首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite advances in understanding the role of histone deacetylases (HDACs) in tumorigenesis, the mechanism by which HDAC inhibitors mediate antineoplastic effects remains elusive. Modifications of the histone code alone are not sufficient to account for the antitumor effect of HDAC inhibitors. The present study demonstrates a novel histone acetylation-independent mechanism by which HDAC inhibitors cause Akt dephosphorylation in U87MG glioblastoma and PC-3 prostate cancer cells by disrupting HDAC-protein phosphatase 1 (PP1) complexes. Of four HDAC inhibitors examined, trichostatin A (TSA) and HDAC42 exhibit the highest activity in down-regulating phospho-Akt, followed by suberoylanilide hydroxamic acid, whereas MS-275 shows only a marginal effect at 5 microm. This differential potency parallels the respective activities in inducing tubulin acetylation, a non-histone substrate for HDAC6. Evidence indicates that this Akt dephosphorylation is not mediated through deactivation of upstream kinases or activation of downstream phosphatases. However, the effect of TSA on phospho-Akt can be rescued by PP1 inhibition but not that of protein phosphatase 2A. Immunochemical analyses reveal that TSA blocks specific interactions of PP1 with HDACs 1 and 6, resulting in increased PP1-Akt association. Moreover, we used isozyme-specific small interfering RNAs to confirm the role of HDACs 1 and 6 as key mediators in facilitating Akt dephosphorylation. The selective action of HDAC inhibitors on HDAC-PP1 complexes represents the first example of modulating specific PP1 interactions by small molecule agents. From a clinical perspective, identification of this PP1-facilitated dephosphorylation mechanism underscores the potential use of HDAC inhibitors in lowering the apoptosis threshold for other therapeutic agents through Akt down-regulation.  相似文献   

2.
3.
The role of the individual histone deacetylases (HDACs) in the regulation of cancer cell proliferation was investigated using siRNA-mediated protein knockdown. The siRNA for HDAC3 and HDAC1 demonstrated significant morphological changes in HeLa S3 consistent with those observed with HDAC inhibitors. SiRNA for HDAC 4 or 7 produced no morphological changes in HeLa S3 cells. HDAC1 and 3 siRNA produced a concentration-dependent inhibition of HeLa cell proliferation; whereas, HDAC4 and 7 siRNA showed no effect. HDAC3 siRNA caused histone hyperacetylation and increased the percent of apoptotic cells. These results demonstrate that the Class I HDACs such as HDACs 1 and 3 are important in the regulation of proliferation and survival in cancer cells. These results and the positive preclinical results with non-specific inhibitors of the HDAC enzymes provide further support for the development of Class I selective HDAC inhibitors as cancer therapeutics.  相似文献   

4.
5.
6.
Trichostatin A (TSA) inhibits all histone deacetylases (HDACs) of both class I and II, whereas trapoxin (TPX) cannot inhibit HDAC6, a cytoplasmic member of class II HDACs. We took advantage of this differential sensitivity of HDAC6 to TSA and TPX to identify its substrates. Using this approach, alpha-tubulin was identified as an HDAC6 substrate. HDAC6 deacetylated alpha-tubulin both in vivo and in vitro. Our investigations suggest that HDAC6 controls the stability of a dynamic pool of microtubules. Indeed, we found that highly acetylated microtubules observed after TSA treatment exhibited delayed drug-induced depolymerization and that HDAC6 overexpression prompted their induced depolymerization. Depolymerized tubulin was rapidly deacetylated in vivo, whereas tubulin acetylation occurred only after polymerization. We therefore suggest that acetylation and deacetylation are coupled to the microtubule turnover and that HDAC6 plays a key regulatory role in the stability of the dynamic microtubules.  相似文献   

7.
Histone-modifying enzymes play essential roles in physiological and aberrant gene regulation. Since histone deacetylases (HDACs) are promising targets of cancer therapy, it is important to understand the mechanisms of HDAC regulation. Selective modulators of HDAC isoenzymes could serve as efficient and well-tolerated drugs. We show that HDAC2 undergoes basal turnover by the ubiquitin-proteasome pathway. Valproic acid (VPA), in addition to selectively inhibiting the catalytic activity of class I HDACs, induces proteasomal degradation of HDAC2, in contrast to other inhibitors such as trichostatin A (TSA). Basal and VPA-induced HDAC2 turnover critically depend on the E2 ubiquitin conjugase Ubc8 and the E3 ubiquitin ligase RLIM. Ubc8 gene expression is induced by both VPA and TSA, whereas only TSA simultaneously reduces RLIM protein levels and therefore fails to induce HDAC2 degradation. Thus, poly-ubiquitination and proteasomal degradation provide an isoenzyme-selective mechanism for downregulation of HDAC2.  相似文献   

8.
MutS homolog 2 (MSH2) is an essential DNA mismatch repair (MMR) protein. It interacts with MSH6 or MSH3 to form the MutSα or MutSβ complex, respectively, which recognize base-base mispairs and insertions/deletions and initiate the repair process. Mutation or dysregulation of MSH2 causes genomic instability that can lead to cancer. MSH2 is acetylated at its C terminus, and histone deacetylase (HDAC6) deacetylates MSH2. However, whether other regions of MSH2 can be acetylated and whether other histone deacetylases (HDACs) and histone acetyltransferases (HATs) are involved in MSH2 deacetylation/acetylation is unknown. Here, we report that MSH2 can be acetylated at Lys-73 near the N terminus. Lys-73 is highly conserved across many species. Although several Class I and II HDACs interact with MSH2, HDAC10 is the major enzyme that deacetylates MSH2 at Lys-73. Histone acetyltransferase HBO1 might acetylate this residue. HDAC10 overexpression in HeLa cells stimulates cellular DNA MMR activity, whereas HDAC10 knockdown decreases DNA MMR activity. Thus, our study identifies an HDAC10-mediated regulatory mechanism controlling the DNA mismatch repair function of MSH2.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Histone deacetylases in fungi: novel members,new facts   总被引:3,自引:0,他引:3  
  相似文献   

17.
18.
19.
Trichostatin A (TSA), a specific inhibitor of histone deacetylases (HDACs), induces acetylation of various non-histone proteins such as p53 and alpha-tubulin. We purified several acetylated proteins by the affinity to an anti-acetylated lysine (AcLys) antibody from cells treated with TSA and identified them by mass spectrometry. Here we report on acetylation of CFIm25, a component of mammalian cleavage factor Im (CF Im), and poly(A) polymerase (PAP), a polyadenylating enzyme for the pre-mRNA 3'-end. The residues acetylated in these proteins were mapped onto the regions required for interaction with each other. Whereas CBP acetylated these proteins, HDAC1, HDAC3, HDAC10, SIRT1, and SIRT2 were involved in in vivo deacetylation. Acetylation of the CFIm25 occurred depending on the cleavage factor complex formation. Importantly, the interaction between PAP and CF Im complex was decreased by acetylation. We also demonstrated that acetylation of PAP inhibited the nuclear localization of PAP by inhibiting the binding to the importin alpha/beta complex. These results suggest that CBP and HDACs regulate the 3'-end processing machinery and modulate the localization of PAP through the acetylation and deacetylation cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号