首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K. V. Yeargan  L. W. Quate 《Oecologia》1997,112(4):572-576
Bolas spiders in the genus Mastophora exhibit extreme sexual size dimorphism. In temperate regions, the diminutive males become adults about 2 months before females mature. Late-instar and adult females attract certain male moths by aggressive chemical mimicry of those moth species' sex pheromones. While hunting, these larger female spiders hang from a horizontal silken line and capture moths by swinging a “bolas” (i.e., a sticky globule suspended on a thread) at the approaching moths. Small, early-instar bolas spiders of both sexes attract moth flies in the genus Psychoda, which they capture without using a bolas or web. Instead, they position themselves along leaf margins and use their front two pairs of legs to grab approaching prey. The predatory habits of adult male bolas spiders have never been reported. Our field experiments demonstrated that adult males of the bolas spider Mastophora phrynosoma attract adult male Psychoda phalaenoides. Each year during our 3-year study, significantly more P. phalaenoides were captured on sticky traps baited with live adult male M. phrynosoma than on unbaited control traps. Thus, the tiny adult male bolas spiders retain the juvenile hunting tactic of attracting psychodid flies, while female bolas spiders switch from hunting psychodid flies as spiderlings to hunting moths when the female spiders become older and larger. Received: 5 May 1997 / Accepted: 14 July 1997  相似文献   

2.
Sexual dimorphism in body size and leg length was investigated in a common orb-weaving spider of Ireland and northern Europe, Metellina segmentata (Clerck, 1757) (Araneae, Metidae). Univariate and multivariate analyses of sexual dimorphism revealed that a greater proportion of between sex variation (sexual dimorphism) was attributable to variation in shape than in size. Significant differences were found in the scores for males and females for the first two principal components. PCI (shape) accounted for 44.25% of the variation and PC2 (size) 13.01% of the variation. Although M. segmentata has been attributed with minimal sexual size dimorphism, females were markedly heavier, possibly a reflection of differential reproductive investment between the sexes, but males had markedly longer legs and broader prosoma. The results are discussed with regard to existing theories of natural and sexual selection, particularly those concerning sexual cannibalism and differential life history traits in males and females. Models that attempt to explain the evolution of sexual size dimorphism in spiders and of the web builders in particular, fail to account for the multivariate nature of dimorphism, especially with respect to shape.  相似文献   

3.
There are numerous hypotheses to explain the evolution of sexual dimorphism in spiders. One of the most controversial is the differential mortality model (DMM) which proposes that differing rates of (adult) male and female mortality can result in a skewed operational sex ratio and lead to the evolution of small males. This hypothesis has been examined using a comparative approach which assumes that the behaviour of males and females could be used as a surrogate measure of mortality. We tested this assumption using two model species, Hogna helluo and Pardosa milvina (Araneae: Lycosidae) that differ in the degree of sexual dimorphism both in terms of body size and level of activity. Our data demonstrate that differences in male and female behaviour are not predictive of differences in mortality. Rather, as in other organisms, mortality is a complex phenomenon dependent on activity as well as size. These data call into question the methods previously used to test the DMM and suggest that understanding sexual size dimorphism (SSD) in spiders will require evaluation of historical constraints as well as how size currently influences fitness in each sex.  © 2003 The Linnean Society of London . Biological Journal of the Linnean Society , 2003, 78 , 97−103.  相似文献   

4.
Sexual dimorphism describes substantial differences between male and female phenotypes. In spiders, sexual dimorphism research almost exclusively focuses on size, and recent studies have recovered steady evolutionary size increases in females, and independent evolutionary size changes in males. Their discordance is due to negative allometric size patterns caused by different selection pressures on male and female sizes (converse Rensch's rule). Here, we investigated macroevolutionary patterns of sexual size dimorphism (SSD) in Argiopinae, a global lineage of orb‐weaving spiders with varying degrees of SSD. We devised a Bayesian and maximum‐likelihood molecular species‐level phylogeny, and then used it to reconstruct sex‐specific size evolution, to examine general hypotheses and different models of size evolution, to test for sexual size coevolution, and to examine allometric patterns of SSD. Our results, revealing ancestral moderate sizes and SSD, failed to reject the Brownian motion model, which suggests a nondirectional size evolution. Contrary to predictions, male and female sizes were phylogenetically correlated, and SSD evolution was isometric. We interpret these results to question the classical explanations of female‐biased SSD via fecundity, gravity, and differential mortality. In argiopines, SSD evolution may be driven by these or additional selection mechanisms, but perhaps at different phylogenetic scales.  相似文献   

5.
We investigate the association between female reproductive investment, absolute size, and sexual size dimorphism in spiders to test the predictions of the fecundity-advantage hypothesis. The relationships between absolute size and sexual size dimorphism and aspects of female reproductive output are examined in comparative analyses using phylogenetically independent contrasts. We provide support for the idea that allometry for sexual dimorphism is the result of variation in female size more so than male size. Regression analyses suggest selection for increased fecundity in females. We argue that fecundity selection provides the only general explanation for the evolution of sexual size dimorphism in spiders.  相似文献   

6.
Extreme sexual body size dimorphism (SSD), in which males are only a small fraction of the size of the females, occurs only in a few, mostly marine, taxonomic groups. Spiders are the only terrestrial group in which small males are relatively common, particularly among orb-weavers (especially in the families Tetragnathidae and Araneidae) and crab spiders (Thomisidae). We used a taxonomic sample of 80 genera to study the phylogenetic patterns (origins and reversals) of SSD in orb-weaving spiders (Orbiculariae). We collected and compiled male and female size data (adult body length) for 536 species. Size data were treated as a continuous character, and ancestral sizes, for males and females separately, were reconstructed by using Wagner parsimony on a cladogram for the 80 genera used in this study. Of these 80 genera, 24 were female-biased dimorphic (twice or more the body length of the male); the remaining 56 genera were monomorphic. Under parsimony only four independent origins of dimorphism are required: in the theridiid genus Tidarren, in the distal nephilines, in the "argiopoid clade," and in the araneid genus Kaira. Dimorphism has reversed to monomorphism at least seven times, all of them within the large "argiopoid clade." The four independent origins of dimorphism represent two separate instances of an increase in female size coupled with a decrease of male size (involving only two genera), and two separate instances of an increase in female size with male size either remaining the same or increasing, but not as much as females (involving 30 genera). In orb-weaving spiders, far more taxa are sexually dimorphic as a result of female size increase (22 genera) than as a result of male size decrease (two genera). SSD in orb-weaving spiders encompasses several independent evolutionary histories that together suggest a variety of evolutionary pathways. This multiplicity strongly refutes all efforts thus far to find a general explanation for either the origin or maintenance (or both) of SSD, because the different pathways very likely will require distinctly different, possibly unique, explanations. Each pattern must be understood historically before its origin and maintenance can be explained in ecological and evolutionary terms. The most frequently cited example of male dwarfism in spiders, the golden orb-weaving spider genus Nephila (Tetragnathidae), is in fact a case of female giantism, not male dwarfism.  相似文献   

7.
Several hypotheses have been put forward to explain the evolution of extreme sexual size dimorphism (SSD). Among them, the gravity hypothesis (GH) explains that extreme SSD has evolved in spiders because smaller males have a mating or survival advantage by climbing faster. However, few studies have supported this hypothesis thus far. Using a wide span of spider body sizes, we show that there is an optimal body size (7.4 mm) for climbing and that extreme SSD evolves only in spiders that: (1) live in high‐habitat patches and (2) in which females are larger than the optimal size. We report that the evidence for the GH across studies depends on whether the body size of individuals expands beyond the optimal climbing size. We also present an ad hoc biomechanical model that shows how the higher stride frequency of small animals predicts an optimal body size for climbing.  相似文献   

8.
Female‐biased sexual dimorphism in size at maturity is a common pattern observed in freshwater fishes with indeterminate growth, yet can vary in magnitude among populations for reasons that are not well understood. According to sex‐specific optimization models, female‐biased sexual size dimorphism can evolve due to sexual selection favouring earlier maturation by males, even when sexes are otherwise similar in their growth and mortality regimes. The magnitude of sexual size dimorphism is expected to depend on mortality rate. When mortality rates are low, both males and females are expected to mature at older ages and larger sizes, with size determined by the von Bertalanffy growth equation. The difference between size at maturity in males and females becomes reduced when maturing at older ages, closer to asymptotic size. This phenomenon is called von Bertalanffy buffering. The predicted relationship between the magnitude of female‐biased sexual dimorphism in age and size at maturity and mortality rate was tested in a comparative analysis of lake whitefish Coregonus clupeaformis from 26 populations across a broad latitudinal range in North America. Most C. clupeaformis populations displayed female‐biased sexual dimorphism in size and age at 50% maturity. As predicted, female‐biased sexual size dimorphism was less extreme among lower mortality, high‐latitude populations.  相似文献   

9.
Sexual size dimorphism (SSD) can strongly influence the evolution of reproductive strategies and life history. If SSD is extreme, and other characters (e.g., genitalic size) also increase with size, then functional conflicts may arise between the sexes. Spiders offer an excellent opportunity to investigate this issue because of their wide range of SSD. By using modern phylogenetic methods with 16 species of orb-weaving spiders, we provide strong evidence for the "positive genitalic divergence" model, implying that sexual genitalic dimorphism (SGD) increases as SSD increases. This pattern is supported by an evolutionary mismatch between the absolute sizes of male and female genitalia across species. Indeed, our findings reveal a dramatic reversal from male genitalia that are up to 87x larger than female genitalia in size-monomorphic species to female genitalia that are up to 2.8x larger in extremely size-dimorphic species. We infer that divergence in SGD could limit SSD both in spiders, and potentially in other taxa as well. Further, male and female body size, as well as male and female genitalia size, are decoupled evolutionarily. Finally, we show a negative scaling (hypoallometry) of male and female genitalic morphology within sexes. Evolutionary forces specific to each sex, such as larger female size (increased fecundity) or smaller male size (enhanced mate-searching ability), may be balanced by stabilizing selection on relative genitalic size.  相似文献   

10.
M. A. Elgar    N. Ghaffar    A. F. Read 《Journal of Zoology》1990,222(3):455-470
The degree and direction of sexual dimorphism across different species is commonly attributed to differences in the selection pressures acting on males and females. The extent of these differences is especially apparent in species that practise sexual cannibalism, where the female attempts to capture and eat a courting male. Here, we investigate the relationship between sexual dimorphism in size and leg length, sexual cannibalism and courtship behaviour in three taxonomic groups of orb-weaving spiders, using morphological data from 249 species in 36 genera. Females are larger than males in all three taxonomic groups, and males have relatively longer legs than females in both the Araneinae and Tetragnathidae. Across genera within each taxonomic group, male body size is positively correlated with both female body size and male leg length, and female body size is positively correlated with female leg length. Sexual size dimorphism is negatively correlated with relative male leg length within the Araneinae, but not within either the Tetragnathidae or the Gasteracanthinae. There was no negative correlation between sexual size dimorphism and relative female leg length in any taxonomic group. We argue that the relationship between sexual size dimorphism and relative male leg length within the Araneinae may be the result of selection imposed by sexual cannibalism by females.  相似文献   

11.
Jumping spiders (Salticidae) have acute vision with some cells in the retina that are sensitive to ultraviolet (UV) spectra (< 400 nm). However, no study has documented the use of UV signals in salticids. To appreciate the function of UV vision, it is necessary to characterize the UV colours of salticids. In the present study, the UV and human-visible wavelengths of a tropical ornate salticid spider, Cosmophasis umbratica , were analysed using reflectance spectrometry to obtain evidence of sex-specific UV colours. An absolute sexual dimorphism in the UV colours of this salticid species was found. All of the body parts of adult males that are displayed to conspecifics during intra-specific interactions reflected UV (300–400 nm) light, whereas the adult females and juveniles did not reflect UV light from any body part. A great deal of variation was also found in the UV wavebands among males. This is the first full UV characterization of a salticid spider and the first study to demonstrate an extreme sexual UV dimorphism in jumping spiders. The findings obtained provide evidence that UV reflectance may comprise important sexual signals in jumping spiders.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 397–406.  相似文献   

12.
Penn Lloyd  Thomas E. Martin 《Ibis》2016,158(1):135-143
Slow life histories are characterized by high adult survival and few offspring, which are thought to allow increased investment per offspring to increase juvenile survival. Consistent with this pattern, south temperate zone birds are commonly longer‐lived and have fewer young than north temperate zone species. However, comparative analyses of juvenile survival, including during the first few weeks of the post‐fledging period when most juvenile mortality occurs, are largely lacking. We combined our measurements of fledgling survival for eight passerines in South Africa with estimates from published studies of 57 north and south temperate zone songbird species to test three predictions: (1) fledgling survival increases with length of development time in the nest; (2) fledgling survival increases with adult survival and reduced brood size controlled for development time; and (3) south temperate zone species, with their higher adult survival and smaller brood sizes, exhibit higher fledgling survival than north temperate zone species controlled for development time. We found that fledgling survival was higher among south temperate zone species and generally increased with development time and adult survival within and between latitudinal regions. Clutch size did not explain additional variation, but was confounded with adult survival. Given the importance of age‐specific mortality to life history evolution, understanding the causes of these geographical patterns of mortality is important.  相似文献   

13.
Studies have shown that after controlling for the effects of body size on brain size, the brains of adult humans, rhesus monkeys, and chimpanzees differ in relative size, where males have a greater volume of cerebral tissue than females. We assess whether head circumference sexual dimorphism is present during early development by evaluating sex differences in relative head circumference in living fetuses and infants within the first year of life. Head circumference is used as a proxy for brain size in the fetus and infant. Femur length is used as a proxy for body length in the fetus. Ultrasonography was used to obtain fetal measures, and anthropometry was used to obtain postnatal measures in humans, rhesus monkeys, baboons, and common marmosets. We show that statistically significant but low levels of head circumference sexual dimorphism are present in humans, rhesus monkeys, and baboons in early life. On average, males have head circumferences about 2% larger than females of comparable femur/body length in humans, rhesus monkeys, and baboons. No evidence for head circumference sexual dimorphism in the common marmoset was found. Dimorphism was present across all body size ranges. We suggest that head circumference sexual dimorphism emerges largely postnatally and increases throughout maturation, particularly in humans who reach adult dimorphism values greater than the monkeys. We suggest that brain dimorphism is not likely to impose an additional energetic burden to the gestating or lactating mother. Finally, some of the problems with ascribing functional significance to brain size sexual dimorphism are discussed, and the energetic implications for brain size sexual dimorphism in infancy are assessed.  相似文献   

14.
Sexual differences in life history traits, such as size dimorphism, presumably arise via sexual selection and are most readily observed in adults. For complex life-cycle parasites, however, sexual selection may also have consequences for larval traits, e.g., growth in intermediate hosts. Two acanthocephalan species (Acanthocephalus lucii and Echinorhynchus borealis) were studied to determine, whether larval life histories differ between males and females. The size of female A. lucii cystacanths had a much stronger relationship with intermediate host size than males, suggesting females invest more in growth and are consequently more limited by resources. No relationship between host size and cystacanth size was observed for E. borealis. For both species, female cystacanths survived longer in a culture medium composed entirely of salts, which could suggest that females have greater energy reserves than males. A comparative analysis across acanthocephalan species indicated that sexual size dimorphism at the adult stage correlates with cystacanth dimorphism. However, the relationship was not isometric; cystacanths do not reach the same level of sexual dimorphism as adults, possibly due to resource constraints. Our results suggest that larval life histories diverge between males and females in some acanthocephalans, and this is seemingly a consequence of sexual selection acting on adults.  相似文献   

15.
Patterns of overwinter mortality in the sexually dimorphic red-winged blackbird (Agelaius phoeniceus) were examined to test the predictions of the sexual-selection hypothesis that male size is limited by directional selection favoring small males and that female size is maintained by stabilizing selection wherein extreme phenotypes experience higher mortality. Museum specimens collected from Ontario over a 95-yr period were used to compare the sizes of males and females collected in fall and spring. In a separate field study, body sizes of returning and nonreturning male and female red-winged blackbirds were compared over a 6-yr period. Overall, there was no evidence of higher overwinter mortality among larger males. Among adult (ASY) males, large individuals appeared to have higher survival than small individuals, although among subadult (SY) males, large size may have been disadvantageous. Weak evidence of stabilizing selection on female body size was found. Among adults, sexual size dimorphism seemed more pronounced after winter than before winter. Our results do not support the hypothesis that body size in male red-winged blackbirds is limited by selective mortality outside the breeding season. It is possible that size selection occurs earlier in life, when males are still in the nest. Our results suggest that caution should be exercised when interpreting interspecific evidence showing higher adult male than female mortality in sexually dimorphic species. Such patterns could arise as a cost to males of sexual selection and yet provide no insight into how natural selection opposes sexual selection for increased male size.  相似文献   

16.
The Pantropical spider clade Nephilidae is famous for its extreme sexual size dimorphism, for constructing the largest orb-webs known, and for unusual sexual behaviors, which include emasculation and extreme polygamy. We synthesize the available data for the genera Nephila , Nephilengys , Herennia and Clitaetra to produce the first species level phylogeny of the family. We score 231 characters (197 morphological, 34 behavioral) for 61 taxa: 32 of the 37 known nephilid species plus two Phonognatha and one Deliochus species, 10 tetragnathid outgroups, nine araneids, and one genus each of Nesticidae, Theridiidae, Theridiosomatidae, Linyphiidae, Pimoidae, Uloboridae and Deinopidae. Four most parsimonious trees resulted, among which successive weighting preferred one ingroup topology. Neither an analysis of an alternative data set based on different morphological interpretations, nor separate analyses of morphology and behavior are superior to the total evidence analysis, which we therefore propose as the working hypothesis of nephilid relationships, and the basis for classification. Ingroup generic relationships are ( Clitaetra ( Herennia ( Nephila , Nephilengys ))) . Deliochus and Phonognatha group with Araneidae rather than Nephilidae. Nephilidae is sister to all other araneoids ( contra most recent literature). Ethological data, although difficult to obtain and thus frequently missing for rare taxa, are phylogenetically informative. We explore the evolution of selected morphological and behavioral characters, discuss and redefine the homology of palpal sclerites, disprove semientelegyny in spiders, trace the newly interpreted evolution of the orb web, and show that nephilid genital morphologies coevolve with sexual behaviors and extreme sexual size dimorphism. Phylogenetic interpretations of behavior suggest new insights into spider biology and avenues for future research.
© The Willi Hennig Society 2007.  相似文献   

17.
密点麻蜥的两性异形和雌性繁殖   总被引:2,自引:0,他引:2  
李宏  计翔  屈彦福  高建芳  章玲 《动物学报》2006,52(2):250-255
蜥蜴繁殖成功率与其形态特征有密切的关系。作者在内蒙古乌拉特后旗采集密点麻蜥(Eremias multio-cellata) ,定量研究该种形态特征的两性异形和雌体繁殖特征,检验与成体形态特征相关的两性繁殖成功率差异是否能促进两性异形的进化。密点麻蜥成体个体大小无显著的两性差异,但头部大小两性差异显著;雄性个体的头长和头宽均大于体长相同的雌性成体。繁殖雌体于五、六月份排卵;在实验室条件下,雌体在六月下旬至七月下旬之间产仔。该种雌体年产单窝仔,每窝2 -4仔。窝仔重与雌体体长呈正相关,但雌体体长仅能解释很少一部分(约19 %)窝仔重的变异。窝仔数和幼仔重均与雌体体长无关。幼仔重与相对生育力(相对于雌体体长的窝仔数)呈显著的负相关,表明该种蜥蜴存在后代数量-大小之间的权衡。密点麻蜥雄体和雌体向较大体型方向进化的选择压力均相对较弱,与成体头部大小相关的两性繁殖成功率的差异是导致该种蜥蜴头部大小两性异形进化的主要原因[动物学报52 (2) : 250 -255 , 2006]。  相似文献   

18.
A wealth of evidence shows that combinations of ecological stressors interact in shaping life history traits, but little is known about how ecological stressors combine with different seasonal time constraints to shape life history, behavior and mortality across populations. We studied life history, behavior and mortality rate in two latitudinally distant populations of the strictly univoltine, adult‐overwintering damselfly Sympecma fusca. Results from laboratory common‐garden and outdoor experiments indicated countergradient variation of larval development time and growth rate: the more time‐constrained larvae showed faster development and a higher growth rate. This finding led to larger size at emergence in the more time‐constrained individuals. Under conditions of intraspecific interaction (outdoor experiment), northern individuals showed lower survival than southern ones, presumably due to cannibalism. In the absence of intraspecific interactions (laboratory experiment), northern and southern larvae did not differ in survival. Finally, laboratory‐grown northern and southern larvae did not differ in activity level. This is the first time that compensation for seasonal time constraints has been shown in a temperate odonate species that overwinters in the adult stage.  相似文献   

19.
蜘蛛的性二型现象及其进化   总被引:1,自引:0,他引:1  
古德祥  张古忍 《蛛形学报》1993,2(2):114-117
对蜘蛛的性二型现象进行了初步的概括,并试图以食物对种群繁衍的影响为线索说明其进化机制。蜘蛛的性二型现象主要表现在体形大小上,一般雌性大于雄性;食物的数量和分布制约着蜘蛛性二型现象的进化。  相似文献   

20.
Using both a conventional and a phylogenetic approach, we tested whether sexual size dimorphism, mating tactic and environmental conditions influenced the between-sex differences in adult survival among 26 populations of polygynous ungulates. As a general rule, male survival was both lower and more variable among species than female survival. Whatever the method we used, sexual size dimorphism had no direct influence on male-biased mortality. In food-limited environments, the survival of males relative to that of females was lower than in good environments, suggesting a cost of large size for males facing harsh conditions. On the other hand, the survival of males relative to that of females tended to increase with sexual size dimorphism in good environments, indicating that large size may be profitable for males facing favourable conditions. Lastly, we found that the between-sex differences in adult survival did not vary with sexual size dimorphism in harem-holding or tending species, but tended to increase with sexual size dimorphism in territorial species. Our analyses indicate that sexual size dimorphism does not lead directly to a decrease in male survival compared to that of females. Thus, environmental conditions rather than the species considered could shape between-sex differences in adult survival observed in ungulate populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号