首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Location of electron transport chain components in chloroplast membranes of chlamydomonas reinhardi, y-1 was investigated by use of proteolytic digestion with soluble or insolubilized trypsin. Digestion of intact membrane vesicles with soluble trypsin inactivates the water-splitting system, the 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibition site of Photosystem II, the electron transport between the two photosystems as well as the ferredoxin NADP reductase. Reduction of NADP with artificial electron donors for Photosystem I could be restored, however, by addition of purified reductase to trypsin-digested membranes. Electron transfer activities of Photosystems I and II reaction centers were resistant to trypsin digestion either from outside or from within the thylakoids when active trypsin was trapped inside the membrane vesicles by sonication and digestion carried out in the presence of trypsin inhibitor added from outside. In the latter case, the water-splitting system was also found to be resistant to digestion. Polyacrylamide-bound insolubilized trypsin inactivated only the ferredoxin NADP reductase. Photosynthetically active membranes obtained at different stages of development showed a basically similar behavior toward trypsin.  相似文献   

2.
The electron transfer cascade from photosystem I to NADP+ was studied at physiological pH by flash-absorption spectroscopy in a Synechocystis PCC6803 reconstituted system comprised of purified photosystem I, ferredoxin, and ferredoxin-NADP+ reductase. Experiments were conducted with a 34-kDa ferredoxin-NADP+ reductase homologous to the chloroplast enzyme and a 38-kDa N-terminal extended form. Small differences in kinetic and catalytic properties were found for these two forms, although the largest one has a 3-fold decreased affinity for ferredoxin. The dissociation rate of reduced ferredoxin from photosystem I (800 s(-1)) and the redox potential of the first reduction of ferredoxin-NADP+ reductase (-380 mV) were determined. In the absence of NADP+, differential absorption spectra support the existence of a high affinity complex between oxidized ferredoxin and semireduced ferredoxin-NADP+ reductase. An effective rate of 140-170 s(-1) was also measured for the second reduction of ferredoxin-NADP+ reductase, this process having a rate constant similar to that of the first reduction. In the presence of NADP+, the second-order rate constant for the first reduction of ferredoxin-NADP+ reductase was 20% slower than in its absence, in line with the existence of ternary complexes (ferredoxin-NADP+ reductase)-NADP+-ferredoxin. A single catalytic turnover was monitored, with 50% NADP+ being reduced in 8-10 ms using 1.6 microM photosystem I. In conditions of multiple turnover, we determined initial rates of 360-410 electrons per s and per ferredox-in-NADP+ reductase for the reoxidation of 3.5 microM photoreduced ferredoxin. Identical rates were found with photosystem I lacking the PsaE subunit and wild type photosystem I. This suggests that, in contrast with previous proposals, the PsaE subunit is not involved in NADP+ photoreduction.  相似文献   

3.
The tryptophan fluorescence properties of the flavoprotein ferredoxin:NADP reductase have been examined. Although not sensitive to changes in pH or salt concentration, the tryptophan fluorescence is affected by the presence of substrates for the flavoprotein. While NADP addition results in a slight quenching of the fluorescence, ferredoxin decreases the fluorescence by nearly 50%, suggesting the presence of tryptophan in or near the ferredoxin binding site. Titration of this effect gives a dissociation constant for the ferredoxin: flavoprotein complex which is similar to that obtained by spectral perturbations. This approach has also been used to demonstrate that a chemically modified ferredoxin which does not produce spectral perturbations when added to flavoprotein is capable of interacting with the flavoprotein although with a higher dissociation constant than for native ferredoxin.  相似文献   

4.
Protein modulase and ferredoxin/thioredoxin reductase are soluble proteins that have been suggested to catalyze the light-dependent modulation of enzyme activity in the stromal compartment of the chloroplast. Protein modulase is active in vitro without additional ferredoxin and thioredoxin, whereas ferredoxin/thioredoxin reductase requires additional ferredoxin and thioredoxin. We hypothesize that protein modulase is a complex protein composed of ferredoxin/thioredoxin reductase, ferredoxin, and thioredoxin. In reconstituted chloroplast systems, antiserum directed against ferredoxin, at concentrations sufficient to inhibit the photoreduction of NADP, had no effect on light modulation. Antiserum directed against thioredoxin gave variable results: one batch of polyclonal antibodies inhibited light modulation, another was stimulatory, and another was without effect. These results suggest that the ferredoxin and thioredoxin active in light modulation are not free in solution. Furthermore, molecular sieve chromatography of stromal proteins results in the elution of four species that catalyze light modulation. Based on whether or not ferredoxin and/or thioredoxin must be added for activity, these four species have been tentatively identified as protein modulase, a complex of ferredoxin/thioredoxin reductase and ferredoxin, a complex of ferredoxin/thioredoxin reductase and thioredoxin, and ferredoxin/thioredoxin reductase. That is, the four correspond to all the possible combinations of ferredoxin, ferredoxin/thioredoxin reductase, and thioredoxin. We suggest that buffer ionic strength affects the interactions among these proteins and in part determines the fate of the protein modulase complex in vitro.  相似文献   

5.
Oxidation-reduction midpoint potentials have been measured for the two chloroplast thioredoxins, thioredoxin f and m , for ferredoxin:thioredoxin reductase (FTR) and for the thioredoxin-regulated enzymes fructose-1,6-bisphosphatase (FBPase), phosphoribulokinase and NADP-malate dehydrogenase. The effects of pH on the midpoint potentials of these chloroplast proteins have been measured so that the effect of the light-induced increase in chloroplast stromal pH on the redox properties of the proteins can be calculated. Spectroscopic measurements on FTR and on an N-ethylmaleimide-modified derivative of the enzyme have been used to elucidate the role of the [4Fe-4S] cluster of FTR during the reduction of the enzyme's active-site disulfide by ferredoxin.  相似文献   

6.
Treatment of spinach ferredoxin with glycine ethyl ester in the presence of a water soluble carbodiimide resulted in the modification of 3-4 carboxyl groups and decreased the ability of ferredoxin to participate in NADP photoreduction by chloroplast membranes by about 80%. The ability of the modified ferredoxin to receive electrons from the reducing side of Photosystem I was relatively unaffected. These findings suggest that the modified ferredoxin is unable to interact with ferredoxin:NADP reductase. This has been verified by demonstration that the modified ferredoxin fails to produce difference spectra typical of a ferredoxin-ferredoxin:NADP reductase complex when added to ferredoxin:NADP reductase.  相似文献   

7.
The small inorganic complex Cr(CN)6(3-) is a clean inhibitor of the ferredoxin: NADP+ reductase-catalysed oxidation of reduced spinach ferredoxin by NADP+. Independent spectrophotometric measurements show that millimolar additions of Cr(CN)6(3-) to mixtures of ferredoxin and ferredoxin NADP+ reductase give a marked attenuation of the difference spectrum characteristic of ferredoxin-ferredoxin: NADP+ reductase complex formation. Since there is no evidence, from NMR studies, for significant binding of Cr(CN)6(3-) to ferredoxin, these results indicate that Cr(CN)6(3-) binds to ferredoxin: NADP+ reductase at a site which is crucial to its interaction with the electron-transfer protein. The effective kinetic binding constant for Cr(CN)6(3-), measured at low ferredoxin concentration, is 445 M-1 (ie Kdiss congruent to 2 mM) at 25 degrees, pH7.5, I = 0.10 M. With assumption of a simple electrostatic interaction, an enzyme domain with an effective charge of 3+/4+ is proposed.  相似文献   

8.
Ferredoxin which had been modified with glycine ethylester in the presence of a water-soluble carbodiimide to the extent of one carboxyl-group modified per ferredoxin was subjected to peptide mapping in an attempt to locate the site(s) of modification. The peptide mapping was done by HPLC and analysis of the resulting chromatogram allowed assignment of peaks to various segments in the amino acid sequences of the two isozymes of ferredoxin. The modified ferredoxin appeared to be a mixture of ferredoxin derivatives in which modification had occurred in three areas of the molecule. Although unable to identify the specific residues modified, it has been shown that modification is localized in the regions of residues 26-30, 65-70, and 92-94. The possibility that these regions of ferredoxin may define its binding site for ferredoxin: NADP reductase is discussed. Peptide mapping studies on a covalently linked adduct between ferredoxin and ferredoxin: NADP reductase also support these regions of ferredoxin as being important in the interaction between the two proteins.  相似文献   

9.
Evidence suggesting that Bacillus polymyxa has an active ferredoxin-NADP(+) reductase (EC 1.6.99.4) was obtained when NADPH was found to provide reducing power for the nitrogenase of this organism; direct evidence was provided when it was shown that B. polymyxa extracts could substitute for the native ferredoxin-NADP(+) reductase in the photochemical reduction of NADP(+) by blue-green algal particles. The ferredoxin-NADP(+) reductase was purified about 80-fold by a combination of high-speed centrifugation, ammonium sulfate fractionation, and chromatography on Sephadex G-100 and diethylaminoethyl-cellulose. The molecular weight was estimated by gel filtration to be 60,000. A small amount of the enzyme was further purified by polyacrylamide gel electrophoresis and shown to be a flavoprotein. The reductase was specific for NADPH in the ferredoxin-dependent reduction of cytochrome c and methyl viologen diaphorase reactions; furthermore, NADP(+) was the acceptor of preference when the electron donor was photoreduced ferredoxin. The reductase also has an irreversible NADPH-NAD(+) transhydrogenase (reduced-NADP:NAD oxidoreductase, EC 1.6.1.1) activity, the rate of which was proportional to the concentration of NAD (K(m) = 5.0 x 10(-3)M). The reductase catalyzed electron transfer from NADPH not only to B. polymyxa ferredoxin but also to the ferredoxins of Clostridium pasteurianum, Azotobacter vinelandii, and spinach chloroplasts, although less effectively. Rubredoxin from Clostridium acidi-urici and azotoflavin from A. vinelandii also accept electrons from the B. polymyxa reductase. The pH optima for the various reactions catalyzed by the B. polymyxa ferredoxin-NADP reductase are similar to those of the chloroplast reductase. NAD and acetyl-coenzyme A, which obligatorily activate NADPH- and NADH-ferredoxin reductases, respectively, in Clostridium kluyveri, have no effect on B. polymyxa reductase.  相似文献   

10.
Ferredoxin and the flavoprotein, ferredoxin: NADP reductase, have been covalently linked by incubation in the presence of a water soluble carbodiimide. The cross-linking reaction yields an adduct having a 1:1 stoichiometry. The adduct has depressed levels of diaphorase and NADPH oxidase activity and is inactive in reduction of cytochrome c using NADPH as an electron donor. Thus, although similar to an adduct described by Zanetti and coworkers [J Biol Chem 259: 6153–6157 (1984)] in its stoichiometry, the adduct described herein has significantly different enzymatic properties. It is suggested that this may be a reflection of differences in the interaction between the two proteins resulting from differences in experimental conditions in which the two adducts were prepared.Abbreviations Fd ferredoxin - Fp ferredoxin: NADP reductase - Fd Fp covalently linked Fd-Fp adduct - Fd:Fp noncovalently linked complex between Fd and Fp - EDC 1-ethyl-3-(dimethylaminopropyl) carbodiimide - Tris tris-hydroxymethylaminomethane - MOPS 3-(N-morpholino)propane sulfonic acid - DCIP 2,6-dichloropenolindophenol  相似文献   

11.
Chemical modification studies have been conducted on spinach ferredoxin to determine the nature of the groups on ferredoxin involved in its interaction with its reaction partners. Modification of a limited number (three or four) carboxyl groups or of the single histidine residue resulted in a decreased ability of ferredoxin to participate in NADP photoreduction but not in cytochrome c photoreduction, suggesting that these groups may be involved in interaction with ferredoxin:NADP reductase but are not involved in interaction with the reducing side of Photosystem I. In contrast, modification of amino groups or the single arginine residue on ferredoxin had little effect on the ability of ferredoxin to participate in NADP photoreduction, suggesting these groups are not involved in the interaction of ferredoxin with either ferredoxin:NADP reductase or the reducing side of Photosystem I. Attempts to modify tyrosine residues on ferredoxin resulted in destruction of the iron-sulfur center of the protein.  相似文献   

12.
Ferredoxin:NADP+ oxidoreductase (ferredoxin: NADP+ reductase, EC 1.18.1.2) was shown to form a ternary complex with its substrates ferredoxin (Fd) and NADP(H), but the ternary complex was less stable than the separate binary complexes. Kd for oxidized binary Fd-ferredoxin NADP+ reductase complex was less than 50 nM; Kd(Fd) increased with NADP+ concentration, approaching 0.5-0.6 microM when the flavoprotein was saturated with NADP+ K(NADP+) also increased from about 14 microM to about 310 microM, on addition of excess Fd. The changes in Kd were consistent with negative cooperativity between the associations of Fd and NADP+ and with our unpublished observations which suggest that product dissociation is rate-limiting in the reaction mechanism. Similar interference in binding was observed in more reduced states; NADPH released much ferredoxin:NADP+ reductase from Fd-Sepharose whether the proteins were initially oxidized or reduced. Complexation between Fd and ferredoxin: NADP+ reductase was found to shield each center from paramagnetic probes; charge specificity suggested that the active sites of Fd and ferredoxin:NADP+ reductase were, respectively, negatively and positively charged.  相似文献   

13.
Reaction of spinach leaves ferredoxin-NADP+ reductase (NADPH:ferredoxin oxidoreductase, EC 1.6.7.1) with alpha-dicarbonyl compounds results in a biphasic loss of activity. The rapid phase yields modified enzyme with about 30% of the original activity, but no change in the Km for NADPH. Only partial protection against inactivation is provided by NADP+, NADPH and their analogs, whereas ferredoxin affords complete protection. The reductase inactivated to 30% of original activity shows a loss of about two arginyl residues, whereas only one residue is lost in the NADP+-protected enzymes. The data suggest that the integrity of at least two arginyl residues are requested for maximal activity of ferredoxin-NADP+ reductase: one residue being located near the NADP+-binding site, the other presumably situated in the ferredoxin-binding domain.  相似文献   

14.
A competitive Brownian model for the interaction of ferredoxin, ferredoxin NADP+ reductase and hydrogenase has been built. In the model, molecules of three types of proteins are placed into a cubic reaction volume, where they move under Brownian and electrostatic forces created by neighboring molecules and the solution. It has been shown that the rate of ferredoxin binding with ferredoxin NADP+ reductase does not change at the pH range from 5.0 to 9.0. Thus, it may be suggested that regulation of ferredoxin NADP+ reductase activity is mediated by other processes. On the other hand, the rate of ferredoxin binding with hydrogenase in the model depends greatly on pH: if the pH value increases from 6.0 to 8.0 the rate increases by factor of three. The increase of the pH value in the stroma under illumination results in an increase of the rate of its interaction with ferredoxin, but decreases the level of protons that are the substrate for the reaction catalyzed by the protein. Thus, the rate of hydrogen production in the chloroplast stroma is low at low pH due to the reception of a small number of electrons by hydrogenase. When the pH increases, the number of electrons that are received by the enzyme from ferredoxin also increases; thus, the rate of hydrogen production increases as well.  相似文献   

15.
Heparin, an anionic polysaccharide, inhibited the ferredoxin-catalyzed reduction of NADP in spinach chloroplast thylakoid membranes. Under the same conditions of assay, heparin did not interfere markedly with photoreduction of methyl viologen, anthraquinone sulfonate, or ferredoxin. A kinetic analysis of the heparin-induced interference with NADP photoreduction showed partial competitive inhibition. Heparin also interfered with NADPH oxidation by membrane-bound ferredoxin-NADP reductase (with dichlorophenol-indophenol as the acceptor) by a mechanism that involves partial competitive inhibition. This reaction was sensitive to the presence of salts; increasing ionic strength increases the heparin Ki for inhibition of NADPH oxidation. These results show that heparin binds to ferredoxin-NADP reductase, and in doing so interferes with binding to the reductase by both ferredoxin and NADP(H). Since heparin is redox inactive and does not interfere with the photophosphorylation reaction, it is a useful inhibitor of thylakoid membrane reactions which require the catalytic activity of ferredoxin-NADP reductase.  相似文献   

16.
Toxoplasma gondii possesses an apicoplast-localized, plant-type ferredoxin-NADP(+) reductase. We have cloned a [2Fe-2S] ferredoxin from the same parasite to investigate the interplay of the two redox proteins. A detailed characterization of the two purified recombinant proteins, particularly as to their interaction, has been performed. The two-protein complex was able to catalyze electron transfer from NADPH to cytochrome c with high catalytic efficiency. The redox potential of the flavin cofactor (FAD/FADH(-)) of the reductase was shown to be more positive than that of the NADP(+)/NADPH couple, thus favoring electron transfer from NADPH to yield reduced ferredoxin. The complex formation between the reductase and ferredoxins from various sources was studied both in vitro by several approaches (enzymatic activity, cross-linking, protein fluorescence quenching, affinity chromatography) and in vivo by the yeast two-hybrid system. Our data show that the two proteins yield an active complex with high affinity, strongly suggesting that the two proteins of T. gondii form a physiological redox couple that transfers electrons from NADPH to ferredoxin, which in turn is used by some reductive biosynthetic pathway(s) of the apicoplast. These data provide the basis for the exploration of this redox couple as a drug target in apicomplexan parasites.  相似文献   

17.
In searching for nuclear-encoded, apicoplast-localized proteins we have cloned ferredoxin-NADP(+) reductase from Toxoplasma gondii and a [2Fe-2S] ferredoxin from Plasmodium falciparum. This chloroplast-localized redox system has been extensively studied in photosynthetic organisms and is responsible for the electron transfer from photosystem I to NADP+. Besides this light-dependent reaction in nonphotosynthetic plastids (e.g. from roots), electrons can also flow in the reverse direction, from NADPH to ferredoxin, which then serves as an important reductant for various plastid-localized enzymes. These plastids possess related, but distinct, ferredoxin-NADP+ reductase and ferredoxin isoforms for this purpose. We provide phylogenetic evidence that the T. gondii reductase is similar to such nonphotosynthetic isoforms. Both the P. falciparum [2Fe-2S] ferredoxin and the T. gondii ferredoxin-NADP+ reductase possess an N-terminal bipartite transit peptide domain typical for apicoplast-localized proteins. The recombinant proteins were obtained in active form, and antibodies raised against the reductase recognized two bands on Western blots of T. gondii tachyzoite lysates, indicative of the unprocessed and native form, respectively. We propose that the role of this redox system is to provide reduced ferredoxin, which might then be used for fatty acid desaturation or other biosynthetic processes yet to be defined. Thus, the interaction of these two proteins offers an attractive target for drug intervention.  相似文献   

18.
The trinitrophenylation of a single amino group of spinach ferredoxin abolishes its ability to inhibit the diaphorase activity of the flavoprotein, ferredoxin:NADP oxidoreductase (EC 1.6.7.1); in contrast, the ability of ferredoxin to participate in the ferredoxin-linked cytochrome c reductase activity catalyzed by the flavoprotein is unaffected. Comparison with previously published results [Davis, D. J., and San Pietro, A. (1977) Biochem. Biophys. Res. Commun.74, 33–40]indicates that the site of interaction between ferredoxin and the flavoprotein resulting in inhibition if diaphorase activity is responsible for the spectrally observable 1:1 complex between the two proteins and is identical to the site of ferredoxin involvement in NADP photoreduction. The role of ferredoxin in the ferredoxin-linked cytochrome c reductase activity of the flavoprotein has been reexamined under conditions were the entire electron-accepting system (rather than just the ferredoxin component) is rate limiting. The data support a mechanism by which ferredoxin can bind either to the flavoprotein or to cytochrome c, and the ferredoxin:cytochrome c complex serves as the true substrate for reduction by the flavoprotein. Furthermore, Chromatographic evidence is presented for the formation of complexes between ferredoxin and cytochrome c.  相似文献   

19.
Two plant-type ferredoxins were isolated and purified from a blue-green alga, Nostoc verrucosum. They were separable by chromatography on a DEAE-cellulose column. The slow-moving band was designated ferredoxin I (Fd I) and the fast-moving band was ferredoxin II (Fd II). The ratio of the yield of ferredoxins I and II was about 1 : 0.84. Both ferredoxins had absorption spectra similar to those of plant-type ferredoxins. Two atoms of non-heme iron and two of labile sulfur were found per mol of both ferredoxin I and ferredoxin II. Their molecular weights were identical and estimated to be about 18 000 by a gel filtration method. The biochemical activities of these Nostoc ferredoxins were studied: the NADP photoreduction activity on one hand and the NADP-cytochrome c reductase activity on the other.  相似文献   

20.
The interaction between reduced Anabaena ferredoxin and oxidized ferredoxin:NADP(+) reductase (FNR), which occurs during photosynthetic electron transfer (ET), has been investigated extensively in the authors' laboratories using transient and steady-state kinetic measurements and X-ray crystallography. The effect of a large number of site-specific mutations in both proteins has been assessed. Many of the mutations had little or no effect on ET kinetics. However, non-conservative mutations at three highly conserved surface sites in ferredoxin (F65, E94 and S47) caused ET rate constants to decrease by four orders of magnitude, and non-conservative mutations at three highly conserved surface sites in FNR (L76, K75 and E301) caused ET rate constants to decrease by factors of 25-150. These residues were deemed to be critical for ET. Similar mutations at several other conserved sites in the two proteins (D67 in Fd; E139, L78, K72, and R16 in FNR) caused smaller but still appreciable effects on ET rate constants. A strong correlation exists between these results and the X-ray crystal structure of an Anabaena ferredoxin/FNR complex. Thus, mutations at sites that are within the protein-protein interface or are directly involved in interprotein contacts generally show the largest kinetic effects. The implications of these results for the ET mechanism are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号