首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here the first comprehensive seasonal study of benthic microbial activity in an Antarctic coastal environment. Measurements were made from December 1990 to February 1992 of oxygen uptake and sulfate reduction by inshore coastal sediments at Signy Island, South Orkney Islands, Antarctica. From these measurements the rate of benthic mineralization of organic matter was calculated. In addition, both the deposition rate of organic matter to the bottom sediment and the organic carbon content of the bottom sediment were measured during the same period. Organic matter input to the sediment was small under winter ice cover, and the benthic respiratory activity and the organic content of the surface sediment declined during this period as available organic matter was depleted. On an annual basis, about 32% of benthic organic matter mineralization was anoxic, but the proportion of anoxic compared with oxic mineralization increased during the winter as organic matter was increasingly buried by the amphipod infauna. Fresh organic input occurred as the sea ice melted and ice algae biomass sedimented onto the bottom, and input was sustained during the spring after ice breakup by continued primary production in the water column. The benthic respiratory rate and benthic organic matter content correspondingly increased towards the end of winter with the input of this fresh organic matter. The rates of oxygen uptake during the southern summer (80 to 90 mmol of O2 m-2 day-1) were as high as those reported for other sediments at much higher environmental temperatures, and the annual mineralization of organic matter was equally high (12 mol of C m-2 year-1). Seasonal variations of benthic activity in this antarctic coastal sediment were regulated by the input and availability of organic matter and not by seasonal water temperature, which was relatively constant at between -1.8 and 0.5°C. We conclude that despite the low environmental temperature, organic matter degradation broadly balanced organic matter production, although there may be significant interrannual variations in the sources of the organic matter inputs.  相似文献   

2.
Up to now the water-sediment interface (WSI) has not been considered by limnologists and oceanographers as a theoretical frontier between two phases, but as a variable layer comprising the overlying bottom water, the superficial sediment, and the bioturbed sediment. This heterogeneous benthic boundary layer forms a non-equilibrated assemblage of an aqueous phase, a mineral phase influencing the exchanges, and a dissolved gaseous phase regulating biological activity, detrital organic matter present as dissolved or adsorbed compounds and particles, and a living benthic community dominated by microorganisms. Biological activity and the equilibrium between these components are linked to depth, bottom currents, primary production and allochtonous inputs of organic matter. The settling rate of particulate matter in the water column, which depends on both the size and density of particles, is also an important factor. Settled organic matter is broken down mainly by heterotrophic microorganisms. In the first stage, dissolved or particulate matter is depolymerized by exoenzymes linked to the bacterial membrane. Other heterotrophic organisms, like flagellates and ciliates, contribute to the activity of bacterial populations or to a modification of the physical and chemical characteristics of organic matter like macrofauna. Bacterial activity in the WSI is one to two orders of magnitude higher than in overlying bottom water, depending on the density of the bacterial population, on the amount of available organic matter, and on the presence of predators grazing on bacteria and macrofauna and increasing oxygen and dissolved substrates. The WSI is now considered as a sink for particulate matter and biopolymers, and/or as a sink or source for organic monomers and NH4 + depending on their concentrations. As a result of its contribution to mineral and organic cycles, the WSI is a crossroad for exchanges between aqueous and sediment layer. During the last decade, intensive work has been performed in this field, but progress has been slow due to the heterogeneity of the layer and the adsorptive properties of the mineral fraction.  相似文献   

3.
Benthic macrofauna can influence inputs and transformations of energy and matter in estuaries, affecting both the stocks of vital materials (e.g. carbon, oxygen) and the rates of key processes (e.g. organic matter decomposition, nutrient uptake). Although a number of studies have identified shifts in functional groups or biological traits in relation to anthropogenic stressors, there have been few field‐based assessments of changes in functioning associated with stress gradients. We used a comparative experimental approach to investigate functioning on two sandflats with differing exposures to urban contaminants. Apart from significant differences in sediment contaminant concentrations (43.2 ± 1.8 mg kg?1 Zn and 15.6 ± 0.9 mg kg?1 Pb at the Pollen site; 17.7 ± 0.7 mg kg?1 Zn and 7.9 ± 0.9 mg kg?1 Pb at the Waiheke site), the two sandflats were readily comparable: both had similar sediment grain size distributions and were dominated by the same macrofaunal species; and both were in non‐eutrophic New Zealand marine reserves with low ambient sediment organic matter content. To better understand the effects of contaminants on biologically mediated transformations of organic matter into inorganic nutrients, we manipulated sediment organic matter content and macrofaunal abundance in standardized treatments at each site. Fluxes of oxygen and ammonium, which are linked to key sandflat processes such as organic matter decomposition and benthic photosynthesis, were measured as response variables 1 week after the experimental manipulations. We predicted more efficient organic matter processing on the uncontaminated flat and thus expected to see elevated ammonium efflux in response to organic enrichment treatments at this site. Higher rates of benthic photosynthesis were predicted for plots with higher ammonium efflux, as ammonium is a readily utilizable form of limiting inorganic nitrogen. We documented significant positive relationships between ammonium uptake and benthic primary production on the uncontaminated flat, but weaker/insignificant relationships at the contaminated site. Our data were consistent with theories of increased variability and a decoupling of system processes with increasing amounts of stress.  相似文献   

4.
In ice-covered Arctic seas, the ice algal production can be the main input of organic matter to the ecosystem. Pelagic–benthic coupling is thought to be particularly tight in those areas. The increase in ice algal production in Franklin Bay from January/February to April/May 2004 paralleled an increase in benthic oxygen demand. However, sedimentary chlorophyll a, which is usually an indicator of “fresh” organic matter inputs to the sea floor, did not increase. Consequently, it was asked what was the fate of the ice algal phytodetritus arriving at the sea floor? To answer this question, photosynthetic pigments from the sea ice, water column particulate organic matter, and sediment, as well as diatom frustules in the sediment, were studied from January to May 2004. The number of ice diatom cells in the sediment showed an increase in April/May, confirming higher inputs of fresh ice algae to the sediment. Changes in sedimentary pigment profiles in the first 10 cm suggested an increase in bioturbation due to enhanced benthic activities. Finally, the decrease in the ratio of chlorophyll a to phaeophorbide a implied an increase in macrobenthic activity. Benthic macrofauna consumed some of the deposited material and mixed some within the top five cm of sediment. The response of sedimentary pigments to an ice algal input can be studied at different levels and it is only the combination of these studies that will allow an understanding of the overall fate of phytodetritus in the benthic compartment.  相似文献   

5.
The distribution and accumulation of organic matter, nitrogen (N) and phosphorus (P) in mangrove soils at four sites along the Shark River estuary of south Florida were investigated with empirical measures and a process-based model. The mangrove nutrient model (NUMAN) was developed from the SEMIDEC marsh organic matter model and parameterized with data from mangrove wetlands. The soil characteristics in the four mangrove sites varied greatly in both concentrations and profiles of soil carbon, N and P. Organic matter decreased from 82% in the upstream locations to 30% in the marine sites. Comparisons of simulated and observed results demonstrated that landscape gradients of soil characteristics along the estuary can be adequately modeled by accounting for plant production, litter decomposition and export, and allochthonous input of mineral sediments. Model sensitivity analyses suggest that root production has a more significant effect on soil composition than litter fall. Model simulations showed that the greatest change in organic matter, N, and P occurred from the soil surface to 5 cm depth. The rapid decomposition of labile organic matter was responsible for this decrease in organic matter. Simulated N mineralization rates decreased quickly with depth, which corresponded with the decrease of labile organic matter. The increase in organic matter content and decrease in soil bulk density from mangrove sites at downstream locations compared to those at upstream locations was controlled mainly by variation in allochthonous inputs of mineral matter at the mouth of the estuary, along with gradients in mangrove root production. Research on allochthonouns sediment input and in situ root production of mangroves is limited compared to their significance to understanding nutrient biogeochemistry of these wetlands. More accurate simulations of temporal patterns of nutrient characteristics with depth will depend on including the effects of disturbance such as hurricanes on sediment redistribution and biomass production.  相似文献   

6.
The enumeration of Archaea in deep-sea sediment samples is still limited, although different methodological procedures have been applied. Among these, catalysed reporter deposition-fluorescence in situ hybridisation (CARD-FISH) technique is a promising tool for estimation of archaeal abundance in deep-sea sediment samples. Comparing different permeabilisation treatments, the best results obtained both on archaeal pure cultures and on natural assemblages were with hydrochloric acid (0.1 M) and proteinase K (0.004 U/ml) treatments. The application of CARD-FISH on deep-sea sediments revealed that Archaea reach up to 41% of total prokaryotic cells. Specific probes for planktonic Archaea showed that marine Crenarchaea dominated archaeal seafloor communities. No clear bathymetric trends were observed for archaeal abundances and the morphology of continental margin (slope vs. canyon) seems not to have a direct influence on archaeal relative abundances. The site-specific sediment habitat—both abiotic environmental setting and sedimentary organic matter quality—explain up to 65% of variance of archaeal, crenarchaeal and euryarchaeal relative abundance, suggesting a wide ecophysiological adaptation to deep-sea benthic ecosystems. The findings demonstrate that Archaea are an important component of benthic microbial assemblages so far neglected, and hence they lay the groundwork for more focused research on their ecological importance in the functioning of deep-sea benthic ecosystems.  相似文献   

7.
Prokaryote diversity has been found to be surprisingly high in cold marine sediments with numerous clades detected spread throughout many phyla. Marine benthic sediment clades are largely ecotypically distinct and autochthonous. Since almost all marine sediment prokaryotic taxa have yet to be cultivated, functionality is currently overwhelmingly cryptic for most benthic prokaryotic taxa except those falling into specific lineages for which there is cultivation or detailed biogeochemical data. Multivariate statistical comparisons of 16S rRNA gene sequence and denaturing gradient gel electrophoresis (DGGE) data show distinct distribution patterns of prokaryotic communities in sediment layers. By comparison geographical differences and differences related to the physical texture and organic content seem to result in generally smaller differences.  相似文献   

8.
Macroinvertebrate assemblages were related to environmental factors that were quantified at the sample scale in streams subjected to a gradient of cattle grazing. Environmental factors and macroinvertebrates were concurrently collected so assemblage structure could be directly related to environmental factors and the relative importance of stressors associated with cattle grazing in structuring assemblages could be assessed. Based on multivariate and inferential statistics, measures of physical habitat (% fines and substrate homogeneity) had the strongest relationships with macroinvertebrate assemblage structure. Detrital food variables (coarse benthic and fine benthic organic matter) were also associated with assemblage structure, but the relationships were never as strong as those with physical habitat measures, while autochthonous food variables (chlorophyll a and epilithic biomass) appeared to have no association with assemblage structure. The amount of variation explained in taxa composition and macroinvertebrate metrics is within values reported from studies that have examined macroinvertebrate metric–sediment relationships. The % Coleoptera and % crawlers had consistent relationships with % fines during this study, which suggests they may be useful metrics when sediment is a suspected stressor to macroinvertebrate assemblages in Blue Ridge streams. Findings from this study also demonstrate the importance of quantitative sampling through time when research goals are to identify relationships between macroinvertebrates and environmental factors.  相似文献   

9.
The investigation of prokaryotes in aquatic ecology is often limited to their role in nutrient cycling and the degradation of organic matter. While this aspect of the microbial loop is undoubtedly important, further aspects of bacterial roles in marine food webs exist which have not been fully considered in light of recent research in related fields. The concept of bacteria providing essential nutrients may derive importance from two aspects of their role in the marine environment; firstly as a primary food source for omnivorous, sestonivorous and filtering benthic animals and secondly as components of the commensal microbial communities of marine animals. Many marine organisms lack the de novo ability to produce n-3 polyunsaturated fatty acids (PUFA) and hence rely on a dietary supply of PUFA. The issue of PUFA origin in the marine food web is particularly salient in light of recent research demonstrating the influence of PUFA levels on the efficiency of energy transfer between trophic levels. The assumption that microalgae provide the bulk of de novo PUFA production for all marine food webs must be actively reviewed with respect to particular microbial niches such as sea ice, marine animals and abyssal communities.  相似文献   

10.
The distribution of lotic fauna is widely acknowledged to be patchy reflecting the interaction between biotic and abiotic factors. In an in situ field study, the distribution of benthic and hyporheic invertebrates in the heads (downwelling) and tails (upwelling) of riffles were examined during stable baseflow conditions. Riffle heads were found to contain a greater proportion of interstitial fine sediment than riffle tails. Significant differences in the composition of benthic communities were associated with the amount of fine sediment. Riffle tail habitats supported a greater abundance and diversity of invertebrates sensitive to fine sediment such as EPT taxa. Shredder feeding taxa were more abundant in riffle heads suggesting greater availability of organic matter. In contrast, no significant differences in the hyporheic community were recorded between riffle heads and tails. We hypothesise that clogging of hyporheic interstices with fine sediments may have resulted in the homogenisation of the invertebrate community by limiting faunal movement into the hyporheic zone at both the riffle heads and tails. The results suggest that vertical hydrological exchange significantly influences the distribution of fine sediment and macroinvertebrate communities at the riffle scale.  相似文献   

11.
12.
Sediment resuspension induced by anthropogenic disturbance is becoming a major threat of marine coastal ecosystems worldwide. The effects of sediment resuspension on the pelagic domain and on macro- and meiobenthos are well documented in the literature, whereas the effects on the benthic microbial components are nearly neglected. We have investigated the effects of sediment resuspension at two different disturbance levels on benthic bacterial abundance, biomass, and activities and on heterotrophic nanobenthos abundance in experimental microcosms. The results of our experiments pointed out that, independently from the amount of involved energy, sediment resuspension determined a general decrease of all benthic microbial components. The main effects consisted of a decreased abundance of the metabolically active bacterial fraction and of heterotrophic nanobenthos abundance. However, the amount of energy involved in sediment resuspension had differential effects on the structure and functioning of the benthic microbial loop, but only in the short term (i.e., within 36 h). Sediment resuspension had a stimulatory effect on activities of surviving bacterial cells, which, in turn, resulted in increased sediment organic C turnover rates. We hypothesize that such an effect, enhancing nutrient availability, might have relevant consequences on the trophic state of coastal marine ecosystem.  相似文献   

13.

Background

Bioturbators affect multiple biogeochemical interactions and have been suggested as suitable candidates to mitigate organic matter loading in marine sediments. However, predicting the effects of bioturbators at an ecosystem level can be difficult due to their complex positive and negative interactions with the microbial community.

Methodology/Principal Findings

We quantified the effects of deposit-feeding sea cucumbers on benthic algal biomass (microphytobenthos, MPB), bacterial abundance, and the sediment–seawater exchange of dissolved oxygen and nutrients. The sea cucumbers increased the efflux of inorganic nitrogen (ammonium, NH4 +) from organically enriched sediments, which stimulated algal productivity. Grazing by the sea cucumbers on MPB (evidenced by pheopigments), however, caused a net negative effect on primary producer biomass and total oxygen production. Further, there was an increased abundance of bacteria in sediment with sea cucumbers, suggesting facilitation. The sea cucumbers increased the ratio of oxygen consumption to production in surface sediment by shifting the microbial balance from producers to decomposers. This shift explains the increased efflux of inorganic nitrogen and concordant reduction in organic matter content in sediment with bioturbators.

Conclusions/Significance

Our study demonstrates the functional role and potential of sea cucumbers to ameliorate some of the adverse effects of organic matter enrichment in coastal ecosystems.  相似文献   

14.
The spatio-temporal distribution of benthic colonies of Microcystis aeruginosa in Grangent Reservoir (France) in 2000 was not homogeneous and appeared to be controlled by many external factors: lake depth, station morphometry, substratum and hydraulic regime (lacustrine or fluvial). A most important concentration of benthic colonies was found at deep sites with fine sediment or at sites where the sediment was rich in organic matter. In spite of a stable water level and a minimum flow during summer, the number of benthic colonies showed great variation in the lacustrine downstream part of the reservoir. These variations may be explained by the dynamics of planktonic cyanobacteria.  相似文献   

15.
We studied the succession patterns of the benthic community following a whole-lake restoration experiment in a subtropical hypertrophic lake (Lake Rodó, 34°55′ S 56°10′ W, Montevideo, Uruguay). The restoration measures involved diversion of the main inlet and removal of upper 1-m sediment and biomanipulation of the fish community. Between January 1997 and November 1999, we sampled sediments seasonally to analyse changes in benthos in relation to other abiotic and biotic characteristics of the system. The benthic community of the lake was composed of three families and nine genera. The maximum density (646 ind m−2), as well as the maximum taxonomic richness (six), were observed 1 month after the lake was refilled. Since 1998, the benthic abundance decreased considerably and continuously and a total absence of benthic organisms was registered by the end of the year. The low abundance of macroinvertebrates during 1997 could be explained by the food preferences of the dominant fish species, and the high fish biomass at the beginning of the biomanipulation process. However, the most relevant physico-chemical temporal patterns were the increase of organic matter and nutrients in the sediment and the fluctuations of oxygen and nitrate in the deepest layer of the water column. The disappearance of benthos was related to these temporal changes. These results stress the importance of the increase of organic matter for the changes in the physico-chemical environment, and its importance in the benthic succession and possible collapse. We suggest that in hypertrophic lakes, the effects of organic matter enrichment in the sediment can be even more relevant than fish predation in shaping the zoobenthos.  相似文献   

16.
Results from a 1D setup of the European Regional Seas Ecosystem Model (ERSEM) biogeochemical model were compared with new observations collected under the UK Shelf Seas Biogeochemistry (SSB) programme to assess model performance and clarify elements of shelf-sea benthic biogeochemistry and carbon cycling. Observations from two contrasting sites (muddy and sandy) in the Celtic Sea in otherwise comparable hydrographic conditions were considered, with the focus on the benthic system. A standard model parameterisation with site-specific light and nutrient adjustments was used, along with modifications to the within-seabed diffusivity to accommodate the modelling of permeable (sandy) sediments. Differences between modelled and observed quantities of organic carbon in the bed were interpreted to suggest that a large part (>90%) of the observed benthic organic carbon is biologically relatively inactive. Evidence on the rate at which this inactive fraction is produced will constitute important information to quantify offshore carbon sequestration. Total oxygen uptake and oxic layer depths were within the range of the measured values. Modelled depth average pore water concentrations of ammonium, phosphate and silicate were typically 5–20% of observed values at the muddy site due to an underestimate of concentrations associated with the deeper sediment layers. Model agreement for these nutrients was better at the sandy site, which had lower pore water concentrations, especially deeper in the sediment. Comparison of pore water nitrate with observations had added uncertainty, as the results from process studies at the sites indicated the dominance of the anammox pathway for nitrogen removal; a pathway that is not included in the model. Macrofaunal biomasses were overestimated, although a model run with increased macrofaunal background mortality rates decreased macrofaunal biomass and improved agreement with observations. The decrease in macrofaunal biomass was compensated by an increase in meiofaunal biomass such that total oxygen demand remained within the observed range. The permeable sediment modification reproduced some of the observed behaviour of oxygen penetration depth at the sandy site. It is suggested that future development in ERSEM benthic modelling should focus on: (1) mixing and degradation rates of benthic organic matter, (2) validation of benthic faunal biomass against large scale spatial datasets, (3) incorporation of anammox in the benthic nitrogen cycle, and (4) further developments to represent permeable sediment processes.  相似文献   

17.
In freshwater systems, contributions of chemosynthetic products by sulfur-oxidizing bacteria in sediments as nutritional resources in benthic food webs remain unclear, even though chemosynthetic products might be an important nutritional resource for benthic food webs in deep-sea hydrothermal vents and shallow marine systems. To study geochemical aspects of this trophic pathway, we sampled sediment cores and benthic animals at two sites (90 and 50 m water depths) in the largest freshwater (mesotrophic) lake in Japan: Lake Biwa. Stable carbon, nitrogen, and sulfur isotopes of the sediments and animals were measured to elucidate the sulfur nutritional resources for the benthic food web precisely by calculating the contributions of the incorporation of sulfide-derived sulfur to the biomass and of the biogeochemical sulfur cycle supporting the sulfur nutritional resource. The recovered sediment cores showed increases in 34S-depleted sulfide at 5 cm sediment depth and showed low sulfide concentration with high δ34S in deeper layers, suggesting an association of microbial activities with sulfate reduction and sulfide oxidation in the sediments. The sulfur-oxidizing bacteria may contribute to benthic animal biomass. Calculations based on the biomass, sulfur content, and contribution to sulfide-derived sulfur of each animal comprising the benthic food web revealed that 58%–67% of the total biomass sulfur in the benthic food web of Lake Biwa is occupied by sulfide-derived sulfur. Such a large contribution implies that the chemosynthetic products of sulfur-oxidizing bacteria are important nutritional resources supporting benthic food webs in the lake ecosystems, at least in terms of sulfur. The results present a new trophic pathway for sulfur that has been overlooked in lake ecosystems with low-sulfate concentrations.  相似文献   

18.
Kristensen  Erik 《Hydrobiologia》2000,421(1):1-24
The present paper reviews the current knowledge on diagenetic carbon transformations at the oxic/anoxic interface in coastal marine sediments. Oxygen microelectrodes have revealed that most coastal sediments are covered only by a thin oxic surface layer. The penetration depth of oxygen into sediments is controlled by the balance between downward transport and consumption processes. Consumption of oxygen is directly or indirectly caused by respiration of benthic organisms. Aerobic organisms have the enzymatic capacity for complete oxidation of organic carbon. Anaerobic decay occurs stepwise, involving several types of bacteria. Large organic molecules are first fermented into small moieties. These are then oxidized completely by anaerobic respirers using a sequence of electron acceptors: Mn4+, NO3 -, Fe3+, SO4 2- and CO2. The quantitative role of each electron acceptor depends on the sediment type and water depth. Since most of the sediment oxygen uptake is due to reoxidation of reduced metabolites, aerobic respiration is of limited importance. It has been suggested that sediments contain three major organic fractions: (1) fresh material that is oxidized regardless of oxygen conditions; (2) oxygen sensitive material that is only degraded in the presence of oxygen; and (3) totally refractory organic matter. Processes occurring at the oxic/anoxic boundaries are controlled by a number of factors. The most important are: (1) temperature, (2) organic supply, (3) light, (4) water currents, and (5) bioturbation. The role of bioturbation is important because the infauna creates a three-dimensional mosaic of oxic/anoxic interfaces in sediments. The volume of oxic burrow walls may be several times the volume of oxic surface sediment. The infauna increases the capacity, but not the overall organic matter decay in sediments, thus decreasing the pool of reactive organic matter. The increase in decay capacity is partly caused by injection of oxygen into the sediment, and thereby enhancing the decay of old, oxygen sensitive organic matter several fold. Finally, some future research directions to improve our understanding of diagenetic processes at the oxic/anoxic interface are suggested.  相似文献   

19.
Antarctic sea ice and the cold waters surrounding the continent are key elements of the global climate system, influencing heat redistribution, oceanic circulation and the absorption of carbon dioxide from the atmosphere. However, the Southern Ocean is predicted to warm by 1–6°C over the next century, altering sea ice extent, thickness and permanence. To better understand the connections between coastal sea ice conditions and the functioning of Antarctica’s unique marine benthic ecosystems, we performed manipulative experiments on the seafloor at two southwestern Ross Sea sites with contrasting sea ice conditions. Benthic systems at both study sites were net heterotrophic during the study period (early November), with primary production most likely limited by light availability rather than nutrients. There was five times more fresh algal detrital material in benthic sediments at the site with the thinner, snow-free, annually formed sea ice, relative to the site with thicker, multiyear sea ice. This elevated quantity and quality of algal detrital matter corresponded with a significantly greater rate of sediment oxygen utilization by the benthos and an altered pathway of nitrogen regeneration (tighter coupling between nitrification and denitrification). Large benthic animals (brittle stars, Ophionotus victoriae) enhanced the efflux of dissolved inorganic nutrients from the sediment to the water column and played a greater role in nutrient regeneration at the site with more food. Although changes in sea ice characteristics in the Western Ross Sea are difficult to predict at present, large benthic organisms can be expected to have an expanded role in mediating the effects of elevated coastal productivity and detritus supply on ecosystem dynamics in this part of Antarctica.  相似文献   

20.
Tributary junctions are points in river networks where there can be an influx of organic matter and inorganic sediment. Addition of materials at tributary junctions is likely to alter food availability and habitat for aquatic organisms. We surveyed junctions of upland cobble-bed streams (stream orders 1–4, 2.2–10.8 m wide) in the Acheron River catchment (or watershed) in Victoria, Australia, to determine whether tributaries were an important source of suspended particulate matter, and whether benthic organic matter and coarse wood density increased at tributary junctions. We conducted measurements in high (austral spring 2005) and low flows (austral summer 2006) seasons. There were no systematic patterns in concentrations of suspended particulate matter with respect to positions within confluences (tributaries, upstream mainstem, downstream mainstem and confluence). However, total exports of suspended particulate matter in high-flow appeared to be the summation of exports from the upstream mainstem and the tributary in an approximate ratio of 2:1. In low flow, the 2:1 ratio was similar but the downstream mainstem value was similar to the upstream mainstem value (i.e., no clear summation). The fraction of organic matter in the suspended particulate matter did not depend on position within the junction, but was about 19% higher in the low-flow season. Tributaries had lower amounts of benthic organic matter than any measured positions in the mainstem, which themselves were indistinguishable. However, benthic organic matter was positively related to discharge ratio (tributary:mainstem), which may indicate that smaller, upriver junctions, which tended to have higher discharge ratios, were associated with higher standing crops of benthic organic matter. The distribution of coarse wood (logs and branches ≥10 cm diameter) was asystematic with respect to position in the junction. Overall, tributaries had little effect in these junctions, with the most evident effect being an increase of about one-third in exports of suspended particulate matter when flows are high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号