首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystal structure of the dimeric anthranilate phosphoribosyltransferase (AnPRT) reveals a new category of phosphoribosyltransferases, designated as class III. The active site of this enzyme is located within the flexible hinge region of its two-domain structure. The pyrophosphate moiety of phosphoribosylpyrophosphate is co-ordinated by a metal ion and is bound by two conserved loop regions within this hinge region. With the structure of AnPRT available, structural analysis of all enzymatic activities of the tryptophan biosynthesis pathway is complete, thereby connecting the evolution of its enzyme members to the general development of metabolic processes. Its structure reveals it to have the same fold, topology, active site location and type of association as class II nucleoside phosphorylases. At the level of sequences, this relationship is mirrored by 13 structurally invariant residues common to both enzyme families. Taken together, these data imply common ancestry of enzymes catalysing reverse biological processes--the ribosylation and deribosylation of metabolic pathway intermediates. These relationships establish new links for enzymes involved in nucleotide and amino acid metabolism.  相似文献   

2.
The structure of anthranilate phosphoribosyltransferase from the enterobacterium Pectobacterium carotovorum has been solved at 2.4 A in complex with Mn(2+)-pyrophosphate, and at 1.9 A without ligands. The enzyme structure has a novel phosphoribosyltransferase (PRT) fold and displays close homology to the structures of pyrimidine nucleoside phosphorylases. The enzyme is a homodimer with a monomer of 345 residues. Each monomer consists of two subdomains, alpha and alpha/beta, which form a cleft containing the active site. The nature of the active site is inferred from the trapped MnPPi complex and detailed knowledge of the active sites of nucleoside phosphorylases. With the anthranilate (An)PRT structure solved, the structures of all the enzymes required for tryptophan biosynthesis are now known.  相似文献   

3.
Phosphoribosyltransferases (PRTs) bind 5′-phospho-α-d-ribosyl-1′-pyrophosphate (PRPP) and transfer its phosphoribosyl group (PRib) to specific nucleophiles. Anthranilate PRT (AnPRT) is a promiscuous PRT that can phosphoribosylate both anthranilate and alternative substrates, and is the only example of a type III PRT. Comparison of the PRPP binding mode in type I, II and III PRTs indicates that AnPRT does not bind PRPP, or nearby metals, in the same conformation as other PRTs. A structure with a stereoisomer of PRPP bound to AnPRT from Mycobacterium tuberculosis (Mtb) suggests a catalytic or post-catalytic state that links PRib movement to metal movement. Crystal structures of Mtb-AnPRT in complex with PRPP and with varying occupancies of the two metal binding sites, complemented by activity assay data, indicate that this type III PRT binds a single metal-coordinated species of PRPP, while an adjacent second metal site can be occupied due to a separate binding event. A series of compounds were synthesized that included a phosphonate group to probe PRPP binding site. Compounds containing a “bianthranilate”-like moiety are inhibitors with IC50 values of 10–60 μM, and Ki values of 1.3–15 μM. Structures of Mtb-AnPRT in complex with these compounds indicate that their phosphonate moieties are unable to mimic the binding modes of the PRib or pyrophosphate moieties of PRPP. The AnPRT structures presented herein indicated that PRPP binds a surface cleft and becomes enclosed due to re-positioning of two mobile loops.  相似文献   

4.
Indoleglycerol phosphate synthase catalyzes the ring closure of an N-alkylated anthranilate to a 3-alkyl indole derivative, a reaction requiring Lewis acid catalysis in vitro. Here, we investigated the enzymatic reaction mechanism through X-ray crystallography of complexes of the hyperthermostable enzyme from Sulfolobus solfataricus with the substrate 1-(o-carboxyphenylamino) 1-deoxyribulose 5-phosphate, a substrate analogue and the product indole-3-glycerol phosphate. The substrate and the substrate analogue are bound to the active site in a similar, extended conformation between the previously identified phosphate binding site and a hydrophobic pocket for the anthranilate moiety. This binding mode is unproductive, because the carbon atoms that are to be joined are too far apart. The indole ring of the bound product resides in a second hydrophobic pocket adjacent to that of the anthranilate moiety of the substrate. Although the hydrophobic moiety of the substrate moves during catalysis from one hydrophobic pocket to the other, the triosephosphate moiety remains rigidly bound to the same set of hydrogen-bonding residues. Simultaneously, the catalytically important residues Lys53, Lys110 and Glu159 maintain favourable distances to the atoms of the ligand undergoing covalent changes. On the basis of these data, the structures of two putative catalytic intermediates were modelled into the active site. This new structural information and the modelling studies provide further insight into the mechanism of enzyme-catalyzed indole synthesis. The charged epsilon-amino group of Lys110 is the general acid, and the carboxylate group of Glu159 is the general base. Lys53 guides the substrate undergoing conformational transitions during catalysis, by forming a salt-bridge to the carboxylate group of its anthranilate moiety.  相似文献   

5.
Deoxycytidine kinase (dCK) is an essential nucleoside kinase critical for the production of nucleotide precursors for DNA synthesis. This enzyme catalyzes the initial conversion of the nucleosides deoxyadenosine (dA), deoxyguanosine (dG), and deoxycytidine (dC) into their monophosphate forms, with subsequent phosphorylation to the triphosphate forms performed by additional enzymes. Several nucleoside analog prodrugs are dependent on dCK for their pharmacological activation, and even nucleosides of the non-physiological L-chirality are phosphorylated by dCK. In addition to accepting dC and purine nucleosides (and their analogs) as phosphoryl acceptors, dCK can utilize either ATP or UTP as phosphoryl donors. To unravel the structural basis for substrate promiscuity of dCK at both the nucleoside acceptor and nucleotide donor sites, we solved the crystal structures of the enzyme as ternary complexes with the two enantiomeric forms of dA (D-dA, or L-dA), with either UDP or ADP bound to the donor site. The complexes with UDP revealed an open state of dCK in which the nucleoside, either D-dA or L-dA, is surprisingly bound in a manner not consistent with catalysis. In contrast, the complexes with ADP, with either D-dA or L-dA, adopted a closed and catalytically competent conformation. The differential states adopted by dCK in response to the nature of the nucleotide were also detected by tryptophan fluorescence experiments. Thus, we are in the unique position to observe differential effects at the acceptor site due to the nature of the nucleotide at the donor site, allowing us to rationalize the different kinetic properties observed with UTP to those with ATP.  相似文献   

6.
In DNA-dependent RNA polymerases, reactions of RNA synthesis and degradation are performed by the same active center (in contrast to DNA polymerases in which they are separate). We propose a unified catalytic mechanism for multisubunit RNA polymerases based on the analysis of its 3'-5' exonuclease reaction in the context of crystal structure. The active center involves a symmetrical pair of Mg(2+) ions that switch roles in synthesis and degradation. One ion is retained permanently and the other is recruited ad hoc for each act of catalysis. The weakly bound Mg(2+) is stabilized in the active center in different modes depending on the type of reaction: during synthesis by the beta,gamma-phosphates of the incoming substrate; and during hydrolysis by the phosphates of a non-base-paired nucleoside triphosphate. The latter mode defines a transient, non-specific nucleoside triphosphate-binding site adjacent to the active center, which may serve as a gateway for polymerization of substrates.  相似文献   

7.
Pyrimidine nucleoside phosphorylase (PYNP) catalyzes the reversible phosphorolysis of pyrimidines in the nucleotide synthesis salvage pathway. We have built a model of a closed active conformation of the three-dimensional structure of PYNP from Bacillus subtilis. Using docking, molecular dynamics, and hybrid quantum-mechanical/molecular-mechanical methods to study the reaction mechanics between PYNP and a substrate, we identified the role of each residue in the active site during the entire catalytic process. The results indicate that the function of His(82), Arg(169), and Lys(188) is to stabilize the uridine in a high-energy conformation by means of electrostatic interactions and that these residues are involved in catalysis. In addition, the function of Asp(162) is likely to activate Lys(188) for phosphorolytic catalysis through polarization effects.  相似文献   

8.
Chowdhury S  Banerjee R 《Biochemistry》1999,38(46):15287-15294
The recent structures of cobalamin-dependent methionine synthase and methylmalonyl-CoA mutase have revealed a striking conformational change that accompanies cofactor binding to these proteins. Alkylcobalamins have octahedral geometry in solution at physiological pH, and the lower axial coordination position is occupied by the nucleotide, dimethylbenzimidazole ribose phosphate, that is attached to one of the pyrrole rings of the corrin macrocycle via an aminopropanol moiety. In contrast, in the active sites of these two B12-dependent enzymes, the nucleotide tail is held in an extended conformation in which the base is far removed from the cobalt in cobalamin. Instead, a histidine residue donated by the protein replaces the displaced intramolecular base. This unexpected mode of cofactor binding in a subgroup of B12-dependent enzymes has raised the question of what role the nucleotide loop plays in cofactor binding and catalysis. To address this question, we have synthesized and characterized two truncated cofactor analogues: adenosylcobinamide and adenosylcobinamide phosphate methyl ester, lacking the nucleotide and nucleoside moieties, respectively. Our studies reveal that the nucleotide tail has a modest effect on the strength of cofactor binding, contributing approximately 1 kcal/mol to binding. In contrast, the nucleotide has a profound influence on organizing the active site for catalysis, as evidenced by the retention of the base-off conformation in the truncated cofactor analogues bound to the mutase and by their inability to support catalysis. Characterization of the kinetics of adenosylcobalamin (AdoCbl) binding by stopped-flow fluorescence spectroscopy reveals a pH-sensitive step that titrates to a pKa of 7.32 +/- 0.19 that is significantly different from the pKa of 3.7 for dimethylbenzimidazole in free AdoCbl. In contrast, the truncated cofactors associate very rapidly with the enzyme at rates that are too fast to measure. Based on these observations, we propose a model in which the base-on to base-off conformational change is slow and is assisted by the enzyme, and is followed by a rapid docking of the cofactor in the active site.  相似文献   

9.
The 3D structure of the flavoprotein D-amino acid oxidase (DAAO) from the yeast Rhodotorula gracilis (RgDAAO) in complex with the competitive inhibitor anthranilate was solved (resolution 1.9A) and structural features relevant for the overall conformation and for catalytic activity are described. The FAD is bound in an elongated conformation in the core of the enzyme. Two anthranilate molecules are found within the active site cavity; one is located in a funnel forming the entrance, and the second is in contact with the flavin. The anchoring of the ligand carboxylate with Arg285 and Tyr223 is found for all complexes studied. However, while the active site group Tyr238-OH interacts with the carboxylate in the case of the substrate D-alanine, of D-CF(3)-alanine, or of L-lactate, in the anthranilate complex the phenol group rotates around the C2-C3 bond thus opening the entrance of the active site, and interacts there with the second bound anthranilate. This movement serves in channeling substrate to the bottom of the active site, the locus of chemical catalysis. The absence in RgDAAO of the "lid" covering the active site, as found in mammalian DAAO, is interpreted as being at the origin of the differences in kinetic mechanism between the two enzymes. This lid has been proposed to regulate product dissociation in the latter, while the side-chain of Tyr238 might exert a similar role in RgDAAO. The more open active site architecture of RgDAAO is the origin of its much broader substrate specificity. The RgDAAO enzyme forms a homodimer with C2 symmetry that is different from that reported for mammalian D-amino acid oxidase. This different mode of aggregation probably causes the differences in stability and tightness of FAD cofactor binding between the DAAOs from different sources.  相似文献   

10.
Previous studies of purine nucleotide synthesis de novo have suggested that major regulation of the rate of the pathway is affected at either the phosphoribosylpyrophosphate (PP-Rib-P) synthetase reaction or the amidophosphoribosyltransferase (amido PRT) reaction, or both. We studied control of purine synthesis de novo in cultured normal, hypoxanthine-guanine phosphoribosyltransferase (HGPRT)-deficient, and PP-Rib-P synthetase-superactive human fibroblasts by measuring concentrations and rates of synthesis of PP-Rib-P and purine nucleotide end products, proposed effectors of regulation, during inhibition of the pathway. Incubation of cells for 90 min with 0.1 mM azaserine, a glutamine antagonist which specifically blocked the pathway at the level of conversion of formylglycinamide ribotide, resulted in a 5-16% decrease in purine nucleoside triphosphate concentrations but no consistent alteration in generation of PP-Rib-P. During this treatment, however, rates of the early steps of the pathway were increased slightly (9-15%) in normal and HGPRT-deficient strains, more markedly (32-60%) in cells with catalytically superactive PP-Rib-P synthetases, and not at all in fibroblasts with purine nucleotide feedback-resistant PP-Rib-P synthetases. In contrast, glutamine deprivation, which inhibited the pathway at the amido PRT reaction, resulted in time-dependent nucleoside triphosphate pool depletion (26-43% decrease at 24 h) accompanied by increased rates of PP-Rib-P generation and, upon readdition of glutamine, substantial increments in rates of purine synthesis de novo. Enhanced PP-Rib-P generation during glutamine deprivation was greatest in cells with regulatory defects in PP-Rib-P synthetase (2-fold), but purine synthesis in these cells was stimulated only 1.4-fold control rates by glutamine readdition. Stimulation of these processes in normal and HGPRT-deficient cells and in cells with PP-Rib-P synthetase catalytic defects was, respectively: 1.5 and 2.0-fold; 1.5 and 1.7-fold; and 1.6 and 4.1-fold. These studies support the following concepts. 1) Rates of purine synthesis de novo are regulated at both the PP-Rib-P synthetase and amido PRT reactions by end products, with the latter reaction more sensitive to small changes in purine nucleotide inhibitor concentrations. 2) PP-Rib-P exerts its role as a major regulator of purine synthetic rate by virtue of its interaction with nucleotide inhibitors to determine the activity of amido PRT. 3) Activation of amido PRT by PP-Rib-P is nearly maximal at base line in fibroblasts with regulatory defects in PP-Rib-P synthetase.  相似文献   

11.
It is an important goal of computational biology to correctly predict the association state of a protein based on its amino acid sequence and the structures of known homologues. We have pursued this goal on the example of anthranilate phosphoribosyltransferase (AnPRT), an enzyme that is involved in the biosynthesis of the amino acid tryptophan. Firstly, known crystal structures of naturally occurring homodimeric AnPRTs were analyzed using the Protein Interfaces, Surfaces, and Assemblies (PISA) service of the European Bioinformatics Institute (EBI). This led to the identification of two hydrophobic “hot spot” amino acids in the protein-protein interface that were predicted to be essential for self-association. Next, in a comprehensive multiple sequence alignment (MSA), naturally occurring AnPRT variants with hydrophilic or charged amino acids in place of hydrophobic residues in the two hot spot positions were identified. Representative variants were characterized in terms of thermal stability, enzymatic activity, and quaternary structure. We found that AnPRT variants with charged residues in both hot spot positions exist exclusively as monomers in solution. Variants with hydrophilic amino acids in one hot spot position occur in both forms, monomer and dimer. The results of the present study provide a detailed characterization of the determinants of the AnPRT monomer-dimer equilibrium and show that analysis of hot spots in combination with MSAs can be a valuable tool in prediction of protein quaternary structures.  相似文献   

12.
Ribonucleotide reductases are a family of essential enzymes that catalyze the reduction of ribonucleotides to their corresponding deoxyribonucleotides and provide cells with precursors for DNA synthesis. The different classes of ribonucleotide reductase are distinguished based on quaternary structures and enzyme activation mechanisms, but the components harboring the active site region in each class are evolutionarily related. With a few exceptions, ribonucleotide reductases are allosterically regulated by nucleoside triphosphates (ATP and dNTPs). We have used the surface plasmon resonance technique to study how allosteric effects govern the strength of quaternary interactions in the class Ia ribonucleotide reductase from Escherichia coli, which like all class I enzymes has a tetrameric alpha(2) beta(2) structure. The component alpha(2)called R1 harbors the active site and two types of binding sites for allosteric effector nucleotides, whereas the beta(2) component called R2 harbors the tyrosyl radical necessary for catalysis. Our results show that only the known allosteric effector nucleotides, but not non-interacting nucleotides, promote a specific interaction between R1 and R2. Interestingly, the presence of substrate together with allosteric effector nucleotide strengthens the complex 2-3 times with a similar free energy change as the mutual allosteric effects of substrate and effector nucleotide binding to protein R1 in solution experiments. The dual allosteric effects of dATP as positive allosteric effector at low concentrations and as negative allosteric effector at high concentrations coincided with an almost 100-fold stronger R1-R2 interaction. Based on the experimental setup, we propose that the inhibition of enzyme activity in the E. coli class Ia enzyme occurs in a tight 1:1 complex of R1 and R2. Most intriguingly, we also discovered that thioredoxin, one of the physiological reductants of ribonucleotide reductases, enhances the R1-R2 interaction 4-fold.  相似文献   

13.
The anthranilate-5-phosphoribosylpyrophosphate phosphoribosyltransferases (PRT), coded by the second structural gene (trpB) of the tryptophan (trp) operon in strains LT2 and LT7 of Salmonella typhimurium, differ from each other in a number of parameters. These include the apparent Km values for their substrates anthranilic acid and 5-phosphoribosylpyrophosphate, thermostability, sensitivity to substrate inhibition by anthranilic acid, as well as end-product inhibition by tryptophan and specific activity. The PRT of strain LT7 further differs from that of strain LT2 in that its apparent Km for 5-phosphoribosylpyrophosphate is three to seven times higher when associated with anthranilate synthase in the enzyme complex which catalyses the first two steps of tryptophan biosynthesis than in its free uncomplexed form, which the PRT of strain LT2 shows the same apparent Km for this substrate in both its free and complexed forms. These results confirm and extend the finding of Stuttard (1975) that strains LT2 and LT7 differ genetically form each other at a single site within region II of the trpB gene.  相似文献   

14.
Aminodeoxychorismate synthase is part of a heterodimeric complex that catalyzes the two-step biosynthesis of 4-amino-4-deoxychorismate, a precursor of p-aminobenzoate and folate in microorganisms. In the first step, a glutamine amidotransferase encoded by the pabA gene generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by aminodeoxychorismate synthase, the product of the pabB gene. Here we report the X-ray crystal structure of Escherichia coli PabB determined in two different crystal forms, each at 2.0 A resolution. The 453-residue monomeric PabB has a complex alpha/beta fold which is similar to that seen in the structures of homologous, oligomeric TrpE subunits of several anthranilate synthases of microbial origin. A comparison of the structures of these two classes of chorismate-utilizing enzymes provides a rationale for the differences in quaternary structures seen for these enzymes, and indicates that the weak or transient association of PabB with PabA during catalysis stems at least partly from a limited interface for protein interactions. Additional analyses of the structures enabled the tentative identification of the active site of PabB, which contains a number of residues implicated from previous biochemical and genetic studies to be essential for activity. Differences in the structures determined from phosphate- and formate-grown crystals, and the location of an adventitious formate ion, suggest that conformational changes in loop regions adjacent to the active site may be needed for catalysis. A surprising finding in the structure of PabB was the presence of a tryptophan molecule deeply embedded in a binding pocket that is analogous to the regulatory site in the TrpE subunits of the anthranilate synthases. The strongly bound ligand, which cannot be dissociated without denaturation of PabB, may play a structural role in the enzyme since there is no effect of tryptophan on the enzymic synthesis of aminodeoxychorismate. Extensive sequence similarity in the tryptophan-binding pocket among several other chorismate-utilizing enzymes, including isochorismate synthase, suggests that they too may bind tryptophan for structural integrity, and corroborates early ideas on the evolution of this interesting enzyme family.  相似文献   

15.
Cysteine 84 was replaced by glycine in Serratia marcescens anthranilate synthase Component II using site-directed mutagenesis of cloned trpG. This replacement abolished the glutamine-dependent anthranilate synthase activity but not the NH3-dependent activity of the enzyme. The mutation provides further evidence for the role of active site cysteine 84 in the glutamine amide transfer function of anthranilate synthase Component II. By the criteria of circular dichroism, proteolytic inactivation, and feedback inhibition the mutant and wild type enzymes were structurally similar. The NH3-dependent anthranilate synthase activity of the mutant enzyme supported tryptophan synthesis in media containing a high concentration of ammonium ion.  相似文献   

16.
Adenosine 5'-phosphosulfate kinase (APSK) catalyzes the ATP-dependent synthesis of adenosine 3'-phosphate 5'-phosphosulfate (PAPS), which is an essential metabolite for sulfur assimilation in prokaryotes and eukaryotes. Using APSK from Arabidopsis thaliana, we examine the energetics of nucleotide binary and ternary complex formation and probe active site features that coordinate the order of ligand addition. Calorimetric analysis shows that binding can occur first at either nucleotide site, but that initial interaction at the ATP/ADP site was favored and enhanced affinity for APS in the second site by 50-fold. The thermodynamics of the two possible binding models (i.e. ATP first versus APS first) differs and implies that active site structural changes guide the order of nucleotide addition. The ligand binding analysis also supports an earlier suggestion of intermolecular interactions in the dimeric APSK structure. Crystallographic, site-directed mutagenesis, and energetic analyses of oxyanion recognition by the P-loop in the ATP/ADP binding site and the role of Asp(136), which bridges the ATP/ADP and APS/PAPS binding sites, suggest how the ordered nucleotide binding sequence and structural changes are dynamically coordinated for catalysis.  相似文献   

17.
18.
The amber mutant trpA28, which contains a mutation mapping within the so-called "unusual" region of the tryptophan (trp) operon of Salmonella typhimurium (between the genes trpA and trpB), lacks both components of the anthranilate synthetase (AS)-phosphoribosyl transferase (PRT) enzyme complex, the products of the genes trpA and trpB, respectively. Twenty-six revertants of this mutant selected on minimal medium supplemented with anthranilic acid, a substrate of PRT, contain deletions of various segments of the "unusual" region and make a species of PRT different in every respect from the wild-type, dissociated form of this enzyme. The results indicate that the unusual region corresponds to the operator proximal end of the trpB gene. Mutants in the unusual region, however, show unexpectedly low levels of AS activity and in two cases (trpA515 and trpA28) no detectable activity of this enzyme component.  相似文献   

19.
20.
Recently, the three-dimensional structure of the active site of human DNA polymerase α (pol α) was proposed based on the application of molecular modeling methods and molecular dynamic simulations. The modeled structure of the enzyme was used for docking selective inhibitors (nucleotide analogs and the non-nucleoside inhibitor aphidicolin) in its active site in order to design new drugs for actinic keratosis and squamous cell carcinoma (SCC). The resulting complexes explained the geometrical and physicochemical interactions of the inhibitors with the amino acid residues involved in binding to the catalytic site, and offered insight into the experimentally derived binding data. The proposed structures were synthesized and tested in vitro for their influence on human keratinocytes and relevant tumor cell lines. Effects were compared to aphidicolin which inhibits pol α in a non-competitive manner, as well as to diclofenac and 5-fluorouracil, both approved for therapy of actinic keratosis. Here we describe three new nucleoside analogs inhibiting keratinocyte proliferation by inhibiting DNA synthesis and inducing apoptosis and necrosis. Thus, the combination of modeling studies and in vitro tests should allow the derivation of new drug candidates for the therapy of skin tumors, given that the agents are not relevant substrates of nucleotide transporters expressed by skin cancer cells. Kinases for nucleoside activation were detected, too, corresponding with the observed effects of nucleoside analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号