首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glomerular mesangial cells require Cl ions for the development of a variety of metabolic and functional properties. In the present study the electrochemical distribution for Cl- was examined in cultured rat mesangial cells with Cl(-)-sensitive intracellular microelectrodes. It was determined that the intracellular Cl activity exceeded the levels predicted for a passively distributed ion. This was further substantiated by exposing mesangial cells to 10(-5) M bumetanide which drove intracellular Cl to a value close to electrochemical equilibrium. We conclude that Cl accumulates in mesangial cells, against its electrochemical gradient, through a transport pathway that is highly sensitive to bumetanide.  相似文献   

2.
Glycated albumin induces superoxide generation in mesangial cells.   总被引:2,自引:0,他引:2  
BACKGROUND/AIMS: Reactive oxygen species are involved in the pathogenesis of diabetic nephropathy. Amadori-modified glycated albumin modulates signaling pathways in mesangial cells that contribute to the development of diabetic nephropathy. However, the effects of glycated albumin on mesangial cell superoxide (O2-) production are unknown. Thus, we examined whether glycated albumin induces mesangial cell O2- generation and whether increased O2- production elicits cell growth. METHODS: Quiescent human mesangial cells (HMC) were exposed to bovine serum albumin (BSA) or glycated BSA (Gly-BSA) with or without diphenylene iodonium (DPI) or apocynin, inhibitors of NAD(P)H oxidase, GF109203X (GFX), a protein kinase C (PKC) inhibitor. RESULTS: Gly-BSA increased PKC activity, particularly PKC-alpha and -alpha1, within 15 min of incubation with HMC, which decreased to the control value at 2 h. Gly-BSA incubated with HMC increased O2- production by 2 times vis-á-vis BSA-treated cells. The Gly-BSA-induced increased O2- generation was suppressed by DPI or GFX. Gly-BSA significantly increased mesangial [3H]-leucine incorporation, whereas these processes were abrogated by DPI, apocynin or GFX. CONCLUSIONS: Gly-BSA induces PKC/NAD(P)H oxidase-dependent O2- production in HMC, which in turn results in cell hypertrophy. Thus, O2- induced by glycated albumin might cause mesangial cell alterations in diabetes participating in the pathophysiology of diabetic nephropathy.  相似文献   

3.
Adrenomedullin (AM), a potent vasodilatory and hypotensive peptide produces several biological outcomes in glomerular mesangial cells. Mesangial cells are important in the pathogenesis of glomerulonephritis, and therefore the actions of AM on mesangial cells have important clinical and therapeutic implications. This minireview describes the various actions of AM on mesangial cell function and the signal transduction mechanisms involved. As in other systems, most actions of AM can be explained by increase in cAMP levels in the cell, although a few exceptions remain. The fact that most data obtained to date has been in culture, the physiological significance of the actions of AM in mesangial cells is discussed.  相似文献   

4.
Two forms of protein kinase C (PKC) activity in cytosol of cultured rat mesangial cells have been characterized in vitro by using histone H1 or endogenous proteins as substrates. Histones H1-phosphorylation was significantly increased only when calcium, phosphatidylserine (PS) and 1,2-diacylglycerol (DAG) or phorbol myristate acetate (PMA) were present together in the incubation medium. EGTA, a calcium chelator, completely inhibited this activity. Upon hydroxyapatite chromatography (HPLC), the PKC activity was eluted as a main peak at 150 mM potassium phosphate with a shoulder at 180 mM. Both peaks corresponded to the type III PKC from rat brain and were identified as PKC alpha isoform by immunoblot analysis. In contrast with what was observed using histone H1, the increased phosphorylation of endogenous proteins in the presence of a mixture of Ca2+/PS, plus either DAG or PMA, was only partly reduced by EGTA. Moreover, the level of the PKC activity detected in the presence of EGTA was comparable to the level of kinase activity, measured in the presence of PS alone or associated with DAG or PMA. This suggests that mesangial cells contain PKC activity which does not absolutely require calcium. Polyacrylamide gel electrophoresis revealed that patterns of phosphorylated mesangial cell proteins are different depending on whether calcium was added or not. In the presence of calcium, PKC strongly phosphorylated the proteins of 53,000 molecular weight, a doublet of 37,000-39,000, the 24,000 and the triplet of 17,000-20,000-22,000 molecular weight. The addition of EGTA to the assays suppressed completely the labelling of most proteins; only the 20,000 molecular weight protein remained strongly labelled, while the 39,000 molecular weight band was only faintly visible. The same patterns of phosphorylations were obtained after omission of calcium in the assays containing only PS and DAG (or PMA). So, the main substrates of calcium-dependent PKC are proteins of 53,000, 39,000, 37,000, 22,000, 24,000 and 17,000 molecular weight while the protein of 20,000 molecular weight appears to be the main substrate of calcium-independent PKC. The existence in mesangial cells of at least two forms of PKC, which phosphorylate specific endogenous proteins, emphasizes the complexity of the phospholipid-dependent regulatory cascade and raises the possibility that actions of different regulators may be transduced through distinct PKC isozymes.  相似文献   

5.
6.
7.
The biology of mesangial cells in glomerulonephritis   总被引:5,自引:0,他引:5  
It is likely that a complex bidirectional interaction occurs between mesangial cells and the immune cells which infiltrate the mesangium during nephritis. Macrophages and other immune cells liberate a series of mediators, including substances such as IL-1, beta-endorphin, TNF, and PDGF--all of which promote the growth of mesangial cells. The end result is mesangial cell proliferation and increased matrix production, both of which are seen in nephritis. The proliferating mesangial cells liberate autocoids such as IL-1 and PDGF, thereby setting up an amplifying loop. Simultaneously, suppressive factors such as TGF-beta are released which antagonize the actions of these growth-promoting substances. The proliferating mesangial cells also produce immunomodulatory peptides, which will in turn act on the infiltrating macrophages to stimulate their replication and activation. Such activated macrophages continue to amplify the inflammatory lesion and also promote the phagocytosis of localized antigen-antibody complexes. The net effect of all of these interactions will depend on the dominance of substances which persist and override the roles of other molecules. Studies of the controls which regulate the production of these growth factors/immune modulators will yield insights into the fundamental mechanisms which determine the outcome in glomerulonephritis.  相似文献   

8.
Stretch-activated ion channels in cultured mesangial cells   总被引:1,自引:0,他引:1  
Membrane stretch, delivered by negative pressures in cell-attached patch pipettes, activated single-channel ionic currents in cultured mesangial cells. Channel opening probabilities were directly related to degree of suction, with threshold for activation being 5-10 mm Hg. The stretch-activated channels were permeable to Na+, K+, as well as Cl-, having conductances averaging 62 +/- 17 pS. These channels may represent a cellular mechano-reflex in mesangial cells.  相似文献   

9.
10.
11.
12.
IGF-1 induces foam cell formation in rat glomerular mesangial cells.   总被引:2,自引:0,他引:2  
When rat glomerular mesangial cells (MCs) are cultured with IGF-1 they accumulate intracellular lipid and take on foam cell morphology. These changes were characterized by electron microscopy and Nile red staining. To define the mechanism responsible for IGF-1-mediated lipid uptake, MCs were evaluated for endocytosis, scavenger receptor activity, and receptor-mediated uptake by the LDL receptor. Lipid accumulation was markedly increased when MCs were cultured with IGF. The primary route of uptake was through enhanced endocytosis. Lipid-laden MCs have decreased phagocytic capacity and disrupted cytoskeletons. These data show that IGF-1 induces MC to take on a foam cell morphology and that lipid-laden MCs have impaired phagocytic function.  相似文献   

13.
Gender is an important determinant of clinical outcome across a broad spectrum of kidney diseases, but the mechanism(s) responsible for the protective effect of female gender have not been fully elucidated. Remnant kidney glomerular injury is limited in female rats compared with male rats despite similar elevations in glomerular capillary pressure. In vitro, mechanical strain leads to the activation of p44/42 mitogen-activated kinase (p44/42 MAPK) and Jun N-terminal kinase/stress-activated protein kinase (SAPK) in glomerular mesangial cells (MC). Accordingly, we studied the effect of 17beta-estradiol on mechanical strain-induced signal transduction in MC. Exposure of MC to mechanical strain increased p44/42 MAPK activation (3-fold) and SAPK activation (2.5-fold), and kinase activation was inhibited by pretreatment with 17beta-estradiol (10(minus sign8) to 10(minus sign11) m) for 24 h in a dose-dependent manner. Mechanical strain-induced nuclear translocation of p44/42 MAPK and SAPK and nuclear protein binding to AP-1 were also attenuated by 17beta-estradiol. The inhibitory effects of 17beta-estradiol were not reproduced by the cell-impermeable estrogen, BSA/17beta-estradiol, nor did preincubation with 17beta-estradiol lead to actin cytoskeleton disassembly or impaired stress fiber formation. However, 17beta-estradiol did increase base-line levels of the dual specificity phosphatase MKP-1. The inhibitory effects of 17beta-estradiol on p44/42 MAPK activation and SAPK activation, translocation, and AP-1 binding were all abrogated by the estrogen receptor antagonist, ICI-182,780. We conclude that attenuation of mechanical strain-induced MAPK activation by 17beta-estradiol is dependent on intracellular estrogen receptor. The attenuation of stretch-induced kinase activation may be due, at least in part, to an effect of 17beta-estradiol on MKP-1 expression. Together, these findings add insight into the protective effect of gender on renal disease progression.  相似文献   

14.
15.
We have previously reported that platelet-activating factor (PAF) elevates cytosolic free calcium concentration ([Ca2+]i) in fura-2-loaded glomerular mesangial cells. To confirm that this increase in [Ca2+]i is a result of receptor-mediated activation of phospholipase C, we investigated hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) in PAF-treated mesangial cells. PAF (10(-7) M) stimulated a rapid and transient formation of inositol trisphosphate. In concomitant experiments, PAF stimulated a biphasic accumulation of 3H-arachidonate-labeled 1,2-diacylglycerol (DAG). The secondary elevation in DAG was coincident with a rise in 3H-phosphorylcholine (PC) and 3H-phosphorylethanolamine (PE) suggesting that PAF stimulates delayed phospholipase activities which hydrolyze alternate phospholipids besides the polyphosphoinositides. This PAF-stimulated elevation in 3H-water soluble phosphorylbases was seen at 5 min but not at 15 sec suggesting that the initial rise in DAG as well as the initial elevation in [Ca2+]i are due primarily to PtdIns-4,5-P2 hydrolysis. PAF also stimulated PGE2 as well as 3H-arachidonic acid and 3H-lyso phosphatidylcholine (PtdCho) formation. We suggest that arachidonate released specifically from PtdCho via phospholipase A2 is a source of this PAF-elevated PGE2. It has been postulated that anti-inflammatory prostaglandins may antagonize the contractile and proinflammatory effects of PAF via activation of adenylate cyclase. Surprisingly, exogenous PAF reduced basal and receptor-mediated cAMP concentration indicating that PAF-stimulated transmembrane signaling pathways may oppose receptor-mediated activation of adenylyl cyclase. We have taken advantage of the different sensitivities of phospholipases A2 and C(s) to PMA, EGTA, and pertussis toxin to dissociate phospholipase A2 and C activities. Acute PMA-treatment enhanced PAF-stimulated PGE2 formation, reduced PAF-induced elevations in [Ca2+]i and had no effect upon PAF-stimulated 3H-PE. We have also demonstrated that phospholipase A2, but not PtdIns-specific phospholipase C, was sensitive to external calcium concentration. The role of a GTP-binding protein to couple PAF-receptors to the PtdIns-specific phospholipase C was confirmed as GTP gamma S synergistically elevated PAF-stimulated inositol phosphate formation. We also demonstrated that pertussis toxin ADP-ribosylates a single protein of an apparent 42 kD mass and that PAF pretreatment reduced subsequent ADP-ribosylation in a time-dependent manner. However, pertussis toxin had no effect upon phospholipase C-generated water soluble phosphorylbases or inositol phosphates. In contrast, PAF-stimulated phospholipase A2 and PAF-inhibited adenylyl cyclase activities were sensitive to pertussis toxin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
17.
18.
Gene amplification in cultured cells   总被引:41,自引:0,他引:41  
  相似文献   

19.
20.
A set of DNA clones comprising 48 independent HindIII fragments (215 kilobases of sequence) was derived from the N-myc amplification unit of the neuroblastoma cell line NGP. These clones were used to investigate N-myc amplification units in NGP cells and 12 primary neuroblastoma tumors. Three parameters were evaluated: (i) the number of rearrangements from germ line configuration that had occurred during the amplification process; (ii) the homogeneity of amplification units within individual tumors; and (iii) the conservation of amplified sequences among different tumors. The results indicated that remarkably few rearrangements had occurred during amplification, that the amplification units within any one tumor were quite homogeneous, and that although each tumor contained a unique pattern of amplified DNA fragments, there was considerable similarity between the amplification units of different tumors. In particular, the amplification units were strikingly similar over a contiguous domain of at least 140 kilobases surrounding the N-myc structural gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号