首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Thirty-nine mutant tryptophan synthase alpha subunits have been purified and analyzed (in the presence of the beta 2-subunit) for their enzymatic (kcat, Km) behavior in the reactions catalyzed by the alpha 2.beta 2 complex, the fully constituted form of this enzyme. The mutant alpha subunits, obtained by in vitro random, saturation mutagenesis of the encoding trpA gene, contain single amino acid substitutions at sites within the first 121 residues of the alpha polypeptide. Four categories of altered residues have been tentatively assigned roles in the catalytic functions of this enzyme: 1) catalytic residues (Glu49 and Asp60); 2) residues involved in substrate binding or orientation (Phe22, Thr63, Gln65, Tyr102, and Leu105); 3) residues involved in alpha.beta subunit interactions (Gly51, Pro53, Asp56, Asp60, Pro62, Ala67, Phe72, Thr77, Pro78, Tyr102, Asn104, Leu105, and Asn108); and 4) residues with no apparent catalytic roles. Catalytic residue alterations result in no detectable activity in the alpha-subunit specific reactions. Substrate binding/orientation roles are detected enzymatically primarily as rate defects; alterations only at Tyr102 result in apparent Km effects. alpha.beta interaction roles are detected as rate defects in all tryptophan synthase reactions plus Km increases for the alpha-subunit substrate, indole-3-glycerol phosphate, only when L-serine is present at the beta 2-subunit active site. A substitution at only one site, Asn104, appears to be unique in its potential effect on intersubunit channeling of indole, the product of the alpha-subunit specific reaction, to the beta 2-subunit active site.  相似文献   

3.
Tryptophan synthase alpha-subunit from Escherichia coli functionally exists as a heterotetramer of alpha(2)beta(2) with beta-subunit. While wild-type and mutant (F139W, T24M/F139W, and T24L/F139W) alpha-subunits were expressed as a monomer from recombinant plasmids in Escherichia coli, T24A/F139W, T24S/F139W, and T24K/F139W mutant alpha-subunits were abnormally expressed as soluble homodimers in addition to monomers. Monomers of dimer-forming mutant alpha-subunits retain high affinity to beta-subunit, high activity in stimulating catalytic activities of beta-subunit, and nearly intact content of secondary structure, indicating that the global structures of these monomers are identical to that of F139W alpha-subunit. However, fluorescence spectra of Trp139 and ANS binding indicate that significant perturbations occur in the mutant proteins. Interestingly, these defective properties of monomers caused by residue replacement were partially repaired by the dimer formation. As a result, it is suggested that dimers may be formed by domain or loop swapping, and that residue 24 may play important role in maintaining on-pathway of alpha-subunit folding.  相似文献   

4.
5.
Random chemical mutagenesis, in vitro, of the 5' portion of the Escherichia coli trpA gene has yielded 66 mutant alpha subunits containing single amino acid substitutions at 49 different residue sites within the first 121 residues of the protein; this portion of the alpha subunit contains four of the eight alpha helices and three of the eight beta strands in the protein. Sixty-two of the subunits were examined for their heat stabilities by sensitivity to enzymatic inactivation (52 degrees C for 20 min) in crude extracts and by differential scanning calorimetry (DSC) with 29 purified proteins. The enzymatic activities of mutant alpha subunits that contained amino acid substitutions within the alpha and beta secondary structures were more heat labile than the wild-type alpha subunit. Alterations only in three regions, at or immediately C-terminal to the first three beta strands, were stability neutral or stability enhancing with respect to enzymatic inactivation. Enzymatic thermal inactivation appears to be correlated with the relative accessibility of the substituted residues; stability-neutral mutations are found at accessible residual sites, stability-enhancing mutations at buried sites. DSC analyses showed a similar pattern of stabilization/destabilization as indicated by inactivation studies. Tm differences from the wild-type alpha subunit varied +/- 7.6 degrees C. Eighteen mutant proteins containing alterations in helical and sheet structures had Tm's significantly lower (-1.6 to -7.5 degrees C) than the wild-type Tm (59.5 degrees C). In contrast, 6 mutant alpha subunits with alterations in the regions following beta strands 1 and 3 had increased Tm's (+1.4 to +7.6 degrees C). Because of incomplete thermal reversibilities for many of the mutant alpha subunits, most likely due to identifiable aggregated forms in the unfolded state, reliable differences in thermodynamic stability parameters are not possible. The availability of this group of mutant alpha subunits which clearly contain structural alterations should prove useful in defining the roles of certain residues or sequences in the unfolding/folding pathway for this protein when examined by urea/guaninidine denaturation kinetic analysis.  相似文献   

6.
K F Houben  W Kadima  M Roy  M F Dunn 《Biochemistry》1989,28(10):4140-4147
Substrate analogues of L-serine have been found that react with the alpha 2 beta 2 complex of Escherichia coli tryptophan synthase. Upon reaction with alpha 2 beta 2, the analogues glycine, L-histidine, L-alanine, and D-histidine form chemical intermediates derived from reaction with enzyme-bound pyridoxal 5'-phosphate with characteristic UV-visible spectral bands. The spectra of the products of the glycine, L-histidine, and L-alanine reactions with alpha 2 beta 2 contain contributions from the external aldimine, the quinonoid species, and other intermediates along the catalytic pathway. Just as previously reported for the reaction of L-serine with beta 2 [Goldberg, M. E., York, S., & Stryer, L. (1968) Biochemistry 7, 3662-3667], the reactions of glycine, L-histidine, and L-alanine with the beta 2 form of tryptophan synthase yield spectra with no contributions from catalytic intermediates beyond the external aldimine. The kinetics of intermediate formation and comparisons of the time courses for the exchange of alpha-1H for solvent 2H catalyzed by alpha 2 beta 2 or beta 2 were found to be consistent with these assignments. Intermediates further along the tryptophan synthase catalytic pathway are stabilized to a greater degree in the alpha 2 beta 2 complex than in the beta 2 species alone. This observation strongly suggests that the association of alpha and beta subunits to form the native alpha 2 beta 2 species lowers the activation energies for the interconversion of the external aldimine with chemical species further along the catalytic path.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The genomic DNA and cDNA for a gene encoding a novel trehalose synthase (TSase) catalyzing trehalose synthesis from α-d-glucose 1-phosphate and d-glucose were cloned from a basidiomycete, Grifola frondosa. Nucleotide sequencing showed that the 732-amino-acid TSase-encoding region was separated by eight introns. Consistent with the novelty of TSase, there were no homologous proteins registered in the databases. Recombinant TSase with a histidine tag at the NH2-terminal end, produced in Escherichia coli, showed enzyme activity similar to that purified from the original G. frondosa strain. Incubation of α-d-glucose 1-phosphate and d-glucose in the presence of recombinant TSase generated trehalose, in agreement with the enzymatic property of TSase that the equilibrium lay far in the direction of trehalose synthesis. Received: 12 January 1998 / Received revision: 20 February 1998 / Accepted: 20 March 1998  相似文献   

8.
In vitro mutagenesis of the Escherichia coli trpA gene has yielded 66 mutant tryptophan synthase alpha subunits containing single amino acid substitutions at 49 different residue sites and 29 double and triple amino acid substitutions at 16 additional sites, all within the first 121 residues of the protein. The 66 singly altered mutant alpha subunits encoded from overexpression vectors have been examined for their ability to support growth in trpA mutant host strains and for their enzymatic and stability properties in crude extracts. With the exception of mutant alpha subunits altered at catalytic residue sites Glu-49 and Asp-60, all support growth; this includes those (48 of 66) that have no enzymatic defects and those (18 of 66) that do. The majority of the enzymatically defective mutant alpha subunits have decreased capacities for substrate (indole-3-glycerol phosphate) utilization, typical of the early trpA missense mutants isolated by in vivo selection methods. These defects vary in severity from complete loss of activity for mutant alpha subunits altered at residue positions 49 and 60 to those, altered elsewhere, that are partially (up to 40 to 50%) defective. The complete inactivation of the proteins altered at the two catalytic residue sites suggest that, as found via in vitro site-specific mutagenesis of the Salmonella typhimurium tryptophan synthetase alpha subunit, both residues probably also participate in a push-pull general acid-base catalysis of indole-3-glycerol phosphate breakdown for the E. coli enzyme as well. Other classes of mutant alpha subunits include some novel types that are defective in their functional interaction with the other tryptophan synthetase component, the beta 2 subunit. Also among the mutant alpha subunits, 19 were found altered at one or another of the 34 conserved residue sites in this portion of the alpha polypeptide sequence; surprisingly, 10 of these have wild-type enzymatic activity, and 16 of these can satisfy growth requirements of a trpA mutant host. Heat stability and potential folding-rate alterations are found in both enzymatically active and defective mutant alpha subunits. Tyr-4. Pro-28, Ser-33, Gly-44, Asp-46, Arg-89, Pro-96, and Cys-118 may be important for these properties, especially for folding. Two regions, one near Thr-24 and another near Met-101, have been also tentatively identified as important for increasing stability.  相似文献   

9.
The mechanism of binding of L-serine to tryptophan synthase, which is the initial phase of the catalytic mechanism, has been studied by steady-state and stopped-flow kinetic techniques. The dependence of three separable rate processes on the concentration of L-serine is compatible with four different enzyme-substrate complexes, one of which lies on a branch in the pathway. By use of L-serine deuterated at the alpha carbon, it is possible to assign the deprotonation of the external aldimine of L-serine with pyridoxal 5'-phosphate to the most rapid observable binding step. Measurements at two pH values show that the rate-determining step in the synthesis of L-tryptophan changes from release of L-tryptophan at the optimal pH of 7.6 to the binding of L-serine at pH 6.5. Measurements at pH 7.6 in the presence of the substrate analogue indolepropanol phosphate show that the stronger binding of L-serine is probably due to stabilization of the catalytically competent enzyme--L-serine complex. At pH 7.6 L-serine is bound far more slowly to the beta 2 subunit than to the alpha 2 beta 2 complex of tryptophan synthase and retains its alpha carbon proton. For the beta 2 subunit, the rate-determining step of tryptophan synthesis is deprotonation of bound L-serine. The effect of bound alpha subunit is to increase both the rate of deprotonation and beta-elimination, shifting the rate-limiting step to the release of L-tryptophan.  相似文献   

10.
A N Lane  K Kirschner 《Biochemistry》1991,30(2):479-484
The physiological synthesis of L-tryptophan from indoleglycerol phosphate and L-serine catalyzed by the alpha 2 beta 2 bienzyme complex of tryptophan synthase requires spatial and dynamic cooperation between the two distant alpha and beta active sites. The carbanion of the adduct of L-tryptophan to pyridoxal phosphate accumulated during the steady state of the catalyzed reaction. Moreover, it was formed transiently and without a lag in single turnovers, and glyceraldehyde 3-phosphate was released only after formation of the carbanion. These and further data prove first that the affinity for indoleglycerol phosphate and its cleavage to indole in the alpha subunit are enhanced substantially by aminoacrylate bound to the beta subunit. This indirect activation explains why the turnover number of the physiological reaction is larger than that of the indoleglycerol phosphate cleavage reaction. Second, reprotonation of nascent tryptophan carbanion is rate limiting for overall tryptophan synthesis. Third, most of the indole generated in the active site of the alpha subunit is transferred directly to the active site of the beta subunit and only insignificant amounts pass through the solvent. Comparison of the single turnover rate constants with the known elementary rate constants of the partial reactions catalyzed by the alpha and beta active sites suggests that the cleavage reaction rather than the transfer of indole or its condensation with aminoacrylate is rate limiting for the formation of nascent tryptophan.  相似文献   

11.
12.
The alpha subunit of the Escherichia coli tryptophan synthase catalyzes the reversible aldolytic reaction: Indole-3-glycerol phosphate in equilibrium indole + glyceraldehyde 3-phosphate. The use of 5-azidoindole as a photoaffinity label has made the generation of a number of enzyme-substrate complexes possible, each with a given degree of saturation of the two postulated indole sites. When assayed in the reverse reaction (indole-3-glycerol phosphate synthesis), samples of alpha subunit treated at concentrations of 5-azidoindole less than or equal to 2 mM show a progressive 30-40% activation. A gradual inactivation occurs only in samples irradiated at concentrations in excess of 2 mM 5-azidoindole, and this inactivation is complete at 8-10 mM. A quantitatively similar activation occurs in the forward reaction (indole synthesis), however inactivation in this case is incomplete, with complexes treated at 8-12 mM 5-azidoindole retaining 30-40% relative activity in this reaction. When treated alpha subunits were assayed for their abilities to complement the beta 2-subunit in the reactions indole + L-serine leads to L-tryptophan + H2O and indole-3-glycerol phosphate + L-serine leads to L-tryptophan + glyceraldehyde 3-phosphate, quantitatively lesser amounts of activation followed by total inactivation are observed over a similar range of 5-azidoindole concentrations.  相似文献   

13.
The fluorescence of tyrosine has been used to monitor a folding process of tryptophan synthase alpha-subunit from Escherichia coli, because this protein has 7 tyrosines, but not tryptophan. Here to assess the contribution of each Tyr to fluorescence properties of this protein during folding, mutant proteins in which Tyr was replaced with Phe were analyzed. The result shows that a change of Tyr fluorescence occurring during folding of this protein is contributed to approximately 40% each by Tyr(4) and Tyr(115), and to the remaining approximately 20% by Tyr(173) and Tyr(175). Y173F and Y175F mutant proteins showed an increase in their fluorescence intensity by approximately 40% and approximately 10%, respectively. These increases appear to be due to multiple effects of increased hydrophobicity, quenching effect of nearby residue Glu(49), and/or energy transfer between Tyrs. Two data for Y173F alpha-subunit of urea-induced unfolding equilibrium monitored by UV and fluorescence were different. This result, together with ANS binding and far UV CD, shows that folding intermediate(s) of Y173F alpha-subunit, contrary to that of wild-type, may contain self-inconsistent properties such as more buried hydrophobicity, highly quenched fluorescence, and different dependencies on urea of UV absorbance, suggesting an ensemble of heterogeneous structures.  相似文献   

14.
The Pseudomonas aeruginosa tryptophan synthase genes, trpA and trpB, which are induced by their substrate indoleglycerol phosphate, were cloned along with their controlling region into the BamHI site of pBR322 to produce the 10.7-megadalton plasmid pZAZ5. SalI partial digestion and ligation yielded a smaller plasmid, pZAZ167, with the chromosomal insert reduced in size from 8.1 to 3.4 megadaltons. Both pZAZ5 and pZAZ167 display Pseudomonas-like regulation of the trpA and trpB genes. Deletion of an EcoRI fragment or a BglII fragment from pZAZ167 yielded plasmids pZAZ168 and pZAZ169; the former expresses trpB but not trpA, and the latter has lost both activities. A deleted form of pZAZ5 designated pZAZ101 was obtained by excising a BglII-BamHI segment and religating the trip gene segment in the opposite orientation. This plasmid expresses trpA and trpB constitutively. The physical maps of these plasmids establish the gene order: promoter-trpB-trpA.  相似文献   

15.
16.
Inhibition studies and affinity chromatography indicate that derivatives of tryptophanol phosphate are suitable ligands for the affinity chromatography of tryptophan synthase. A phenyl group on the spacer arm strengthens the interaction of immobilized tryptophanol phosphate with the enzyme. The alpha 2 beta 2 complex specifically requires the presence of 0.3--0.5 M phosphate ions for binding. The alpha subunit binds in dilute Tris buffer, but its binding is also enhanced by the presence of phosphate ions. The beta 2 subunit binds unspecifically but strongly to the affinity material and to a variety of other immobilized hydrophobic ligands. Binding studies with suspensions of affinity material show that the alpha subunit interacts rapidly and reversibly. Indoleglycerol phosphate and indolepropanol phosphate release bound alpha 2 beta 2 complex and alpha subunit in a competitive manner, indicating that the interaction occurs biospecifically, i.e. via the active site of alpha subunit. L-Serine is a non-competitive inhibitor of binding. These results are discussed with regard to the composite-active-site hypothesis [T. E. Creighton (1970) Eur. J. Biochem, 13, 1--10]. Both the alpha subunit and the alpha 2 beta 2 complex of tryptophan synthase from Escherichia coli can be obtained with high yields and in homogenous form by absorption to the affinity material from partially purified preparations. Elution is achieved with linear gradients either of indolepropanol phosphate or of indoleglycerol phosphate or, in the case of the complex, of L-serine. At the low concentrations of the complex found in crude extracts of wild-type E. coli cells, the unexpectedly high affinity of the beta 2 subunit for hydrophobic ligands leads to partial dissociation of the complex.  相似文献   

17.
Tryptophan synthase from Escherichia coli (L-serine hydro-lyase (adding indole), EC 4.2.1.20) synthesizes L-trypotophan from indoleglycerol phosphate and L-serine, releasing glyceraldehyde 3-phosphate, or from indole and L-serine. The latter reaction (B reaction), catalyzed either by the beta2 species or by the (alpha2 beta2) complex, has been studied by steady-state methods. A sequential mechanism is indicated. Inhibition experiments with the substrate analogue benzimidazole were carried out in order to distinguish between random and ordered mechanisms. The results are compatible with a random sequential mechanism. The dissociation constants of the enzyme-substrate complexes are evaluated. When catalyzed by the tetrameric complex (alpha2 beta2) the B reaction is inhibited by higher concentrations of the substrate indole. This inhibition does not follow the usual substrate inhibition pattern. The question whether the binding of indole to the alpha-subunit exerts an inhibitory effect on the beta2 species, possibly by reversing the activation by the alpha subunit of the beta2 species, is discussed.  相似文献   

18.
The alpha subunit is bound with negative cooperativity to the holo beta 2 subunit of tryptophan synthase in phosphate buffer. Thus it is feasible to measure separately the rates of formation both of the stable alpha beta 2 subcomplex from beta 2, and of the mature alpha 2 beta 2 complex from alpha beta 2, using stopped-flow techniques. Addition of each alpha subunit proceeds in two steps; an initial alpha beta protomer is formed rapidly, which subsequently isomerizes slowly to the equilibrium state. The rates of dissociation of both the alpha beta 2 and alpha 2 beta 2 complexes were measured by trapping released alpha subunit with enzymically inactive reduced beta 2 subunit. The reversal of the slow isomerization both determines the rate of dissociation, and accounts for the high overall affinity of the beta protomer for the alpha subunit. The data fit to a sequential assembly mechanism consisting of seven protein species and yields values for most of the rate constants and all of the microscopic equilibrium constants. Negative cooperativity arises from a weaker initial binding of the second alpha subunit, as expressed by its larger off-constant, possibly due to steric hindrance. The kinetics of binding of L-serine and indolepropanol phosphate during the assembly process shows that the beta protomer is already partially activated in the initial alpha beta complex. Full activation is achieved in the slow isomerization reaction. In contrast, the alpha subunit gains high affinity for indolepropanol phosphate only in the isomerization reaction. These observations indicate that the isomerization involves synchronous conformation changes of both alpha and beta protomers.  相似文献   

19.
Guanidine hydrochloride-induced denaturation and thermal denaturation of three kinds of tryptophan synthase alpha subunit have been compared by circular dichroism measurements. The three alpha subunits are from Escherichia coli, Salmonella typhimurium, and an interspecies hybrid in which the C-terminal domain comes from E. coli (alpha-2 domain) and the N-terminal domain comes from S. typhimurium (alpha-1 domain). Analysis of denaturation by guanidine hydrochloride at 25 degrees C showed that the alpha-2 domain of S. typhimurium was more stable than the alpha-2 domain of E. coli, but the alpha-1 domain of S. typhimurium was less stable than the alpha-1 domain of the E. coli protein; overall, the hybrid protein was slightly less stable than the two original proteins. It is concluded that the stability to guanidine hydrochloride denaturation of each of the domains of the interspecies hybrid is similar to the stability of the domain of the species from which it originated. The E. coli protein was more stable to thermal denaturation than the other proteins near the denaturation temperature, but the order of their thermal stability was reversed at 25 degrees C and coincided with that obtained from guanidine hydrochloride-induced denaturation.  相似文献   

20.
H Wiesinger  H J Hinz 《Biochemistry》1984,23(21):4928-4934
The binding of indole and L-serine to the isolated alpha and beta 2 subunits and the native alpha 2 beta 2 complex of tryptophan synthase from Escherichia coli was investigated by direct microcalorimetry to reveal the energetic adaptation of ligand binding to the subunit structure of a multienzyme complex. In contrast to the general finding that negative heat capacity changes are associated with ligand binding to proteins, complex formation of indole and the alpha subunit involves a small positive change in heat capacity. This unusual result was considered as being indicative of a loosening of the protein structure. Such an interpretation is in good agreement with results of chemical accessibility studies (Freedberg & Hardman, 1971). Whereas the thermodynamic parameters of indole binding are not influenced by the subunit interaction, the large negative change in heat capacity of -6.5 kJ/(K X mol of beta 2) measured for the binding of L-serine to the isolated beta 2 subunit disappears completely when serine interacts with the tetrameric complex. These data demonstrate that the energy transduction pattern and therefore the functional roles of the substrates indole and L-serine vary strongly with the subunit structure of tryptophan synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号