首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Covalent modification of cytochrome P-450scc (purified from bovine adrenocortical mitochondria) with pyridoxal 5'-phosphate (PLP) was found to cause inhibition of the electron-accepting ability of this enzyme from its physiological electron donor, adrenodoxin, without conversion to the "P-420" form. Reaction conditions leading to the modification level of 0.82 and 2.85 PLP-Lys residues per cytochrome P-450scc molecule resulted in 60% and 98% inhibition, respectively, of electron-transfer rate from adrenodoxin to cytochrome P-450scc (with beta-NADPH as an electron donor via NADPH-adrenodoxin reductase and with phenyl isocyanide as the exogenous heme ligand of the cytochrome). It was found that covalent PLP modification caused a drastic decrease of cholesterol side-chain cleavage activity when the cholesterol side-chain cleavage enzyme system was reconstituted with native (or PLP-modified) cytochrome P-450scc, adrenodoxin, and NADPH-adrenodoxin reductase. Approximately 60% of the original enzymatic activity of cytochrome P-450scc was protected against inactivation by covalent PLP modification when 20% mole excess adrenodoxin was included during incubation with PLP. Binding affinity of substrate (cholesterol) to cytochrome P-450scc was found to be increased slightly upon covalent modification with PLP by analyzing a substrate-induced spectral change. The interaction of adrenodoxin with cytochrome P-450scc in the absence of substrate (cholesterol) was analyzed by difference absorption spectroscopy with a four-cuvette assembly, and the apparent dissociation constant (Ks) for adrenodoxin binding was found to be increased from 0.38 microM (native) to 33 microM (covalently PLP modified).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Purified bovine P-450scc, the cholesterol side-chain cleaving P-450 in adrenal cortex mitochondria, was found to catalyze a deoxycorticosterone 6 beta-hydroxylase reaction. A turnover number (moles of product formed/min/mol of P-450) of 12 was found similar to that for cholesterol side chain cleavage activity. Conversion was dose-dependent in terms of P-450scc and no reaction took place when any one of the required electron donating components such as NADPH, NADPH-adrenodoxin reductase, or adrenodoxin was omitted. These results confirm and extend earlier observations that 21-hydroxypregnenolone is transformed into both deoxycorticosterone and 6 beta-hydroxydeoxycorticosterone by incubation of adrenal gland slices.  相似文献   

3.
Human placental mitochondrial cytochrome P-450 was purified to electrophoretic homogeneity by hydrophobic, anion exchange and cation exchange column chromatography. The specific content of the purified protein was 15.7 nmol/mg protein and it showed a single band mol. wt 48,000 D in SDS-gel electrophoresis. When reconstituted with bovine adrenal adrenodoxin reductase and adrenodoxin it converted cholesterol to pregnenolone (cholesterol side-chain cleavage activity, CSCC) at the rate of 1 pmol/min/pmol P-450. Antibodies against the purified protein were raised in rabbits. Inhibition studies demonstrated 85% inhibition of placental CSCC activity at an antibody/protein ratio of 10:1. Placental microsomal aromatase activity was inhibited by 47% at the same antibody/protein ratio. The antibody inhibited bovine mitochondrial CSCC activity by 87% at the same antibody/protein ratio. Placental microsomal 7-ethoxycoumarin O-deethylase, aryl hydrocarbon hydroxylase and 7-ethoxyresorufin O-deethylase activities were not significantly inhibited by the antibody. The results indicate that the purified protein catalyzes cholesterol side-chain cleavage reaction, human placental microsomal aromatase and bovine adrenal mitochondrial P-450scc may share common antigenic determinants with placental P-450scc, but the placental microsomal xenobiotic-metabolizing cytochrome(s) is (are) distinctly different.  相似文献   

4.
Adrenodoxin, purified from bovine adrenal cortex, was subjected to trypsin cleavage to yield a trypsin-resistant form, designated TT-adrenodoxin. Sequencing with carboxypeptidase Y identified the trypsin cleavage site as Arg-115, while Edman degradation indicated no NH2-terminal cleavage. Native adrenodoxin and TT-adrenodoxin exhibited similar affinity for adrenodoxin reductase as determined in cytochrome c reductase assays. In side chain cleavage assays using cytochrome P-450scc, however, TT-adrenodoxin demonstrated greater activity than adrenodoxin with cholesterol, (22R)-22-hydroxycholesterol, or (20R,22R)-20,22-dihydroxycholesterol as substrate. This enhanced activity is due to increased affinity of TT-adrenodoxin for cytochrome P-450scc; TT-adrenodoxin exhibits a 3.8-fold lower apparent Km for the conversion of cholesterol to pregnenolone. TT-Adrenodoxin was also more effective in coupling with cytochrome P-450(11) beta, exhibiting a 3.5-fold lower apparent Km for the 11 beta-hydroxylation of deoxycorticosterone. In the presence of partially saturating cholesterol, TT-adrenodoxin elicited a type I spectral shift with cytochrome P-450scc similar to that induced by adrenodoxin, and spectral titrations showed that oxidized TT-adrenodoxin exhibited a 1.5-fold higher affinity for cytochrome P-450scc. These results establish that COOH-terminal residues 116-128 are not essential for the electron transfer activity of bovine adrenodoxin, and the differential effects of truncation at Arg-115 on interactions with adrenodoxin reductase and cytochromes P-450 suggest that the residues involved in the interactions are not identical.  相似文献   

5.
The actions of insulin and somatomedin C (insulin-like growth factor I) on cholesterol side-chain cleavage activity and the synthesis of cytochrome P-450scc and adrenodoxin were investigated in primary cultures of swine ovarian (granulosa) cells. Nanomolar concentrations of pure human somatomedin C stimulated biosynthesis of progesterone and 20 alpha-hydroxypregn-4-en-3-one. Moreover, in the presence of exogenous sterol substrate for cholesterol side-chain cleavage, somatomedin C significantly enhanced pregnenolone biosynthesis in a time- and dose-dependent manner. This augmentation of functional cholesterol side-chain cleavage activity was accompanied by a dose-dependent (2-16-fold) increase in [35S]methionine incorporation into specific immunoprecipitable cytochrome P-450scc and adrenodoxin. Micromolar concentrations of insulin (but not proinsulin or desoctapeptide) also induced synthesis of cholesterol side-chain cleavage constituents by 4-7-fold. These results demonstrate that an insulin-like growth factor, somatomedin C, exerts discrete differentiating effects on ovarian cells characterized by increased synthesis of immunospecific cytochrome P-450scc and adrenodoxin. Thus, we infer that somatomedin C may serve a critical role in the differentiation of steroidogenic cells in the mammalian ovary.  相似文献   

6.
The effect of covalent immobilization via free amino groups on the catalytic activity of individual components of the cholesterol side-chain cleavage and 11b-steroid hydroxylation systems (adrenodoxin reductase, adrenodoxin, cytochrome P-450scc and cytochrome P-450(11)b) as well as on that of co-immobilized protein complexes. The protein complex formation at different stages of the monooxygenase cycle (i.e., reduction, oxygenation) was followed by direct spectrophotometric monitoring of the functional state of the immobilized complexes. Cholesterol side-chain cleavage was carried out in minicolumns, using various combinations of immobilized and soluble proteins. Cytochromes P-450scc and P-450(11)b were found to retain their functional activities after immobilization via free SH-groups.  相似文献   

7.
An immunochemical comparison of components of cholesterol side chain cleavage system from bovine adrenocortical and human placental mitochondria has been carried out. Antibodies against cytochrome P-450scc, adrenodoxin reductase and adrenodoxin from bovine adrenocortical mitochondria were shown to cross-react with corresponding antigens of human placental mitochondria. A highly sensitive immunochemical method for cytochrome P-450scc determination has been developed. Limited proteolysis of cytochrome P-450scc of human placental mitochondria was studied, and the products of trypsinolysis were identified using antibodies against cytochrome P-450scc and fragments of its polypeptide chain: F1, F2 and F3. Immunochemical relatedness of ferredoxins from bovine adrenocortical and human placental mitochondria allowed one to develop a fast and efficient method for cytochrome P-450scc purification from human placental mitochondria by affinity chromatography on adrenodoxin-Sepharose.  相似文献   

8.
We have previously reported that the steroidogenic activity of the bovine placentome is stimulated by a calcium-mediated, cyclic nucleotide-independent mechanism and that this steroidogenesis is limited by the availability of sterol substrate to the side-chain cleavage enzyme. We have recently established that the antibody against bovine adrenal cytochrome P-450 cholesterol side-chain cleavage enzyme (P-450scc) can be used to specifically detect P-450scc in both bovine placentome and corpus luteum. In the present study, we used an immunogold technique to localize the P-450scc in the bovine placentome by electron microscopy. The mononucleate cell of the cotyledon showed both giant and normal-sized mitochondria, with the latter, predominating. Both mitochondrial types found in the mononucleate cells clearly displayed gold particles located on the cristae; in contrast, these particles were absent in the binucleate cells. It is worth noting that giant mitochondria were found exclusively in the placental mononucleate cells in both the fetal and maternal sites but not in the binucleate cells. These findings suggest that the cholesterol side-chain cleavage enzyme is present in bovine cotyledon cells, primarily in mononucleate cells. The variations in P-450scc immunoreactivity among different cells of the placenta are suggestive of different steroidogenetic capacities of the cells.  相似文献   

9.
Cytochrome P-450scc can be reconstituted into a phospholipid bilayer in the absence of added detergent by incubation of purified hemoprotein with preformed phosphatidylcholine vesicles. Salt effects demonstrate that the primary interaction between the cytochrome and phospholipid vesicles is hydrophobic rather than ionic; in contrast, neither adrenodoxin reductase nor adrenodoxin will bind to phosphatidylcholine vesicles by hydrophobic interactions. Insertion of cytochrome P-450scc into a phospholipid bilayer results in conversion of the optical spectrum to a low spin type, but this transition is markedly diminished if cholesterol is incorporated within the bilayer. Vesicle-reconstituted cytochrome P-450scc metabolizes cholesterol within the bilayer (turnover = 13 nmol/min/nmol of cytochrome P-450scc); virtually all (greater than 94%) of the cholesterol within the vesicle is accessible to the enzyme. "Dilution" of cholesterol within the bilayer by increasing the phospholipid/cholesterol ratio at a constant amount of cholesterol and cytochrome P-450scc results in a decreased rate of side chain cleavage, and cytochrome P-450scc incorporated into a cholesterol-free vesicle cannot metabolize cholesterol within a separate vesicle. In addition, activity of the reconstituted hemoprotein is sensitive to the fatty acid composition of the phospholipid. These results indicate that the cholesterol binding site on vesicle-reconstituted cytochrome P-450scc is in communication with the hydrophobic bilayer of the membrane. The reducibility of vesicle-reconstituted cytochrome P-450scc as well as spectrophotometric and activity titration experiments show that all of the reconstituted cytochrome P-450scc molecules possess an adrenodoxin binding site which is accessible from the exterior of the vesicle. Activity titrations with adrenodoxin reductase also demonstrate that a ternary or quaternary complex among adrenodoxin reductase, adrenodoxin, and cytochrome P-450scc is not required for catalysis, a finding consistent with our proposed mechanism of steroidogenic electron transport in which adrenodoxin acts as a mobile electron shuttle between adrenodoxin reductase and cytochrome P-450 (Lambeth, J.D., Seybert, D.W., and Kamin, H. (1979) J. Biol. Chem. 254, 7255-7264.  相似文献   

10.
Highly specific antibodies against hemeprotein were obtained by immunizing rabbits with a highly purified cholesterol-hydroxylating cytochrome P-450scc from adrenocortical mitochondria. The antibodies do not specifically interact with other components of the adrenocortical electron transport chain, e. g., adrenodoxin reductase and adrenodoxin. Using double immunodiffusion technique (Ouchterlony method), it was shown that the antibodies did not precipitate the microsomal cytochromes P-450 LM2 and LM4, cytochrome b5 and 11 beta-hydroxylating cytochrome P-450 from adrenocortical mitochondria. Antibodies against cytochrome P-450scc inhibited the cholesterol side chain cleavage activity of cytochrome P-450scc in a reconstituted system. Limited proteolysis with trypsin and immunoelectrophoresis in the presence of specific antibodies revealed that antigenic determinants are present of the heme-containing catalytic domain of cytochrome P-450scc (F1) as well as on the domain responsible for the interaction with the phospholipid membrane (F2).  相似文献   

11.
The immunochemical relatedness between human and bovine proteins catalyzing the cholesterol side-chain cleavage reaction was investigated. In dot-immunobinding analysis, antibodies against bovine adrenocortical cytochrome P-450SCC, adrenodoxin, and adrenodoxin reductase recognized the corresponding proteins in a dose-dependent manner in mitochondrial preparations from human placenta. Limited proteolysis with trypsin cleaved bovine P-450SCC into fragments F1 and F2, which represent the NH2- and C-terminal parts of P-450SCC, respectively. Identical trypsin treatment yielded similar-size fragments from human placental P-450SCC. In Western immunoblots, anti-F1 and anti-F2 antibodies recognized the corresponding fragments in both trypsin-digested bovine and human P-450SCC. Antibodies against bovine P-450SCC, fragments F1 and F2, adrenodoxin and adrenodoxin reductase inhibited cholesterol side-chain cleavage activity in bovine adrenocortical mitochondria by 24-51%, but failed to affect the activity in human placental mitochondria. These data indicate that human and bovine P-450SCC share common antigenic determinants located outside the enzyme active site. The immunological similarity between bovine adrenodoxin and human ferredoxin allowed for a simple purification protocol of human placental P-450SCC by adrenodoxin affinity chromatography. The P-450SCC obtained by this method was electrophoretically homogeneous and showed characteristics typical to P-450SCC.  相似文献   

12.
The mitochondrial proteins involved in adrenocortical steroidogenesis are synthesized as higher molecular weight precursors which require processing by the mitochondria to their mature sizes. The post-translational maturation of two of these proteins has been examined: the cholesterol side chain cleavage cytochrome P-450 (P-450scc) and the iron-sulfur protein, adrenodoxin. Total translation products synthesized in a cell-free system programmed by bovine adrenocortical poly(A+) RNA were incubated with isolated bovine adrenocortical or heart mitochondria followed by immunoisolation of radiolabeled P-450scc or adrenodoxin. In the presence of adrenocortical mitochondria, the precursor form of P-450scc was converted into a trypsin-resistant form that had the same molecular weight as mature P-450scc. Unlike adrenocortical mitochondria, heart mitochondria were unable to process the P-450scc precursor which remained unaltered and trypsin-sensitive. In addition, a matrix fraction of heart mitochondria did not cleave the P-450scc precursor. In contrast, the adrenodoxin precursor did not exhibit similar specificity as it was processed to the mature form by both adrenocortical and heart mitochondria. Also, the adrenocortical mitochondria were not restricted to processing endogenous proteins as they imported and cleaved the precursor to ornithine transcarbamylase. The results indicate that some mitochondrial precursor proteins have tertiary structures which allow them to be recognized by all mitochondria while other mitochondrial precursor proteins have structures recognizable by only specialized mitochondria.  相似文献   

13.
This study compares the side-chain cleavage of aqueous suspensions of cholesterol sulfate with the side-chain cleavage of cholesterol sulfate which is incorporated into phospholipid vesicles. Three different cholesterol desmolase systems are examined: the membrane-bound cholesterol side-chain cleavage system present in inner mitochondrial membranes isolated from bovine adrenal mitochondria; a soluble, lipid-depleted, reconstituted side-chain cleavage system prepared from cytochrome P-450scc, adrenodoxin and adrenodoxin reductase; a membrane associated side-chain cleavage system prepared by adding phospholipid vesicles, prepared from adrenal mitochondrial, to the reconstituted system. Soluble cholesterol sulfate, in low concentration, is a good substrate for the lipid-depleted reconstituted side chain cleavage system. However, at concentrations above 2 microM, in the absence of phospholipids, the sterol sulfate appears to bind at a non-productive site on cytochrome P-450scc which leads to substrate inhibition. Phospholipids, while inhibiting the binding of cholesterol sulfate to the cytochrome, also appear to prevent non-productive binding of the sterol sulfate to the cytochrome. Thus the addition of phospholipids to the lipid-depleted enzyme system leads to an activation of side-chain cleavage of high concentrations of the sterol sulfate. Soluble cholesterol sulfate is a good substrate for both the native and reconstituted membrane-bound systems and no substrate inhibition is observed when the membrane bound enzyme systems are employed in the assay of side-chain activity. However, the cleavage of cholesterol sulfate, which is incorporated into phospholipid vesicles, by both membrane bound enzyme systems appears to be competitively inhibited by the phospholipids of the vesicles. The results of this study suggest that the regulation of the side-chain cleavage of cholesterol sulfate may be entirely different than the regulation of the side-chain cleavage of cholesterol, if cholesterol sulfate exists intracellularly as a soluble non-complexed substrate. If, on the other hand, cholesterol sulfate is present in the cell in lipid droplets as a complex with phospholipids, its metabolism may be under the same constraints as the side-chain cleavage of cholesterol.  相似文献   

14.
It was found that there were only two cysteine residues in highly purified cytochrome P-450scc molecule from bovine adrenocortical mitochondria by titration with 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB) in denatured conditions. Only one cysteine residue at position 303 of cytochrome P-450scc could be specifically modified with DTNB in the native state. The resulting cytochrome P-450scc-5-thio-2-nitrobenzoic acid complex (cytochrome P-450scc-TNB) showed no distinct differences in absorption spectra, cholesterol binding, or electron transferring from adrenodoxin, compared to those of untreated cytochrome P-450scc. These observations indicated that the 303rd cysteine residue does not play a role in heme binding, cholesterol (substrate) binding or adrenodoxin binding. The other cysteine residue at 461 could be modified with DTNB only in a denatured condition. These assignments of cysteine residues were made by the subsequent S-cyanylation with KCN followed by incubation in 6 M guanidine hydrochloride at alkaline pH, which causes enhanced cleavage of peptide bonds adjacent to the cyanylated cysteine residues. Analyses of fragmented polypeptides by SDS-polyacrylamide gel electrophoresis confirmed that there were only two cysteine residues in the molecule and indicated that the cleavage rate of the peptide bond between 460 and 461 becomes high only when both cysteine residues (303 and 461) are cyanylated. These results clearly established that the 461st cysteine residue in cytochrome P-450scc plays a role as the heme fifth ligand on the basis of the general agreement that a thiolated cysteine residue coordinates to the heme iron.  相似文献   

15.
Electron paramagnetic resonance (EPR) spectra of ferrous-nitric oxide (14NO and 15NO) cytochrome P-450scc complexed with 20(R),22(R)-dihydroxycholesterol were measured at 77 K with X-band (9.35 GHz) microwave frequency. The EPR spectra clearly showed the spin system to have rhombic symmetry (gx = 2.068, gz = 2.001, gy = 1.961, and Az = 1.89 mT for 14NO) and were distinct from those of 20(S)-hydroxycholesterol complexes. The unique nature of the 20(S)-hydroxycholesterol complexes indicates that 20(S)-hydroxycholesterol is not a proper intermediate in the cholesterol side-chain cleavage reaction. In addition, among various steroid complexes of ferrous-NO species having rhombic symmetry, the EPR spectra of 20(R),22(R)-dihydroxycholesterol complexes were significantly different from those of 22(R)-hydroxycholesterol complexes, suggesting that upon 20S-hydroxylation of 22(R)-hydroxycholesterol the conformation of the active site changes so as to facilitate subsequent cleavage of the C20-C22 bond of the cholesterol side chain. Addition of reduced adrenodoxin to the ferrous-NO cytochrome P-450scc complex in the presence of cholesterol caused a complete shift of the gx = 2.070 signal to gx = 2.075, indicating a reorientation of cholesterol in the substrate-binding site of the enzyme upon adrenodoxin binding. Without reduced adrenodoxin, the process of reorientation of cholesterol in the substrate-binding site was very slow, requiring more than 50 h of incubation at 0 degrees C. The present observations suggest that adrenodoxin may have another positive role in the cholesterol side-chain cleavage reaction, in addition to transferring an electron to the heme of cytochrome P-450scc.  相似文献   

16.
The effect of 3-methoxybenzidine on the conversion of cholesterol to pregnenolone was investigated using a reconstituted enzyme system comprised of adrenodoxin, adrenodoxin reductase and cytochrome P-450scc purified from bovine adrenal cortex. Under conditions where the cytochrome P-450scc concentration was rate-limiting, 3-methoxybenzidine was found to be a potent inhibitor, causing 50% inhibition at 7 μM when using a cholesterol concentration of 70 μM. The parent compound, benzidine, was much less effective, exhibiting an Icn value of approximately 40 μM. No effect of 3-methoxybenzidine was observed on the adrenodoxin reductase and adrenodoxin-catalyzed reduction of cytochrome c by NADPH, and it is concluded that 3-methoxybenzidine acts on cytochrome P-450scc in inhibiting cholesterol side chain cleavage.  相似文献   

17.
The synthesis of cholesterol side chain cleavage cytochrome P-450 (cytochrome P-450scc) and adrenodoxin was studied both in freshly harvested bovine granulosa cells and in granulosa cells maintained in primary monolayer culture. In addition, the action of follicle-stimulating hormone (FSH) and cyclic AMP analogs to stimulate the synthesis of cytochrome P-450scc was investigated in cultured cells. Precursor forms of cytochrome P-450scc and adrenodoxin were immunoisolated from a cell-free translation system directed by RNA prepared from freshly obtained granulosa cells that were not luteinized. Furthermore, the presence of cytochrome P-450scc in lysates of granulosa cells freshly obtained from very small follicles (containing less than 0.1 ml of follicular fluid) and in mitochondria of freshly obtained granulosa cells was demonstrated by using an immunoblotting technique. Continuous treatment of cultured granulosa cells with FSH or with cyclic AMP analogs (dibutyryl cyclic AMP or 8-bromo cyclic AMP) for 72 h increased incorporation of [35S]methionine into immunoprecipitable cytochrome P-450scc. Moreover, FSH, dibutyryl cyclic AMP, and 8-bromo cyclic AMP stimulated pregnenolone production by cultured granulosa cells (2.3-, 4.0-, and 7.5-fold increase over control, respectively), indicative of an increase in cholesterol side chain cleavage activity. The results of this study demonstrate for the first time the presence of two components of the cholesterol side chain cleavage system in freshly obtained granulosa cells, and provide direct evidence for the trophic effect of FSH and its presumed mediator, cyclic AMP, on the synthesis of cytochrome P-450scc in granulosa cells.  相似文献   

18.
The single free cysteine at residue 95 of bovine adrenodoxin was labeled with the fluorescent reagent N-iodoacetylamidoethyl-1-aminonaphthalene-5-sulfonate (1,5-I-AEDANS). The modification had no effect on the interaction with adrenodoxin reductase or cytochrome P-450scc, suggesting that the AEDANS group at Cys-95 was not located at the binding site for these molecules. Addition of adrenodoxin reductase, cytochrome P-450scc, or cytochrome c to AEDANS-adrenodoxin was found to quench the fluorescence of the AEDANS in a manner consistent with the formation of 1:1 binary complexes. F?rster energy transfer calculations indicated that the AEDANS label on adrenodoxin was 42 A from the heme group in cytochrome c, 36 A from the FAD group in adrenodoxin reductase, and 58 A from the heme group in cytochrome P-450scc in the respective binary complexes. These studies suggest that the FAD group in adrenodoxin reductase is located close to the binding domain for adrenodoxin but that the heme group in cytochrome P-450scc is deeply buried at least 26 A from the binding domain for adrenodoxin. Modification of all the lysines on adrenodoxin with maleic anhydride had no effect on the interaction with either adrenodoxin reductase or cytochrome P-450scc, suggesting that the lysines are not located at the binding site for either protein. Modification of all the arginine residues with p-hydroxyphenylglyoxal also had no effect on the interaction with adrenodoxin reductase or cytochrome P-450scc. These studies are consistent with the proposal that the binding sites on adrenodoxin for adrenodoxin reductase and cytochrome P-450scc overlap, and that adrenodoxin functions as a mobile electron carrier.  相似文献   

19.
The mitochondrial side-chain cleavage of cholesterol, catalysed by cytochrome P450scc, is rate-limiting in the synthesis of progesterone by the human placenta. Cytochrome P450scc activity is in turn limited by the concentration of adrenodoxin reductase (AR) in placental mitochondria. In order to better understand which components of the cholesterol side-chain cleavage system are important in the regulation of placental progesterone synthesis, we have examined their effects on P450scc activity with both saturating and limiting concentrations of AR. The present study reveals that decreasing the AR concentration causes a decrease in the K(m) of cytochrome P450scc for cholesterol, facilitating saturation of the enzyme with its substrate. Decreasing AR resulted in P450scc activity becoming less sensitive to changes in P450scc concentration. The adrenodoxin (Adx) concentration in mitochondria from term placentae is near-saturating for P450scc and under these conditions, we found that decreasing AR reduces the K(m) of P450scc for adrenodoxin. Increasing either the cholesterol or P450scc concentration increased the amount of AR required for P450scc to work at half its maximum velocity. A relatively small increase in AR can support considerably higher rates of side-chain cleavage activity when there is a coordinate increase in AR and P450scc concentrations. We conclude from this study that cholesterol is near-saturating for cytochrome P450scc activity in placental mitochondria due to the P450scc displaying a low K(m) for cholesterol resulting from the low and rate-limiting concentration of AR present. This study reveals that it is unlikely that cholesterol or adrenodoxin concentrations are important regulators of placental progesterone synthesis but AR or coordinate changes in AR and P450scc concentrations are likely to be important in its regulation.  相似文献   

20.
Cytochrome P-450scc was isolated from mitochondria of bovine adrenal cortex by hydrophobic chromatography on octyl Sepharose followed by affinity chromatography on cholesterol-7-(thiomethyl)carboxy-3 beta-acetate-Sepharose. The partially purified eluate from the octyl Sepharose resin was free of adrenodoxin and adrenodoxin reductase and displayed biphasic binding characteristics for cholesterol, cholesterol sulfate, and cholesterol acetate (CA). Chromatography of the octyl Sepharose eluate on CA-Sepharose removed extraneous proteins and resolved the cytochrome P-450scc into two fractions, each of which displayed monophasic binding with all three substrates. These fractions behaved identically with respect to their ability to bind substrates, their kinetic properties, and their rate of migration during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The dissociation constants of the cytochrome P-450scc.substrate complexes are 1.1, 2.6, and 1.3 microM for cholesterol, cholesterol sulfate, and cholesterol acetate, respectively. Addition of phospholipids isolated from adrenal cortex mitochondria or adrenodoxin had no effect on the equilibrium binding constants. Addition of Emulgen 913, however, decreased the binding affinities 10-20-fold. Emulgen 913 also inhibited the interaction of adrenodoxin with the cytochrome. An active side chain cleavage system was reconstituted with purified P-450 by addition of saturating amounts of adrenodoxin, adrenodoxin reductase, and NADPH-generating system. The apparent Km values for this reconstituted system of cholesterol, cholesterol sulfate, and cholesterol acetate are 1.8, 1.9, and 0.6 microM, respectively. Since the Km values of substrate oxidation are similar to the Kd values of the cytochrome P-450.substrate complexes, it seems likely that the binding of substrates, particularly when the side chain cleavage system is free of mitochondrial membranes, is not rate-limiting. Based on these results and electrophoretic data, it appears that one cytochrome P-450 present in adrenal mitochondria can oxidize cholesterol, its sulfate, and its acetate. This enzyme represented about 60% of the cytochrome P-450 present in the octyl Sepharose eluate. The factors responsible for the biphasic kinetics of oxidation by intact mitochondria and biphasic binding of sterol substrates by partially purified preparations of cytochrome P-450scc are still unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号