transport where single‐membrane, ER‐derived, ATZ‐containing vesicles release their luminal content within endolysosomes upon membrane:membrane fusion events mediated by the ER‐resident SNARE STX17 and the endolysosomal SNARE VAMP8. These results may help explain the lack of benefits of pharmacologic macroautophagy enhancement that has been reported for some luminal aggregopathies.  相似文献   

2.
In plant innate immunity, the surface‐exposed leucine‐rich repeat receptor kinases EFR and FLS2 mediate recognition of the bacterial pathogen‐associated molecular patterns EF‐Tu and flagellin, respectively. We identified the Arabidopsis stromal‐derived factor‐2 (SDF2) as being required for EFR function, and to a lesser extent FLS2 function. SDF2 resides in an endoplasmic reticulum (ER) protein complex with the Hsp40 ERdj3B and the Hsp70 BiP, which are components of the ER‐quality control (ER‐QC). Loss of SDF2 results in ER retention and degradation of EFR. The differential requirement for ER‐QC components by EFR and FLS2 could be linked to N‐glycosylation mediated by STT3a, a catalytic subunit of the oligosaccharyltransferase complex involved in co‐translational N‐glycosylation. Our results show that the plasma membrane EFR requires the ER complex SDF2–ERdj3B–BiP for its proper accumulation, and provide a demonstration of a physiological requirement for ER‐QC in transmembrane receptor function in plants. They also provide an unexpected differential requirement for ER‐QC and N‐glycosylation components by two closely related receptors.  相似文献   

3.
ERdj3/DNAJB11 is an endoplasmic reticulum (ER)‐targeted HSP40 co‐chaperone that performs multifaceted functions involved in coordinating ER and extracellular proteostasis. Here, we show that ERdj3 assembles into a native tetramer that is distinct from the dimeric structure observed for other HSP40 co‐chaperones. An electron microscopy structural model of full‐length ERdj3 shows that these tetramers are arranged as a dimer of dimers formed by distinct inter‐subunit interactions involving ERdj3 domain II and domain III. Targeted deletion of residues 175‐190 within domain II renders ERdj3 a stable dimer that is folded and efficiently secreted from mammalian cells. This dimeric ERdj3 shows impaired substrate binding both in the ER and extracellular environments and reduced interactions with the ER HSP70 chaperone BiP. Furthermore, we show that overexpression of dimeric ERdj3 exacerbates ER stress‐dependent reductions in the secretion of a destabilized, aggregation‐prone protein and increases its accumulation as soluble oligomers in extracellular environments. These results reveal ERdj3 tetramerization as an important structural framework for ERdj3 functions involved in coordinating ER and extracellular proteostasis in the presence and absence of ER stress.  相似文献   

4.
Alpha 1 antitrypsin deficiency (AATD) is a well recognized genetic risk factor for pulmonary disease and less common liver disease. The two most common deficiency alleles worldwide PI*S and PI*Z can be easily detected using several molecular methods. However, there are at least 30 other AATD variants, which are only detectable by alpha 1 antitrypsin (AAT) gene sequencing and, therefore, seem to be more under-recognized than the PI*S and PI*Z alleles. PI*Mmalton is the most frequent AATD variant in different regions of the Southern Mediterranean basin countries, where its prevalence seems to prevail over PI*S and PI*Z. In this work, we report the development of a simple PCR-based analysis designed for the detection of the PI*Mmalton deficiency alleles using two specific primers. A one-tube reaction enables the distinction between the different genotypes. This reliable, easy, fast, and low-cost technique might be useful for laboratories involved in the study of AATD-related diseases, especially those of the Southern Mediterranean basin area with modest budget or where sophisticated equipment is not available. This will allow larger targeted screening for PI*Mmalton in order to better understand this mutation epidemiology and its origin.  相似文献   

5.
Mutations in the SFTPC gene associated with interstitial lung disease in human patients result in misfolding, endoplasmic reticulum (ER) retention, and degradation of the encoded surfactant protein C (SP-C) proprotein. In this study, genes specifically induced in response to transient expression of two disease-associated mutations were identified by microarray analyses. Immunoglobulin heavy chain binding protein (BiP) and two heat shock protein 40 family members, endoplasmic reticulum-localized DnaJ homologues ERdj4 and ERdj5, were significantly elevated and exhibited prolonged and specific association with the misfolded proprotein; in contrast, ERdj3 interacted with BiP, but it did not associate with either wild-type or mutant SP-C. Misfolded SP-C, ERdj4, and ERdj5 coprecipitated with p97/VCP indicating that the cochaperones remain associated with the misfolded proprotein until it is dislocated to the cytosol. Knockdown of ERdj4 and ERdj5 expression increased ER retention and inhibited degradation of misfolded SP-C, but it had little effect on the wild-type protein. Transient expression of ERdj4 and ERdj5 in X-box binding protein 1(-/-) mouse embryonic fibroblasts substantially restored rapid degradation of mutant SP-C proprotein, whereas transfection of HPD mutants failed to rescue SP-C endoplasmic reticulum-associated protein degradation. ERdj4 and ERdj5 promote turnover of misfolded SP-C and this activity is dependent on their ability to stimulate BiP ATPase activity.  相似文献   

6.
Z α1-antitrypsin (ZAAT) deficiency is a disease associated with emphysematous lung disease and also with liver disease. The liver disease of AAT deficiency is associated with endoplasmic reticulum (ER) stress. SEPS1 is a selenoprotein that, through a chaperone activity, decreases ER stress. To determine the effect of SEPS1 on ER stress in ZAAT deficiency, we measured activity of the grp78 promoter and levels of active ATF6 as markers of the unfolded protein response in HepG2 cells transfected with the mutant form of AAT, a ZAAT transgene. We evaluated levels of NFκB activity as a marker of the ER overload response. To determine the effect of selenium supplementation on the function of SEPS1, we investigated glutathione peroxidase activity, grp78 promoter activity, and NFκB activity in the presence or absence of selenium. SEPS1 reduced levels of active ATF6. Overexpression of SEPS1 also inhibited grp78 promoter and NFκB activity, and this effect was enhanced in the presence of selenium supplementation. This finding demonstrates a role for SEPS1 in ZAAT deficiency and suggests a possible therapeutic potential for selenium supplementation.SEPS1 (selenoprotein S, VIMP, Tanis, or SelS) is a selenoprotein found in the endoplasmic reticulum (ER)3 membrane. SEPS1 participates in the processing and removal of misfolded proteins from the ER to the cytosol, where they are polyubiquitinated and degraded through the proteasome (1). SEPS1 can be induced by ER stress (2) and has been shown in macrophages to be protective from pharmacological ER stress agent-induced apoptosis (3).The endoplasmic reticulum is one of the largest cell organelles. It serves many essential functions, including production of all components of cellular membranes, proteins, lipids, and sterols (4). Only correctly folded proteins are transported out of the ER, whereas incompletely folded proteins are retained in the organelle to complete the folding process or be targeted for destruction. ER stress is defined as an imbalance between the cellular demand for ER function and capacity of the organelle. It is characterized by a number of intracellular responses. These responses include the ER overload response (EOR), the unfolded protein response (UPR), and apoptosis.α1-Antitrypsin (AAT) deficiency is a disease characterized by early onset emphysema and liver disease (5). The mutant Z form of this autosomal co-dominant disease occurs in >95% of all individuals with AAT deficiency (6). Liver disease occurs in ∼10% of all homozygous neonates who develop hepatitis and cholestasis. A proportion of these children progress to liver failure, requiring liver transplantation (7, 8). Cirrhosis can also occur in adults without a preceding history of childhood liver disease. The mutant Z AAT polymerizes and accumulates in the ER, leaving only 15% of ZAAT secreted (9, 10). This accumulation of abnormal protein in the ER gives rise to ER stress, which is believed to contribute to the liver disease that results from AAT deficiency. The cells respond to this perturbation by inducing the expression of novel genes whose products aim to restore normal ER function (11). SEPS1 is an example of a molecular chaperone that serves to augment the capacity of the ER for protein folding and degradation.In this paper, we investigate the role of SEPS1 in regulating the cellular response to ER stress in HepG2 cells transfected with the ZAAT transgene. We investigate the effect of SEPS1 on the UPR component of this response by measuring grp78 promoter activity, a UPR-up-regulated gene that functions as a molecular chaperone, and by detecting activated ATF6, which occurs downstream to the activation of grp78. The EOR component of ER stress is investigated by measuring NFκB activation.We study the effect of selenium supplementation on the action of SEPS1 to see if the function of this selenoprotein can be enhanced and, if so, through which pathways, looking specifically at grp78 promoter activity, ATF6 activation, and NFκB activation and also at glutathione peroxidase (GPx) activity and at the anti-inflammatory 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) pathway. GPx is a selenoprotein whose activity can be readily assayed. This was used as a measure of selenoprotein activity.The role of SEPS1 in conformational diseases has not been evaluated. These diseases are caused by inherited or acquired modifications in protein structure, where specific proteins undergo a conformational rearrangement, causing deposition within cellular compartments, such as the ER. This can lead to devastating results. AAT deficiency is one such disease, but the group includes Alzheimer, Parkinson, and Huntington diseases and cystic fibrosis.  相似文献   

7.
α-1 anti-trypsin (AAT) is the most abundant circulating serine protease inhibitor (serpin) and an acute phase reactant. Systemic deficiency in AAT (AATD) due to genetic mutations can result in liver failure and chronic lung disease such as emphysema. Considered the prototypic serpin, the emphysema observed in patients with AATD, consisting of progressive destruction of the alveoli and small airway structures, formed the basis of the protease/anti-protease imbalance theory of chronic obstructive pulmonary disease (COPD). Over the past decade, however, investigations of AATD have described multiple functions of AAT beyond those generally attributed to its antiprotease activity. Evidence now suggests that AAT plays an important role in modulating immunity, inflammation, proteostasis, apoptosis, and possibly cellular senescence programs. When integrated in vivo, these processes contribute to the lung maintenance program which preserves the lung despite a constant bombardment by damage associated molecular patterns (DAMPs) and/or pathogenassociated molecular patterns (PAMPs) initiated by cigarette smoke, pollutants, or infections. In this review, we discuss the clinical aspects of AATD as they pertain to emphysema; including similarities and differences to cigarette smoke-induced emphysema. Examining the lung maintenance program, we next consider the multiple mechanisms of airspace destruction and explore the role AATD contributes. Finally, we consider the data regarding treatment of AATD, including AAT supplementation and its current limitations, and suggest further avenues of research informed by the multiple functions of AAT.  相似文献   

8.
9.
It is now well known that the addition and trimming of oligosaccharide side chains during post-translational modification play an important role in determining the fate of secretory, membrane, and lysosomal glycoproteins. Recent studies have suggested that trimming of oligosaccharide side chains also plays a role in the degradation of misfolded glycoproteins as a part of the quality control mechanism of the endoplasmic reticulum (ER). In this study, we examined the effect of several inhibitors of carbohydrate processing on the fate of the misfolded secretory protein alpha1 antitrypsin Z. Retention of this misfolded glycoprotein in the ER of liver cells in the classical form of alpha1 antitrypsin (alpha1-AT) deficiency is associated with severe liver injury and hepatocellular carcinoma and lack of its secretion is associated with destructive lung disease/emphysema. The results show marked alterations in the fate of alpha1 antitrypsin Z (alpha1-ATZ). Indeed, one glucosidase inhibitor, castanospermine (CST), and two mannosidase inhibitors, kifunensine (KIF) and deoxymannojirimycin (DMJ), mediate marked increases in secretion of alpha1-ATZ by distinct mechanisms. The effects of these inhibitors on secretion have interesting implications for our understanding of the quality control apparatus of the ER. These inhibitors may also constitute models for development of additional drugs for chemoprophylaxis of liver injury and emphysema in patients with alpha1-AT deficiency.  相似文献   

10.
Genetic or environmentally-induced alterations in protein structure interfere with the correct folding, assembly and trafficking of proteins. In the lung the expression of misfolded proteins can induce a variety of pathogenetic effects. Cystic fibrosis (CF) and alpha-1 antitrypsin (AAT) deficiency are two major clinically relevant pulmonary disorders associated with protein misfolding. Both are genetic diseases the primary causes of which are expression of mutant alleles of the cystic fibrosis transmembrane conductance regulator (CFTR) and SERPINA1, respectively. The most common and best studied mutant forms of CFTR and AAT are ΔF508 CFTR and the Glu342Lys mutant of AAT called ZAAT, respectively. Non-genetic mechanisms can also damage protein structure and induce protein misfolding in the lung. Cigarette-smoke contains oxidants and other factors that can modify a protein's structure, and is one of the most significant environmental causes of protein damage within the lung. Herein we describe the mechanisms controlling the folding of wild type and mutant versions of CFTR and AAT proteins, and explore the consequences of cigarette-smoke-induced effects on the protein folding machinery in the lung.  相似文献   

11.
Misfolded proteins in the endoplasmic reticulum (ER) are selected for ER‐associated degradation (ERAD). More than 60 disease‐associated proteins are substrates for the ERAD pathway due to the presence of missense or nonsense mutations. In yeast, the Hsp104 molecular chaperone disaggregates detergent‐insoluble ERAD substrates, but the spectrum of disease‐associated ERAD substrates that may be aggregation prone is unknown. To determine if Hsp104 recognizes aggregation‐prone ERAD substrates associated with human diseases, we developed yeast expression systems for a hydrophobic lipid‐binding protein, apolipoprotein B (ApoB), along with a chimeric protein harboring a nucleotide‐binding domain from the cystic fibrosis transmembrane conductance regulator (CFTR) into which disease‐causing mutations were introduced. We discovered that Hsp104 facilitates the degradation of ER‐associated ApoB as well as a truncated CFTR chimera in which a premature stop codon corresponds to a disease‐causing mutation. Chimeras containing a wild‐type version of the CFTR domain or a different mutation were stable and thus Hsp104 independent. We also discovered that the detergent solubility of the unstable chimera was lower than the stable chimeras, and Hsp104 helped retrotranslocate the unstable chimera from the ER, consistent with disaggregase activity. To determine why the truncated chimera was unstable, we next performed molecular dynamics simulations and noted significant unraveling of the CFTR nucleotide‐binding domain. Because human cells lack Hsp104, these data indicate that an alternate disaggregase or mechanism facilitates the removal of aggregation‐prone, disease‐causing ERAD substrates in their native environments.  相似文献   

12.
13.
14.

Objectives

To establish genetically modified cell lines that can produce functional α1-antitrypsin (AAT), by CRISPR/Cas9-assisted homologous recombination.

Results

α1-Antitrypsin deficiency (AATD) is a monogenic heritable disease that often results in lungs and liver damage. Current augmentation therapy is expensive and in short of supply. To develop a safer and more effective therapeutic strategy for AATD, we integrated the AAT gene (SERPINA1, NG_008290.1) into the AAVS1 locus of human cell line HEK293T and assessed the safety and efficacy of CRISPR/Cas9 on producing potential therapeutic cell lines. Cell clones obtained had the AAT gene integrated at the AAVS1 locus and secreted approx. 0.04 g/l recombinant AAT into the medium. Moreover, the secreted AAT showed an inhibitory activity that is comparable to plasma AAT.

Conclusions

CRISPR/Cas9-mediated engineering of human cells is a promising alternative for generating isogenic cell lines with consistent AAT production. This work sheds new light on the generation of therapeutic liver stem cells for AATD.
  相似文献   

15.
Alpha 1-antitrypsin (AAT) deficiency is an autosomal recessive disorder that is characterized by the retention of misfolded AAT in the endoplasmic reticulum (ER) of hepatocytes and a significant decrease in the serum levels of AAT. Previous studies have demonstrated that the ubiquitin-proteasome pathway is involved in the degradation of the Z variant of AAT (ATZ). However, the detailed mechanisms of ATZ degradation are not fully understood. We investigated whether the ER membrane-embedded ubiquitin ligase (E3) Hrd1 promotes the removal of ATZ through ER-associated degradation (ERAD). Our results indicate that Hrd1 decreases intracellular levels of ATZ, especially the detergent-insoluble fraction, in cells transfected with a plasmid-encoding ATZ. The degradation of ATZ was also found to be dependent on the functional E3 activity of Hrd1. In addition, we demonstrated that Hrd1 increases the solubility of ATZ. Cycloheximide (CHX) chase and proteasome inhibition experiments showed that the ubiquitin-proteasome pathway is involved in Hrd1-mediated ATZ degradation. Furthermore, we found that Hrd1 helped to maintain normal morphology of ATZ expressing cells. These data indicate that Hrd1 enhances the removal of ATZ through ERAD and attenuates intracellular ATZ accumulation and toxicity, which implies a potential value for Hrd1 in the treatment of AAT deficiency diseases.  相似文献   

16.
L ‐Homophenylalanine (L ‐HPA) and N6‐protected‐2‐oxo‐6‐amino‐hexanoic acid (N6‐protected‐OAHA) can be used as building blocks for the manufacture of angiotensin‐converting enzyme inhibitors. To synthesize L ‐HPA and N6‐protected‐OAHA simultaneously from 2‐oxo‐4‐phenylbutanoic acid (OPBA) and N6‐protected‐L ‐lysine, several variants of Escherichia coli aspartate aminotransferase (AAT) were developed by site‐directed mutagenesis and their catalytic activities were investigated. Three kinds of N6‐protected‐L ‐lysine were tested as potential amino donors for the bioconversion process. AAT variants of R292E/L18H and R292E/L18T exhibited specific activities of 0.70±0.01 U/mg protein and 0.67±0.02 U/mg protein to 2‐amino‐6‐tert‐butoxycarbonylamino‐hexanoic acid (BOC‐lysine) and 2‐amino‐6‐(2,2,2‐trifluoro‐acetylamino)‐hexanoic acid, respectively. E. coli cells expressing R292E/L18H variant were able to convert OPBA and BOC‐lysine to L ‐HPA and 2‐oxo‐6‐tert‐butoxycarbonylamino‐hexanoic acid (BOC‐OAHA) with 96.2% yield in 8 h. This is the first report demonstrating a process for the simultaneous production of two useful building blocks, L ‐HPA and BOC‐OAHA. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

17.
Endoplasmic reticulum–localized DnaJ 4 (ERdj4) is an immunoglobulin-binding protein (BiP) cochaperone and component of the endoplasmic reticulum–associated degradation (ERAD) pathway that functions to remove unfolded/misfolded substrates from the ER lumen under conditions of ER stress. To elucidate the function of ERdj4 in vivo, we disrupted the ERdj4 locus using gene trap (GT) mutagenesis, leading to hypomorphic expression of ERdj4 in mice homozygous for the trapped allele (ERdj4GT/GT). Approximately half of ERdj4GT/GT mice died perinatally associated with fetal growth restriction, reduced hepatic glycogen stores, and hypoglycemia. Surviving adult mice exhibited evidence of constitutive ER stress in multiple cells/tissues, including fibroblasts, lung, kidney, salivary gland, and pancreas. Elevated ER stress in pancreatic β cells of ERdj4GT/GT mice was associated with β cell loss, hypoinsulinemia, and glucose intolerance. Collectively these results suggest an important role for ERdj4 in maintaining ER homeostasis during normal fetal growth and postnatal adaptation to metabolic stress.  相似文献   

18.
Our previous study of coxsackievirus B3 (CVB3)‐induced unfolded protein responses (UPR) found that overexpression of ATF6a enhances CVB3 VP1 capsid protein production and increases viral particle formation. These findings implicate that ATF6a signalling benefits CVB3 replication. However, the mechanism by which ATF6a signalling is transduced to promote virus replication is unclear. In this study, using a Tet‐On inducible ATF6a HeLa cell line, we found that ATF6a signalling downregulated the protein expression of the endoplasmic reticulum (ER) degradation‐enhancing α‐mannosidase‐like protein 1 (EDEM1), resulting in accumulation of CVB3 VP1 protein; in contrast, expression of a dominant negative ATF6a had the opposite effect. Furthermore, we found that EDEM1 was cleaved by both CVB3 protease 3C and virus‐activated caspase and subsequently degraded via the ubiquitin‐proteasome pathway. However, overexpression of EDEM1 caused VP1 degradation, likely via a glycosylation‐independent and ubiquitin‐lysosome pathway. Finally, we demonstrated that CRISPR/Cas9‐mediated knockout of EDEM1 increased VP1 accumulation and thus CVB3 replication. This is the first study to report the ER protein quality control of non‐enveloped RNA virus and reveals a novel mechanism by which CVB3 evades host ER quality control pathways through cleavage and degradation of the UPR target gene EDEM1, to ultimately benefit its own replication.  相似文献   

19.
During endoplasmic reticulum (ER)–associated degradation (ERAD), terminally misfolded proteins are retrotranslocated from the ER to the cytosol and degraded by the ubiquitin-proteasome system. Misfolded glycoproteins are recognized by calnexin and transferred to EDEM1, followed by the ER disulfide reductase ERdj5 and the BiP complex. The mechanisms involved in ERAD of nonglycoproteins, however, are poorly understood. Here we show that nonglycoprotein substrates are captured by BiP and then transferred to ERdj5 without going through the calnexin/EDEM1 pathway; after cleavage of disulfide bonds by ERdj5, the nonglycoproteins are transferred to the ERAD scaffold protein SEL1L by the aid of BiP for dislocation into the cytosol. When glucose trimming of the N-glycan groups of the substrates is inhibited, glycoproteins are also targeted to the nonglycoprotein ERAD pathway. These results indicate that two distinct pathways for ERAD of glycoproteins and nonglycoproteins exist in mammalian cells, and these pathways are interchangeable under ER stress conditions.  相似文献   

20.
The underlying functions of miR‐206, miR‐133a, miR‐27b, and miR‐21, and their link to the estrogen receptor alpha (ERα) and aryl hydrocarbon receptor (AhR) signaling pathways remain largely unexplored. In this study, we detect the expression of miR‐206, miR‐133a, miR‐27b, and miR‐21 in MCF‐7 through quantificational real‐time polymerase chain reaction assay along with the activation/inhibition of ERα and AhR receptors. Aside from this, cell proliferation and migration as well as AhR‐dependent CYP1A1 enzyme activity were measured. Here, we found that the forced increased expression of miR‐206, miR‐133a, and miR‐27b were closely associated with the suppression of MCF‐7 cell proliferation and migration. The anti‐proliferative‐metastatic effect of miR‐206, miR‐133a, and miR‐27b was probably mediated by targeting the ERα and AhR signaling pathways. Considered together, our study indicated that the overexpression of miR‐206, miR‐133a, and miR‐27b might be potential biomarkers for prognosis and therapeutic strategies in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号