首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The influences of [Ca(2+)] and Ca(2+) dissociation rate from troponin C (TnC) on the kinetics of contraction (k(Ca)) activated by photolysis of a caged Ca(2+) compound in skinned fast-twitch psoas and slow-twitch soleus fibers from rabbits were investigated at 15 degrees C. Increasing the amount of Ca(2+) released increased the amount of force in psoas and soleus fibers and increased k(Ca) in a curvilinear manner in psoas fibers approximately 5-fold but did not alter k(Ca) in soleus fibers. Reconstituting psoas fibers with mutants of TnC that in solution exhibited increased Ca(2+) affinity and approximately 2- to 5-fold decreased Ca(2+) dissociation rate (M82Q TnC) or decreased Ca(2+) affinity and approximately 2-fold increased Ca(2+) dissociation rate (NHdel TnC) did not affect maximal k(Ca). Thus the influence of [Ca(2+)] on k(Ca) is fiber type dependent and the maximum k(Ca) in psoas fibers is dominated by kinetics of cross-bridge cycling over kinetics of Ca(2+) exchange with TnC.  相似文献   

3.
Rhythmic gene expression in somite formation and neural development   总被引:1,自引:0,他引:1  
In mouse embryos, somite formation occurs every two hours, and this periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 expression oscillates by negative feedback and is cooperatively regulated by Fgf and Notch signaling. Both loss of expression and sustained expression of Hes7 result in severe somite fusion, suggesting that Hes7 oscillation is required for proper somite segmentation. Expression of a related gene, Hes1, also oscillates by negative feedback with a period of about two hours in many cell types such as neural progenitor cells. Hes1 is required for maintenance of neural progenitor cells, but persistent Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillation is required for their proper activities. Hes1 oscillation regulates cyclic expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta1, which in turn lead to maintenance of neural progenitor cells by mutual activation of Notch signaling. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) plays an important role in many biological events.  相似文献   

4.
植物细胞的钙信号转导   总被引:2,自引:0,他引:2  
Ca^2 信号在植物体胞内信号转导途径中起重要的作用.对钙调素及CBL蛋白在植物体内的表达模式、亚细胞定位、靶向以及钙信号通路方面的研究的进展进行了综述。  相似文献   

5.
Calcium and signal transduction in plants   总被引:1,自引:0,他引:1  
Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.  相似文献   

6.
Calcium has long been known to play a role as a key cytoplasmic second messenger, but until relatively recently its possible involvement in nuclear signal transduction and the regulation of nuclear events has not been extensively studied. Evidence revealing the presence of transmembrane nuclear Ca2+ gradients and a variety of intranuclear Ca2+ binding proteins has fueled renewed interest in this key ion and its involvement in cell-cycle timing and division, gene expression, and protein activation. This review will offer an overview of the current state of knowledge and theory regarding calcium orchestration of nuclear functions and events and discuss possible future directions in this field of study.  相似文献   

7.
Summary Phosphorylation of a light chain subunit of myosin by Ca2+ and calmodulin-dependent myosin light chain kinase is believed to be essential for smooth muscle contraction. The biochemical properties of the myosin phosphorylation system in human myometrial smooth muscle cells in monolayer culture were compared with those of human myometrial tissue and nonmuscle cells in culture. Native myosin was isolated from other cellular proteins of crude homogenates by polyacrylamide gel electrophoresis (in the presence of pyrophosphate) and quantified by densitometry. The myosin content of myometrial smooth muscle cells in culture and that of myometrial tissue were similar and four- to five-fold greater than that of human endometrial stromal cells or skin fibroblasts in culture. The specific activities of myosin light chain kinase in homogenates of myometrial smooth muscle cells that were maintained in culture and in myometrial tissue were similar (2.05±0.18 and 1.60±0.37 nmol phosphate incorporated per min per mg protein, respectively). On the other hand, enzyme activity in skin fibroblasts was only 5% of that in myometrial smooth muscle cells. Myosin light chain kinase activity in myometrial smooth muscle cells was dependent upon Ca2+ and was inhibited reversibly by the calmodulin antagonist, calmidazolium. The intracellular Ca2+ concentration measured by quin2 fluorescence was 0.12 μM in resting cells and increased in a concentration-dependent manner with KC1 to a maximal value of 0.47 μM. These results indicate that biochemical processes important for smooth muscle contraction are retained in human myometrial smooth muscle cells in culture. This research was supported by grants HL26043, HD11149, and GM07062 from the National Institutes of Health, Bethesda, MD.  相似文献   

8.
The chicken Tbx gene, Tbx18, is expressed in lateral plate mesoderm, limb, and developing somites. Here we show that Tbx18 is expressed transiently in axial mesenchyme during somite segmentation. We present evidence from overexpression and transplantation experiments that Tbx18 controls fissure formation in the late stages of somite maturation. In presumptive wing lateral plate mesoderm, ectopic Tbx18 expression leads to anterior extension of the wing bud. These results suggest that Tbx18 is involved in producing mesodermal boundaries, generating in paraxial mesoderm morphological boundaries between somites and in lateral plate mesoderm a wing- or non-wing-forming boundary.  相似文献   

9.
烟草愈伤组织的培养细胞中,当钙离子载体将Ca~(2 )导入细胞时,细胞质流停止.CaM拮抗剂试验表明,高钙使细胞质流停止的效应可能与CaM无关,除W7外的多种CaM拮抗剂都明显而且可逆地抑制细胞质流。酶联免疫吸附分析(ELISA)检出培养细胞中存在有CaM。间接酶标免疫组织化学分析进一步证明CaM存在于胞质条纹中。  相似文献   

10.
To test the effects of calcium on wood formation, Populus tremula x Populus tremuloides clones were supplied with Hoagland solution modified in its calcium contents. Energy-dispersive X-ray analysis (EDXA) revealed an increase in calcium in the phloem, the cambium and the xylem elongation zone with increasing Ca(2+) supply in the nutrient solution. Using light and electron microscopy, a strong impact was shown on the cambial and the elongation zones under calcium starvation. Using Fourier transform infrared (FTIR) spectroscopy on wood and bark cells formed under calcium starvation, we detected a reduction of some absorptions, such as carbonyl and methoxy groups from S-lignin. Also, a significant reduction in fiber length was detected with decreasing calcium supply in the nutrient solution. High-performance liquid chromatography (HPLC) analysis revealed a large increase in sugar concentrations in the leaves, but reduced concentrations in the bark under Ca(2+) deficiency. In conclusion, our results show a significant influence of calcium on the structure, chemistry and physiology of wood formation. Thus, efficient Ca(2+) supply has to be considered a decisive factor in wood formation.  相似文献   

11.
12.
13.
Many metabolic processes essential for plant viability take place in mitochondria. Therefore, mitochondrial function has to be carefully balanced in accordance with the developmental stage and metabolic requirements of the cell. One way to adapt organellar function is the alteration of protein composition. Since most mitochondrial proteins are nuclear encoded, fine-tuning of mitochondrial protein content could be achieved by the regulation of protein translocation. Here we present evidence that the import of nuclear-encoded mitochondrial proteins into plant mitochondria is influenced by calcium and calmodulin. In pea mitochondria, the calmodulin inhibitor ophiobolin A as well as the calcium ionophores A23187 and ionomycin inhibit translocation of nuclear-encoded proteins in a concentration-dependent manner, an effect that can be countered by the addition of external calmodulin or calcium, respectively. Inhibition was observed exclusively for proteins translocating into or across the inner membrane but not for proteins residing in the outer membrane or the intermembrane space. Ophiobolin A and the calcium ionophores further inhibit translocation into mitochondria with disrupted outer membranes, but their effect is not mediated via a change in the membrane potential across the inner mitochondrial membrane. Together, our results suggest that calcium/calmodulin influences the import of a subset of mitochondrial proteins at the inner membrane. Interestingly, we could not observe any influence of ophiobolin A or the calcium ionophores on protein translocation into mitochondria of yeast, indicating that the effect of calcium/calmodulin on mitochondrial protein import might be a plant-specific trait.  相似文献   

14.
钙稳态失衡与癌细胞抑制   总被引:3,自引:0,他引:3  
细胞胞浆钙离子浓度必须处于严格的调控之中,钙稳态失调必将导致细胞严重损伤或死亡(凋亡或坏死).综述了钙稳态失调在外界因素引起细胞死亡中的作用、直接钙稳态失调的细胞死亡效应、以及钙离子在细胞凋亡中的作用,并讨论了上述作用的机制,最后在总结基础上提出了一种抑癌新途径——选择性引发癌细胞钙稳态失衡.  相似文献   

15.
Cardiac contractile dysfunction is frequently reported in human patients and experimental animals with type-1 diabetes mellitus. The aim of this study was to investigate the voltage-dependence of contraction in ventricular myocytes from the streptozotocin (STZ)-induced diabetic rat. STZ-induced diabetes was characterised by hyperglycaemia and hypoinsulinaemia. Other characteristics included reduced body and heart weight and raised blood osmolarity. Isolated ventricular myocytes were patched in whole cell, voltage-clamp mode after correcting for membrane capacitance and series resistance. From a holding membrane potential of –40 mV, test pulses were applied at potentials between –30 and +50 mV in 10 mV increments. L-type Ca2+ current (I Ca,L) density and contraction were measured simultaneously using a video-edge detection system. Membrane capacitance was not significantly altered between control and STZ-induced diabetic myocytes. The I Ca,L density was significantly (p < 0.05) reduced throughout voltage ranges (–10 mV to +10 mV) in myocytes from STZ-treated rats compared to age-matched controls. Moreover, the amplitude of contraction was significantly reduced (p < 0.05) in myocytes from STZ-treated rats at all test potentials between –20 mV and +30 mV. However, in electrically field-stimulated (1 Hz) myocytes, the amplitude of contraction was not altered by STZ-treatment. It is suggested that in field-stimulated myocytes taken from STZ-induced diabetic hearts, prolonged action potential duration may promote increased Ca2+ influx via the sodium-calcium exchanger (NCX), which may compensate for a reduction in Ca2+ trigger through L-type-Ca2+-channels and lead to normalised contraction. (Mol Cell Biochem 261: 235–243, 2004)  相似文献   

16.
17.
Calcium carbonate scale formation and control   总被引:4,自引:0,他引:4  
This paper focuses on the complex problem of calcium carbonate scale formation on heated surfaces and the possibilities of controlling or reducing this problem. The development of scale is a multistage process and is affected by a number of factors, these include supersaturation, pH, temperature and flow velocity. Calcium carbonate deposition can be ameliorated by chemical, physical or biological methods with various level of effectiveness. These controls can be divided into three main categories: those that affect solubility, those that alter the growth mechanism of crystals, and those that change the potential of a surface to foul. One of the most effective methods of controlling crystallization fouling is the addition of chemical inhibitors to potentially scaling waters. There are a number of alternative non-chemical treatment options available, amongst these are the use of magnetic, electronic and electrolytic treatment devices. Scale formation is affected by the physical nature of the material on which it is forming, therefore it is possible to choose material to reduce scale formation. Each of these scale controlling methods has their advantages and a number of factors have to be considered before choosing the right option.  相似文献   

18.
Calcium dependence of bleb formation and cell death in hepatocytes   总被引:5,自引:0,他引:5  
Calcium dependence of bleb formation and cell death was evaluated in rat hepatocytes following ATP depletion by metabolic inhibition with KCN and iodoacetate ('chemical hypoxia'). Cytosolic free Ca2+ was measured in single cells by ratio imaging of Fura-2 fluorescence using multiparameter digitized video microscopy. Cells formed surface blebs within 10 to 20 minutes after chemical hypoxia and most cells lost viability within an hour. An increase of cytosolic free Ca2+ was not required for bleb formation to occur. One to a few minutes prior to the onset of cell death, free Ca2+ increased rapidly in high Ca2+ buffer (1.2 mM) but not in low Ca2+ buffer (less than 1 microM). In either buffer, the rate of cell killing was the same. As the onset of cell death was approached in both high and low Ca2+ buffers, Fura-2 began to leak from the cells at an accelerating rate indicating rapidly increasing plasma membrane permeability. In high Ca2+ buffer, cytosolic free Ca2+ increased in parallel with dye leakage. No regional changes in cytosolic free Ca2+ were observed during this metastable period of increased membrane permeability. In many experiments, actual rupture of cell surface blebs could be observed which led to micron-size discontinuities of the cell surface and cell death. We conclude that a metastable period characterized by increasing plasma membrane permeability marked the onset of cell death in cultured hepatocytes which culminated in rupture of a cell surface bleb. An increase of cytosolic free Ca2+ was not required for the metastable state to develop or cell death to occur.  相似文献   

19.
A hyperpolarizing effect of noradrenaline (NA) on muscle cells of the earthworm caused by activation of the membrane ion pumps is eliminated in a Ca-free medium, in the case of replacement of Na+ by Mn2+, or when verapamil or chlorpromazine have been added to the bath solution. A decrease or an increase in the Ca2+ concentration in the solution, as well as caffeine application, do not influence the resting membrane potential (RMP) of muscle cells. It is supposed that signal transmission from the membrane adrenoreceptors to the ion pump of earthworm muscle cells by NA is provided via entry of extracellular Ca2+ ions into the cell with subsequent involving of Ca2+ acceptor proteins similar to calmodulin in vertebrate animals.  相似文献   

20.
Fibroblast apoptosis plays a crucial role in normal and pathological scar formation and therefore we studied whether the putative apoptosis-inducing factor curcumin affects fibroblast apoptosis and may function as a novel therapeutic. We show that 25-μM curcumin causes fibroblast apoptosis and that this could be inhibited by co-administration of antioxidants N -acetyl- l -cysteine (NAC), biliverdin or bilirubin, suggesting that reactive oxygen species (ROS) are involved. This is supported by our observation that 25-μM curcumin caused the generation of ROS, which could be completely blocked by addition of NAC or bilirubin. Since biliverdin and bilirubin are downstream products of heme degradation by heme oxygenase (HO), it has been suggested that HO-activity protects against curcumin-induced apoptosis. Interestingly, exposure to curcumin maximally induced HO-1 protein and HO-activity at 10–15 μM, whereas, at a concentration of >20-μM curcumin HO-1-expression and HO-activity was negligible. NAC-mediated inhibition of 25-μM curcumin-induced apoptosis was demonstrated to act in part via restored HO-1-induction, since the rescuing effect of NAC could be reduced by inhibiting HO-activity. Moreover pre-induction of HO-1 using 5-μM curcumin protected fibroblasts against 25-μM curcumin-induced apoptosis. On a functional level, fibroblast-mediated collagen gel contraction, an in vitro wound contraction model, was completely prevented by 25-μM curcumin, while this could be reversed by co-incubation with NAC, an effect that was also partially HO-mediated. In conclusion, curcumin treatment in high doses (>25 μM) may provide a novel way to modulate pathological scar formation through the induction of fibroblast apoptosis, while antioxidants, HO-activity and its effector molecules act as a possible fine-tuning regulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号