首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Tetrahydrodipicolinate N-succinyltransferase (DapD) catalyzes the succinyl-CoA-dependent acylation of L-2-amino-6-oxopimelate to 2-N-succinyl-6-oxopimelate as part of the succinylase branch of the meso-diaminopimelate/lysine biosynthetic pathway of bacteria, blue-green algae, and plants. This pathway provides meso-diaminopimelate as a building block for cell wall peptidoglycan in most bacteria, and is regarded as a target pathway for antibacterial agents. We have solved the X-ray crystal structures of DapD in ternary complexes with pimelate/succinyl-CoA and L-2-aminopimelate with the nonreactive cofactor analog, succinamide-CoA. These structures define the binding conformation of the cofactor succinyl group and its interactions with the enzyme and place its thioester carbonyl carbon in close proximity to the nucleophilic 2-amino group of the acceptor, in support of a direct attack ternary complex mechanism. The acyl group specificity differences between homologous tetrahydrodipicolinate N-acetyl- and N-succinyltransferases can be rationalized with reference to at least three amino acids that interact with or give accessible active site volume to the cofactor succinyl group. These residues account at least in part for the substrate specificity that commits metabolic intermediates to either the succinylase or acetylase branches of the meso-diaminopimelate/lysine biosynthetic pathway.  相似文献   

2.
The three-dimensional (3D) structure of Corynebacterium glutamicum diaminopimelate D-dehydrogenase in a ternary complex with NADPH and L-2-amino-6-methylene-pimelate has been solved and refined to a resolution of 2.1 A. L-2-Amino-6-methylene-pimelate was recently synthesized and shown to be a potent competitive inhibitor (5 microM) vs. meso-diaminopimelate of the Bacillus sphaericus dehydrogenase (Sutherland et al., 1999). Diaminopimelate dehydrogenase catalyzes the reversible NADP+ -dependent oxidation of the D-amino acid stereocenter of mesodiaminopimelate, and is the only enzyme known to catalyze the oxidative deamination of a D-amino acid. The enzyme is involved in the biosynthesis of meso-diaminopimelate and L-lysine from L-aspartate, a biosynthetic pathway of considerable interest because it is essential for growth of certain bacteria. The dehydrogenase is found in a limited number of species of bacteria, as opposed to the alternative succinylase and acetylase pathways that are widely distributed in bacteria and plants. The structure of the ternary complex reported here provides a structural rationale for the nature and potency of the inhibition exhibited by the unsaturated L-2-amino-6-methylene-pimelate against the dehydrogenase. In particular, we compare the present structure with other structures containing either bound substrate, meso-diaminopimelate, or a conformationally restricted isoxazoline inhibitor. We have identified a significant interaction between the alpha-L-amino group of the unsaturated inhibitor and the indole ring of Trp144 that may account for the tight binding of this inhibitor.  相似文献   

3.
内消旋-二氨基庚二酸脱氢酶不对称合成非天然的手性D-氨基酸是目前生物催化领域的研究热点。内消旋-二氨基庚二酸脱氢酶具有优良的立体选择性,利用其进行酶催化不对称合成光学纯的手性D-氨基酸,被广泛用于医药、食品、化妆品、精细化学品等领域。为了促进生物催化法在合成手性D-氨基酸方向的进一步发展,本文对内消旋-二氨基庚二酸脱氢酶催化合成D-氨基酸的现状进行了综述。重点介绍了Corynebacterium glutamicum、Ureibacillus thermosphaericus、Symbiobacterium thermophilum来源的内消旋-二氨基庚二酸脱氢酶在新酶的挖掘、催化性能、晶体结构解析、分子改造、功能与催化机制、合成D-氨基酸新途径等方面的研究进展,并对内消旋-二氨基庚二酸脱氢酶的未来研究方向及策略进行了展望。本综述将进一步加深人们对内消旋-二氨基庚二酸脱氢酶的认识,也为具有挑战性的生物合成任务提供信息借鉴。  相似文献   

4.
The beta/alpha-barrel fold type basic amino acid decarboxylases include eukaryotic ornithine decarboxylases (ODC) and bacterial and plant enzymes with activity on L-arginine and meso-diaminopimelate. These enzymes catalyze essential steps in polyamine and lysine biosynthesis. Phylogenetic analysis suggests that diverse bacterial species also contain ODC-like enzymes from this fold type. However, in comparison with the eukaryotic ODCs, amino acid differences were identified in the sequence of the 3(10)-helix that forms a key specificity element in the active site, suggesting they might function on novel substrates. Putative decarboxylases from a phylogenetically diverse range of bacteria were characterized to determine their substrate preference. Enzymes from species within Methanosarcina, Pseudomonas, Bartonella, Nitrosomonas, Thermotoga, and Aquifex showed a strong preference for L-ornithine, whereas the enzyme from Vibrio vulnificus (VvL/ODC) had dual specificity functioning well on both L-ornithine and L-lysine. The x-ray structure of VvL/ODC was solved in the presence of the reaction products putrescine and cadaverine to 1.7 and 2.15A, respectively. The overall structure is similar to eukaryotic ODC; however, reorientation of the 3(10)-helix enlarging the substrate binding pocket allows L-lysine to be accommodated. The structure of the putrescine-bound enzyme suggests that a bridging water molecule between the shorter L-ornithine and key active site residues provides the structural basis for VvL/ODC to also function on this substrate. Our data demonstrate that there is greater structural and functional diversity in bacterial polyamine biosynthetic decarboxylases than previously suspected.  相似文献   

5.
Regulation of Aspartokinase Activity in Clostridium perfringens   总被引:2,自引:2,他引:0       下载免费PDF全文
Cells of Clostridium perfringens type D apparently possess only a single species of aspartokinase. This enzyme has been partially purified and shown to be feedback inhibited by meso-diaminopimelate in an allosteric manner. The inhibitor exerts its action noncompetitively with respect to both substrates. The kinetic analysis further indicates that no homotropic cooperative interactions occur between either multiple substrate or inhibitor sites. Like aspartokinases from other bacteria, the clostridial enzyme is stimulated by the presence of either potassium or ammonium cations. A molecular weight of 102,000 was estimated for the enzyme following gel-filtration chromatography. Enzyme activity remains relatively constant throughout the growth cycle of the organism even well into the stationary growth phase. These results are discussed in terms of the role of the enzyme in the growth of the organism.  相似文献   

6.
The dapB gene, which encodes L-2,3-dihydrodipicolinate reductase, the second enzyme of the lysine branch of the aspartic amino acid family, was cloned and sequenced from a tabtoxin-producing bacterium, Pseudomonas syringae pv. tabaci BR2.024. The deduced amino acid sequence shared 60 to 90% identity to known dapB gene products from gram-negative bacteria and 19 to 21% identity to the dapB products from gram-positive bacteria. The consensus sequence for the NAD(P)H binding site [(V/I)(A/G)(V/I)XGXXGXXG)] and the proposed substrate binding site (HHRHK) were conserved in the polypeptide. A BR2.024 dapB mutant is a diaminopimelate auxotroph and tabtoxin negative. The addition of a mixture of L-,L-, D,D-, and meso-diaminopimelate to defined media restored growth but not tabtoxin production. Cloned DNA fragments containing the parental dapB gene restored the ability to grow in defined media and tabtoxin production to the dapB mutant. These results indicate that the dapB gene is required for both lysine and tabtoxin biosynthesis, thus providing the first genetic evidence that the biosynthesis of tabtoxin proceeds in part along the lysine biosynthetic pathway. These data also suggest that L-2,3,4,5-tetrahydrodipicolinate is a common intermediate for both lysine and tabtoxin biosynthesis.  相似文献   

7.
The meso-diaminopimelate decarboxylase (DAPDC, EC 4.1.1.20) catalyzes the final step of L-lysine biosynthesis in bacteria and is regarded as a target for the discovery of antibiotics. Here we report the 2.3A crystal structure of DAPDC from Helicobacter pylori (HpDAPDC). The structure, in which the product L-lysine forms a Schiff base with the cofactor pyridoxal 5'-phosphate, provides structural insight into the substrate specificity and catalytic mechanism of the enzyme, and implies that the carboxyl to be cleaved locates at the si face of the cofactor. To our knowledge, this might be the first reported external aldimine of DAPDC. Moreover, the active site loop of HpDAPDC is in a "down" conformation and shields the ligand from solvent. Mutations of Ile(148) from the loop greatly impaired the catalytic efficiency. Combining the structural analysis of the I148L mutant, we hypothesize that HpDAPDC adopts an induced-fit catalytic mechanism in which this loop cycles through "down" and "up" conformations to stabilize intermediates and release product, respectively. Our work is expected to provide clues for designing specific inhibitors of DAPDC.  相似文献   

8.
CTP:glycerol-3-phosphate cytidylyltransferase (GCT) catalyzes the synthesis of CDP-glycerol for teichoic acid biosynthesis in certain Gram-positive bacteria. This enzyme is a model for a cytidylyltransferase family that includes the enzymes that synthesize CDP-choline and CDP-ethanolamine for phosphatidylcholine and phosphatidylethanolamine biosynthesis. We have used quenching of intrinsic tryptophan fluorescence to measure binding affinities of substrates to the GCT from Bacillus subtilis. Binding of either CTP or glycerol-3-phosphate to GCT was biphasic, with two binding constants of about 0.1-0.3 and 20-40 microm for each substrate. The stoichiometry of binding was 2 molecules of substrate/enzyme dimer, so the two binding constants represented distinctly different affinities of the enzyme for the first and second molecule of each substrate. The biphasic nature of binding was observed with the wild-type GCT as well as with several mutants with altered Km or kcat values. This negative cooperativity of binding was also seen when a catalytically defective mutant was saturated with two molecules of CTP and then titrated with glycerol-3-phosphate. Despite the pronounced negative cooperativity of substrate binding, negative cooperativity of enzyme activity was not observed. These data support a mechanism in which catalysis occurs only when the enzyme is fully loaded with 2 molecules of each substrate/enzyme dimer.  相似文献   

9.
C. glutamicum meso-diaminopimelate dehydrogenase is an enzyme of the L-lysine biosynthetic pathway in bacteria. The binding of NADPH and diaminopimelate to the recombinant, overexpressed enzyme has been analyzed using hydrogen/deuterium exchange and electrospray ionization/mass spectrometry. NADPH binding reduces the extent of deuterium exchange, as does the binding of diaminopimelate. Pepsin digestion of the deuterated enzyme and enzyme-substrate complexes coupled with liquid chromatography/mass spectrometry have allowed the identification of eight peptides whose deuterium exchange slows considerably upon the binding of the substrates. These peptides represent regions known or thought to bind NADPH and diaminopimelate. One of these peptides is located at the interdomain hinge region and is proposed to be exchangeable in the "open," catalytically inactive, conformation but nonexchangeable in the "closed," catalytically active conformation formed after NADPH and diaminopimelate binding and domain closure. Furthermore, the dimerization region has been localized by this method, and this study provides an example of detecting protein-protein interface regions using hydrogen/deuterium exchange and electrospray ionization.  相似文献   

10.
The functional complementation of two Escherichia coli strains defective in the succinylase pathway of meso-diaminopimelate (meso-DAP) biosynthesis with a Bordetella pertussis gene library resulted in the isolation of a putative dap operon containing three open reading frames (ORFs). In line with the successful complementation of the E. coli dapD and dapE mutants, the deduced amino acid sequences of two ORFs revealed significant sequence similarities with the DapD and DapE proteins of E. coli and many other bacteria which exhibit tetrahydrodipicolinate succinylase and N-succinyl-L,L-DAP desuccinylase activity, respectively. The first ORF within the operon showed significant sequence similarities with transaminases and contains the characteristic pyridoxal-5'-phosphate binding motif. Enzymatic studies revealed that this ORF encodes a protein with N-succinyl-L,L-DAP aminotransferase activity converting N-succinyl-2-amino-6-ketopimelate, the product of the succinylase DapD, to N-succinyl-L,L-DAP, the substrate of the desuccinylase DapE. Therefore, this gene appears to encode the DapC protein of B. pertussis. Apart from the pyridoxal-5'-phosphate binding motif, the DapC protein does not show further amino acid sequence similarities with the only other known enzyme with N-succinyl-L,L-DAP aminotransferase activity, ArgD of E. coli.  相似文献   

11.
Parsons LM  Lin F  Orban J 《Biochemistry》2006,45(7):2122-2128
Peptidoglycan-associated lipoprotein (Pal) is a potential vaccine candidate from Haemophilus influenzae that is highly conserved in Gram-negative bacteria and anchored to the outer membrane through an N-terminal lipid attachment. Pal stabilizes the outer membrane by providing a noncovalent link to the peptidoglycan (PG) layer through a periplasmic domain. Using NMR spectroscopy, we determined the three-dimensional structure of a complex between the periplasmic domain of Pal and a biosynthetic peptidoglycan precursor (PG-P), UDP-N-acetylmuramyl-L-Ala-alpha-d-Glu-m-Dap-D-Ala-d-Ala (m-Dap is meso-diaminopimelate). Pal has a binding pocket lined with conserved surface residues that interacts exclusively with the peptide portion of the ligand. The m-Dap residue, which is mainly found in the cell walls of Gram-negative bacteria, is sequestered in this pocket and plays an important role by forming hydrogen bond and hydrophobic contacts to Pal. The structure provides insight into the mode of cell wall recognition for a broad class of Gram-negative membrane proteins, including OmpA and MotB, which have peptidoglycan-binding domains homologous to that of Pal.  相似文献   

12.
The X-ray crystal structure of the substrate free form of Staphylococcus aureus UDP-N-acetylenolpyruvylglucosamine reductase (MurB) has been solved to 2.3 A resolution with an R-factor of 20.3% and a free R-factor of 22.3%. While the overall fold of the S. aureus enzyme is similar to that of the homologous Escherichia coli MurB X-ray crystal structure, notable distinctions between the S. aureus and E. coli MurB protein structures occur in residues involved in substrate binding. Analysis of available MurB sequences from other bacteria suggest that the S. aureus MurB structure is representative of a distinct structural class of UDP-N-acetylenolpyruvylglucosamine reductases including Bacillus subtilis and Helicobacter pylori that are characterized by a modified mechanism for substrate binding.  相似文献   

13.
Deoxyribonucleoside kinases (dNKs) catalyze the transfer of a phosphoryl group from ATP to a deoxyribonucleoside (dN), a key step in DNA precursor synthesis. Recently structural information concerning dNKs has been obtained, but no structure of a bacterial dCK/dGK enzyme is known. Here we report the structure of such an enzyme, represented by deoxyadenosine kinase from Mycoplasma mycoides subsp. mycoides small colony type (Mm-dAK). Superposition of Mm-dAK with its human counterpart's deoxyguanosine kinase (dGK) and deoxycytidine kinase (dCK) reveals that the overall structures are very similar with a few amino acid alterations in the proximity of the active site. To investigate the substrate specificity, Mm-dAK has been crystallized in complex with dATP and dCTP, as well as the products dCMP and dCDP. Both dATP and dCTP bind to the enzyme in a feedback-inhibitory manner with the dN part in the deoxyribonucleoside binding site and the triphosphates in the P-loop. Substrate specificity studies with clinically important nucleoside analogs as well as several phosphate donors were performed. Thus, in this study we combine structural and kinetic data to gain a better understanding of the substrate specificity of the dCK/dGK family of enzymes. The structure of Mm-dAK provides a starting point for making new anti bacterial agents against pathogenic bacteria.  相似文献   

14.
Endonuclease V (EndoV) is a metal-dependent DNA repair enzyme involved in removal of deaminated bases (e.g., deoxyuridine, deoxyinosine, and deoxyxanthosine), with pairing specificities different from the original bases. Homologs of EndoV are present in all major phyla from bacteria to humans and their function is quite well analyzed. EndoV has been combined with DNA ligase to develop an enzymatic method for mutation scanning and has been engineered to obtain variants with different substrate specificities that serve as improved tools in mutation recognition and cancer mutation scanning. However, little is known about the structure and mechanism of substrate DNA binding by EndoV. Here, we present the results of a bioinformatic analysis and a structural model of EndoV from Escherichia coli in complex with DNA. The structure was obtained by a combination of fold-recognition, comparative modeling, de novo modeling and docking methods. The modeled structure provides a convenient tool to study protein sequence-structure-function relationships in EndoV and to engineer its further variants.  相似文献   

15.
In synchronously sporulating cells of Bacillus sphaericus 9602, the specific activities of those enzymes specifically required for the synthesis of the UDP-N-acetyl-muramyl-pentapeptide precursor of vegetative cell wall peptidoglycan decay by 50% after the end of exponential cell division, probably as a consequence of dilution by newly synthesized protein. The meso-diaminopimelate ligase is the only new activity whose synthesis is required for synthesis of the nucleotide-pentapeptide precursor of spore cortex peptidoglycan. The addition of d-Ala-d-Ala to the nucleotide tripeptide is catalyzed by an enzyme present in both vegetative and sporulating cells, which apparently does not discriminate between lysine- and diaminopimelate-containing acceptors. The activities of the l-Ala and d-Ala-d-Ala ligases and of the d-Ala-d-Ala synthetase increases in parallel with the appearance of the diaminopimelate ligase, indicating coordinate derepression and suggesting operon-like organization of the appropriate structural genes.  相似文献   

16.
An enzymic assay for individual isomers (meso-, LL- and DD-) of 2,6-diaminopimelate was developed. The enzyme 2,6-diaminopimelate decarboxylase specifically attacked meso-diaminopimelate and was used to measure this isomer manometrically. The meso- and LL-isomers were measured together manometrically in a coupled assay with diaminopimelate decarboxylase and diaminopimelate epimerase (which converts LL-diaminopimelate into meso-diaminopimelate). The DD-isomer was not attacked by either enzyme and was measured, as residual diaminopimelate after the coupled assay, by a colorimetric method, which was also used to measure total diaminopimelate before enzymic treatments. The coupled enzymes were also used to prepare pure DD-isomer from chemically synthesized diaminopimelate. A mixture of diaminopimelate isomers was present in walls of four strains of Bacillus megaterium [in each about 75% (w/w) meso-, 18% LL- and 7% DD-] and in walls of two strains of Bacillus cereus (about 85% meso-, 8% LL- and 7% DD-). One strain of B. cereus contained at least 95% meso-diaminopimelate, with only traces of LL- and DD-isomers. Peptidoglycan from Escherichia coli was assayed as containing at least 95% meso-isomer. The proportion of isomers in the wall of a strain of B. megaterium remained constant after growth in a variety of different media.  相似文献   

17.
The Mycobacterium tuberculosis lysA gene encodes the enzyme meso-diaminopimelate decarboxylase (DAPDC), a pyridoxal-5'-phosphate (PLP)-dependent enzyme. The enzyme catalyzes the final step in the lysine biosynthetic pathway converting meso-diaminopimelic acid (DAP) to l-lysine. The lysA gene of M. tuberculosis H37Rv has been established as essential for bacterial survival in immunocompromised mice, demonstrating that de novo biosynthesis of lysine is essential for in vivo viability. Drugs targeted against DAPDC could be efficient anti-tuberculosis drugs, and the three-dimensional structure of DAPDC from M. tuberculosis complexed with reaction product lysine and the ternary complex with PLP and lysine in the active site has been determined. The first structure of a DAPDC confirms its classification as a fold type III PLP-dependent enzyme. The structure shows a stable 2-fold dimer in head-to-tail arrangement of a triose-phosphate isomerase (TIM) barrel-like alpha/beta domain and a C-terminal beta sheet domain, similar to the ornithine decarboxylase (ODC) fold family. PLP is covalently bound via an internal aldimine, and residues from both domains and both subunits contribute to the binding pocket. Comparison of the structure with eukaryotic ODCs, in particular with a di-fluoromethyl ornithine (DMFO)-bound ODC from Trypanosoma bruceii, indicates that corresponding DAP-analogues might be potential inhibitors for mycobacterial DAPDCs.  相似文献   

18.
Bile Salt Hydrolase (BSH), a member of Cholylglycine hydrolase family, catalyzes the de-conjugation of bile acids and is evolutionarily related to penicillin V acylase (PVA) that hydrolyses a different substrate such as penicillin V. We report the three-dimensional structure of a BSH enzyme from the Gram-positive bacteria Enterococcus faecalis (EfBSH) which has manifold higher hydrolase activity compared to other known BSHs and displays unique allosteric catalytic property. The structural analysis revealed reduced secondary structure content compared to other known BSH structures, particularly devoid of an anti-parallel β-sheet in the assembly loop and part of a β-strand is converted to increase the length of a substrate binding loop 2. The analysis of the substrate binding pocket showed reduced volume owing to altered loop conformations and increased hydrophobicity contributed by a higher ratio of hydrophobic to hydrophilic groups present. The aromatic residues F18, Y20 and F65 participate in substrate binding. Thus, their mutation affects enzyme activity. Docking and Molecular Dynamics simulation studies showed effective polar complementarity present for the three hydroxyl (–OH) groups of GCA substrate in the binding site contributing to higher substrate specificity and efficient catalysis. These are unique features characteristics of this BSH enzyme and thought to contribute to its higher activity and specificity towards bile salts as well as allosteric effects. Further, mechanism of autocatalytic processing of Cholylglycine Hydrolases by the excision of an N-terminal Pre-peptide was examined by inserting different N-terminal pre-peptides in EfBSH sequence. The results suggest that two serine residues next to nucleophile cysteine are essential for autocalytic processing to remove precursor peptide. Since pre-peptide is absent in EfBSH the mutation of these serines is tolerated. This suggests that an evolution-mediated subordination of the pre-peptide excision site resulted in loss of pre-peptide in EfBSH and other related Cholylglycine hydrolases.  相似文献   

19.
UDP-N-acetylmuramoyl-l-alanyl-d-glutamate:meso-diaminopimelate ligase is a cytoplasmic enzyme that catalyzes the addition of meso-diaminopimelic acid to nucleotide precursor UDP-N-acetylmuramoyl-l-alanyl-d-glutamate in the biosynthesis of bacterial cell-wall peptidoglycan. The crystal structure of the Escherichia coli enzyme in the presence of the final product of the enzymatic reaction, UDP-MurNAc-l-Ala-gamma-d-Glu-meso-A(2)pm, has been solved to 2.0 A resolution. Phase information was obtained by multiwavelength anomalous dispersion using the K shell edge of selenium. The protein consists of three domains, two of which have a topology reminiscent of the equivalent domain found in the already established three-dimensional structure of the UDP-N-acetylmuramoyl-l-alanine: D-glutamate-ligase (MurD) ligase, which catalyzes the immediate previous step of incorporation of d-glutamic acid in the biosynthesis of the peptidoglycan precursor. The refined model reveals the binding site for UDP-MurNAc-l-Ala-gamma-d-Glu-meso-A(2)pm, and comparison with the six known MurD structures allowed the identification of residues involved in the enzymatic mechanism. Interestingly, during refinement, an excess of electron density was observed, leading to the conclusion that, as in MurD, a carbamylated lysine residue is present in the active site. In addition, the structural determinant responsible for the selection of the amino acid to be added to the nucleotide precursor was identified.  相似文献   

20.
The crystal structure of Mycobacterium tuberculosis adenylate kinase (MtAK) in complex with two ADP molecules and Mg2+ has been determined at 1.9 A resolution. Comparison with the solution structure of the enzyme, obtained in the absence of substrates, shows significant conformational changes of the LID and NMP-binding domains upon substrate binding. The ternary complex represents the state of the enzyme at the start of the backward reaction (ATP synthesis). The structure is consistent with a direct nucleophilic attack of a terminal oxygen from the acceptor ADP molecule on the beta-phosphate from the donor substrate, and both the geometry and the distribution of positive charge in the active site support the hypothesis of an associative mechanism for phosphoryl transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号