首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Camarodont sea urchins possess a rapidly evolving actin gene family whose members are expressed in distinct cell lineages in a developmentally regulated fashion. Evolutionary changes in the actin gene family of echinoids include alterations in number of family members, site of expression, and gene linkage, and a dichotomy between rapidly and slowly evolving isoform-specific 3' untranslated regions. We present sequence comparisons and an analysis of the actin gene family in two congeneric sea urchins that develop in radically different modes, Heliocidaris erythrogramma and H. tuberculata. The sequences of several actin genes from the related species Lytechinus variegatus are also presented. We compare the features of the Heliocidaris and Lytechinus actin genes to those of the the actin gene families of other closely related sea urchins and discuss the nature of the evolutionary changes among sea urchin actins and their relationship to developmental mode.   相似文献   

2.
3.
SUMMARY Cross-species hybrids between eggs of the direct-developing sea urchin, Heliocidaris erythrogramma , and sperm from its congeneric indirect-developing species, Heliocidaris tuberculata, show restoration of features of the paternal feeding pluteus larva, including the gut, and pluteus spicular skeleton. Unlike other reported sea urchin cross-species hybrids, Heliocidaris hybrids express genes derived from both maternal and paternal species at high levels. Ectodermal cell types, which differ radically between the two parental species, are of intermediate form in the hybrids. Gene expression patterns in hybrid embryo tissues represent a number of combinations of parental gene expression patterns: genes that are not expressed in one paternal species, but are expressed in hybrids as in the expressing parent; genes that show additive expression patterns plus novel sites of expression; a gene that is misexpressed in the hybrids; and genes expressed identically in both parents and in hybrids. The results indicate that both conserved and novel gene regulatory interactions are present. Only one gene, CyIII actin , has lost cell-type-specific regulation in the hybrids. Hybrids thus reveal that disparate parental genomes, each with its own genic regulatory system, can produce in combination a novel gene expression entity with a unique ontogeny. This outcome may derive from conserved gene regulatory regions in downstream genes of both parental species responding in conserved ways to higher-level regulators that determine modular gene expression territories.  相似文献   

4.
5.
6.
7.
8.
9.
Sea urchin actin gene subtypes. Gene number, linkage and evolution   总被引:12,自引:0,他引:12  
The actin gene family of the sea urchin Strongylocentrotus purpuratus was analyzed by the genome blot method, using subcloned probes specific to the 3' terminal non-translated actin gene sequence, intervening sequence and coding region probes. We define an actin gene subtype as that gene or set of genes displaying homology with a given 3' terminal sequence probe, when hybridized at 55 degrees C, 0.75 M-Na+. By determining the often polymorphic restriction fragment band pattern displayed in genome blots by each probe, all, or almost all of the actin genes in this species could be classified. Our evidence shows that the S. purpuratus genome probably contains seven to eight actin genes, and these can be assigned to four subtypes. Studies of the expression of the genes (Shott et al., 1983) show that the actin genes of three of these subtypes code for cytoskeletal actins (Cy), while the fourth gives rise to a muscle-specific actin (M). We denote the array of S. purpuratus actin genes indicated by our data as follows. There is a single CyI actin gene, two or possibly three CyII genes (CyIIa, CyIIb, and possibly CyIIc), three CyIII actin genes (CyIIIa, CyIIIb, CyIIIc), and a single M actin gene. Comparative studies were carried out on the actin gene families of five other sea urchin species. At least the CyIIa and CyIIb genes are also linked in the Strongylocentrotus franciscanus genome, and this species also has a CyI gene, an M actin gene and at least two CyIII actin genes. It is not clear whether it also possesses a CyIIc actin gene, or a CyIIIc actin gene. The genome of a more closely related congener, Strongylocentrotus dr?bachiensis, includes 3' terminal sequences suggesting the presence of a CyIIc gene. In S. franciscanus and S. dr?bachiensis the first intron of the CyI gene has remained homologous with intron sequences of both the CyIIa and CyIIb genes, indicating a common origin of these three linked cytoskeletal actin genes. Of the four S. purpuratus 3' terminal subtype probe sequences only the CyI 3' terminal sequence has been conserved sufficiently during evolution to permit detection outside of the genus Strongylocentrotus. An unexpected observation was that a sequence found only in the 3' untranslated region of the CyII actin gene in the DNA of S. dr?bachiensis and S. purpuratus is represented as a large family of interspersed repeat sequences in the genome of S. franciscanus.  相似文献   

10.
11.
Characterization of five members of the actin gene family in the sea urchin   总被引:11,自引:0,他引:11  
Hybridization of an actin cDNA clone (pSA38) to restriction enzyme digests of Strongylocentrotus purpuratus DNA indicates that the sea urchin genome contains at least five different actin genes. A sea urchin genomic clone library was screened for recombinants which hydridize to pSA38 and four genomic clones were isolated. Restriction maps were generated which indicate that three of these recombinants contain different actin genes, and that the fourth may be an allele to one of these. The restriction maps suggest that one clone contains two linked actin genes. This fact, which was confirmed by heteroduplex analysis, indicates that the actin gene family may be clustered. The linked genes are oriented in the same direction and spaced about 8.0 kilobases apart. In heteroduplexes between genomic clones two intervening sequences were seen. Significant homology is confined to the actin coding region and does not include any flanking sequence. Southern blot analysis reveals that repetitive DNA sequences are found in the region of the actin genes.  相似文献   

12.
13.
The distal region of the S. purpuratus actin CyIIIb gene, between −400 and −1400 nucleotides, contains at least three distinct cis-acting elements (C1R, C1L and E1) which are necessary for correct expression of fusion reporter genes in transgenic sea urchin embryos. The contribution of these elements in the temporal and spatial regulation of the gene was analyzed by single and double site-directed mutagenesis in fusion constructs which carry the bacterial chloramphenicol acetyl transferase (CAT) gene as a reporter. Following microinjection of the transgenes in sea urchin embryos, the activity of the mutants was compared to the wild type in time and space by measuring CAT activity at the blastula and pluteus embryonic stages and by in situ hybridization to the CAT mRNA at pluteus stage. Our results indicate that E1 involved in the temporal regulation of CyIIIb and that all three elements are necessary and sufficient to confer aboral (dorsal) ectoderm specificity to the proximal promoter. This is achieved by suppressing the promoter's activity in all other tissues by the cooperative interaction of the cis-acting elements. The C1R element, binding site of the nuclear receptors SpCOUP-TF and SpSHR2, is by itself sufficient to restrict expression in the ectoderm, whereas the aboral ectoderm restricted expression requires in addition the presence of both C1L adn E1. It is therefore evident, that the actin CyIIIb gene is exclusively expressed in the aboral ectoderm by a combinatorial repression in all other cell lineages of the developing embryo.  相似文献   

14.
In spite of their potential importance in evolution, there is little information about Hox genes in animal groups that are related to ancestors of deuterostome. It has been reported that only two Hox genes (Hbox1 and Hbox7) are expressed significantly in sea urchin embryos. Expression of Hbox1 protein is restricted to the aboral ectoderm, and Hbox7 expression is restricted to oral ectoderm, endoderm and secondary mesenchyme cells in sea urchin embryos after the gastrula stage. With the aim of gaining insight into the role of Hbox1 and Hbox7 in sea urchin development, Hbox1 and Hbox7 overexpression experiments were performed. Overexpression of Hbox1 repressed the development of oral ectoderm, endoderm and mesenchyme cells. On the contrary, overexpression of Hbox7 repressed the development of aboral ectoderm and primary mesenchyme cells. The data suggest that Hbox1 and Hbox7 are expressed in distinct non-overlapping territories, and overexpression of either one inhibits territory-specific gene expression in the domain of the other. It is proposed that an important function of both Hbox1 and Hbox7 genes is to maintain specific territorial gene expression by each one, in its domain of expression, while repressing the expression of the other in this same domain.  相似文献   

15.
16.
17.
Four distinct actin genes of the sea urchin Strongylocentrotus purpuratus have been isolated from a recombinant Charon 4 phage library of genomic DNA. The four genes differ considerably from each other in many of their restriction sites. Two of the four genes are closely linked; they are present in the same fragment of cloned DNA. This fragment has been extensively mapped, and some parts of the DNA have been sequenced. The two linked genes are oriented in the same direction, separated by 7.5 kb of DNA. One has an intron following the CAG that codes for the glutamine residue at position 121 in the amino acid sequence of actin. This represents the fifth distinct site at which introns have been found in actin genes, suggesting that the primordial actin gene had at least 6 exons and 5 introns. The actin genes from a distinctive family in which most introns have apparently been precisely excised from the genes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号