首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Packaging of the segmented RNA genome of Brome mosaic virus (BMV) into discrete particles is an essential step in the virus life cycle; however, questions remain regarding the mechanism of RNA packaging and the degree to which the viral coat protein controls the process. In this study, we used a plant-derived glycosidase, Pokeweed antiviral protein, to remove 14 specific bases from BMV RNA3 to examine the effect of depurination on virus assembly. Depurination of A771 within ORF3 and A1006 in the intergenic region inhibited coat protein binding and prevented RNA3 incorporation into particles. The disruption of interaction was not based on sequence identity, as mutation of these two purines to pyrimidines did not decrease coat protein-binding affinity. Rather, we suggest that base removal results in decreased thermodynamic stability of local RNA structures required for packaging, and that this instability is detected by coat protein. These results describe a new level of discrimination by coat protein, whereby it recognizes damage to specific viral RNA elements in the form of base removal and selects against incorporating the RNA into particles.  相似文献   

2.
Specific RNA-protein interactions and ribonucleoprotein complexes are essential for many biological processes, but our understanding of how ribonucleoprotein particles form and accomplish their biological functions is rudimentary. This paper describes the interaction of alfalfa mosaic virus (A1MV) coat protein or peptides with viral RNA. A1MV coat protein is necessary both for virus particle formation and for the initiation of replication of the three genomic RNAs. We have examined protein determinants required for specific RNA binding and analyzed potential structural changes elicited by complex formation. The results indicate that the amino-terminus of the viral coat protein, which lacks primary sequence homology with recognized RNA binding motifs, is both necessary and sufficient for binding to RNA. Circular dichroism spectra and electrophoretic mobility shift experiments suggest that the RNA conformation is altered when amino-terminal coat protein peptides bind to the viral RNA. The peptide--RNA interaction is functionally significant because the peptides will substitute for A1MV coat protein in initiating RNA replication. The apparent conformational change that accompanies RNA--peptide complex formation may generate a structure which, unlike the viral RNA alone, can be recognized by the viral replicase.  相似文献   

3.
《Seminars in Virology》1993,4(6):363-368
The mechanism of satellite RNA (Sat-RNA) mediated attenuation of virus disease was suggested to be the result of competition between satellite RNAs and their helper viral RNAs for replication. Subcellular distribution of viral coat protein in cucumber mosaic virus (CMV) infected leaf tissues shows that the presence of Sat-RNAs interferes with the movement of CMV coat protein into chloroplants. As a strategy for controlling virus diseases, the expression of Sat-RNAs in transgenic plants confers some extent of resistance that may not be strong enough to protect the plants from natural virus infections. Transgenic plants expressing both the Sat-RNA and the coat protein of CMV exhibit enhanced resistance to the virus.  相似文献   

4.
The complete genome sequence of the garlic latent virus (GLV) has been determined. The whole GLV genome consists of 8,353 nucleotides, excluding the 3'-end poly(A)+ tail, and contains six open-reading frames (ORFs). Putative proteins that were encoded by the reading frames contain the motifs that were conserved in carlavirus-specific RNA replicases, NTP-dependent DNA helicases, two viral membrane-bound proteins, a viral coat protein, and a zinc-finger. Overall, the GLV genome shows structural features that are common in carlaviruses. An in vitro translation analysis revealed that the zinc-finger protein is not produced as a transframe protein with the coat protein by ribosomal frameshifting. A Northern blot analysis showed that GLV-specific probes hybridized to garlic leaf RNA fragments of about 2.6 and 1.5 kb long, in addition to the 8.5 kb whole genome. The two subgenomic RNAs might be encapsidated into smaller viral particles. In garlic plants, 700 nm long flexuous rod-shaped virus particles were observed in the immunoelectron microscopy using polyclonal antibodies against the GLV coat proteins.  相似文献   

5.
Coat protein-mediated resistance (CPMR), resistance conferred as a result of the expression of viral coat proteins in transgenic plants, has been illustrated to be an effective way of protecting plants against several plant viruses. Nonetheless, consistent protection has not been achieved for transgenic plants expressing the coat protein of potato virus Y (PVY), the type member of the potyvirus family. In this report, three different potato cultivars were transformed with a chimeric construct consisting of the capsid protein (CP) coding sequences of PVY flanked by the AUG codon and the translational enhancer from the coat protein gene of potato virus X (PVX). These cultivars were shown to express high levels of PVY CP and confer a high degree of protection against PVYo and PVYN under both greenhouse and field conditions. In addition, transgenic plants infected with potato virus A (PVA), a related potyvirus, exhibited a delay in virus accumulation, which could be easily overcome with increasing virus concentrations. Received: 26 October 1995 / Accepted: 14 June 1996  相似文献   

6.
The antigenic properties of the tobacco mosaic virus (TMV) have been studied extensively for more than 50 years. Distinct antigenic determinants called neotopes and cryptotopes have been identified at the surface of intact virions and dissociated coat protein subunits, respectively, indicating that the quaternary structure of the virus influences the antigenic properties. A correlation has been found to exist between the location of seven to ten residue-long continuous epitopes in the TMV coat protein and the degree of segmental mobility along the polypeptide chain. Immunoelectron microscopy, using antibodies specific for the bottom surface of the protein subunit, showed that these antibodies reacted with both ends of the stacked-disk aggregates of viral protein. This finding indicates that the stacked disks are bipolar and cannot be converted directly into helical viral rods as has been previously assumed. TMV epitopes have been mapped at the surface of coat protein subunits using biosensor technology. The ability of certain monoclonal antibodies to block the cotranslational disassembly of virions during the infection process was found to be linked to the precise location of their complementary epitopes and not to their binding affinity. Such blocking antibodies, which act by sterically preventing the interaction between virions and ribosomes may, when expressed in plants, be useful for controlling virus infection.  相似文献   

7.
An unusual and distinguishing feature of alfalfa mosaic virus (AMV) and ilarviruses such as tobacco streak virus (TSV) is that the viral coat protein is required to activate the early stages of viral RNA replication, a phenomenon known as genome activation. AMV-TSV coat protein homology is limited; however, they are functionally interchangeable in activating virus replication. For example, TSV coat protein will activate AMV RNA replication and vice versa. Although AMV and TSV coat proteins have little obvious amino acid homology, we recently reported that they share an N-terminal RNA binding consensus sequence (Ansel-McKinney et al., EMBO J. 15:5077–5084, 1996). Here, we biochemically compare the binding of chemically synthesized peptides that include the consensus RNA binding sequence and lysine-rich (AMV) or arginine-rich (TSV) environment to 3′-terminal TSV and AMV RNA fragments. The arginine-rich TSV coat protein peptide binds viral RNA with lower affinity than the lysine-rich AMV coat protein peptides; however, the ribose moieties protected from hydroxyl radical attack by the two different peptides are localized in the same area of the predicted RNA structures. When included in an infectious inoculum, both AMV and TSV 3′-terminal RNA fragments inhibited AMV RNA replication, while variant RNAs unable to bind coat protein did not affect replication significantly. The data suggest that RNA binding and genome activation functions may reside in the consensus RNA binding sequence that is apparently unique to AMV and ilarvirus coat proteins.  相似文献   

8.
Mechanism of enteroviral inactivation by ozone   总被引:4,自引:0,他引:4  
The mechanism of enteroviral inactivation by ozone was investigated with poliovirus 1 (Mahoney) as the model virus. Ozone was observed to alter two of the four polypeptide chains present in the viral protein coat of poliovirus 1. However, the alteration of the protein coat did not significantly impair virus adsorption or alter the integrity of the virus particle. Damage to the viral RNA after exposure to ozone was demonstrated by velocity sedimentation analysis. It was concluded that the damage to the viral nucleic acid is the major cause of poliovirus 1 inactivation by ozone.  相似文献   

9.
Mechanism of enteroviral inactivation by ozone.   总被引:7,自引:2,他引:5       下载免费PDF全文
The mechanism of enteroviral inactivation by ozone was investigated with poliovirus 1 (Mahoney) as the model virus. Ozone was observed to alter two of the four polypeptide chains present in the viral protein coat of poliovirus 1. However, the alteration of the protein coat did not significantly impair virus adsorption or alter the integrity of the virus particle. Damage to the viral RNA after exposure to ozone was demonstrated by velocity sedimentation analysis. It was concluded that the damage to the viral nucleic acid is the major cause of poliovirus 1 inactivation by ozone.  相似文献   

10.
A chimeric gene encoding the alfalfa mosaic virus (AlMV) coat protein was constructed and introduced into tobacco and tomato plants using Ti plasmid-derived plant transformation vectors. The progeny of the self-fertilized transgenic plants were significantly delayed in symptom development and in some cases completely escaped infection after inoculated with AlMV. The inoculated leaves of the transgenic plants had significantly reduced numbers of lesions and accumulated substantially lower amounts of coat protein due to virus replication than the control plants. These results show that high level expression of the chimeric viral coat protein gene confers protection against AlMV, which differs from other plant viruses in morphology, genome structure, gene expression strategy and early steps in viral replication. Based on our results with AlMV and those reported earlier for tobacco mosaic virus, it appears that genetically engineered cross-protection may be a general method for preventing viral disease in plants.  相似文献   

11.
A viable coat protein deletion mutant of cassava latent virus (CLV) DNA 1 has been isolated, suggesting that this geminivirus might be exploited as a gene replacement vector. An extensive deletion of 727 nucleotides within the coat protein gene renders DNA 1 non-infectious. Chimeric clones have been constructed in which the deleted coat protein open reading frame has been replaced by the coding region of the bacterial chloramphenicol acetyl transferase (CAT) gene. Infectivity is restored to DNA 1 when the CAT gene is inserted in either orientation, producing symptoms typical of CLV infection. The results demonstrate that the coat protein plays no essential role in virus spread throughout the host. Levels of CAT expression of 80 U/mg soluble protein occur in systemically infected Nicotiana benthamiana leaves when the CAT gene is fused in-frame to the amino terminus of the coat protein, providing a sensitive assay for viral DNA replication.  相似文献   

12.
Potato leafroll virus is a member of the polerovirus genus. The isometric virion is formed by a coat protein encapsidating single-stranded, positive-sense, mono-partite genomic RNA with covalently attached viral protein at the 5' end. The coat protein of the virus exists in two forms: i) a 23 kDa protein, the product of the coat protein gene, and ii) a 78 kDa protein, the product of the coat protein gene and an additional open reading frame expressed by read-through of the coat protein gene stop codon. The aim of this work was the expression of potato leafroll virus coat protein-based proteins that would be able to assemble into virus-like particles in insect cells. These modified particles were tested for their ability to encapsidate nucleic acids. Two types of N-terminally His-tagged coat protein constructs were used for the expression in insect cells: one, encoding a 23 kDa protein with the C-terminal amino-acid sequence corresponding to the wild type coat protein and the second with additional clathrin binding domain at the C-terminus. The expression of these two proteins by a recombinant baculovirus was characterized by Western immunoblotting with antibodies directed against potato leafroll virus. The protection or putative encapsidation of nucleic acids by these two coat protein derivatives was shown by DNase I and RNase A protection assays.  相似文献   

13.
Potato virus X as a vector for gene expression in plants   总被引:37,自引:0,他引:37  
The suitability of potato virus X (PVX) as a gene vector in plants was tested by analysis of two viral constructs. In the first, the GUS gene of Escherichia coli was substituted for the viral coat protein gene. In the second, GUS was added into the viral genome coupled to a duplicated copy of the viral promoter for the coat protein mRNA. The viral construct with the substituted coat protein gene accumulated poorly in inoculated protoplasts and failed to spread from the site of infection in plants. These results suggest a role for the viral coat protein in key stages of the viral infection cycle and show that gene replacement constructs are not suitable for the production of PVX-based gene vector. The construct with GUS coupled to the duplicated promoter for coat protein mRNA also accumulated less well in protoplasts than the unmodified PVX, but did infect systemically and directed high level synthesis of GUS in inoculated and systemically infected tissue. Although there was some genome instability in the PVX construct, much of the viral RNA in the systemically infected tissue had retained the foreign gene insertion, especially in infected Nicotiana clevelandii plants. These data point to a general utility of PVX as a vector for unregulated gene expression in plants.  相似文献   

14.
Summary Grapevine fanleaf nepovirus (GFLV) is responsible for the economically significant court-noué disease in vineyards. Its genome is made up of two single-stranded RNA molecules (RNA1 and RNA2) which direct the synthesis of polyproteins P1 and P2 respectively. A chimeric coat protein gene derived from the C-terminal part of P2 was constructed and subsequently introduced into a binary transformation vector. Transgenic Nicotiana benthamiana plants expressing the coat protein under the control of the CaMV 35S promoter were engineered by Agrobacterium tumefaciens-mediated transformation. Protection against infection with virions or viral RNA was tested in coat protein-expressing plants. A significant delay of systemic invasion was observed in transgenic plants inoculated with virus compared to control plants. This effect was also observed when plants were inoculated with viral RNA. No coat protein-mediated cross-protection was observed when transgenic plants were infected with arabis mosaic virus (ArMV), a closely related nepovirus also responsible for a court-noué disease.Abbreviations GFLV-F13 grapevine fanleaf virus F13 isolate - ArMV arabis mosaic virus - CP coat protein - MS Murashige and Skoog - NPTII neomycin phosphotransferase II - CaMV cauliflower mosaic virus - ELISA enzyme linked immunosorbent assay - VPg genome linked viral protein - TMV tobacco mosaic virus - PVX potato virus X - PVY potato virus Y - TRV tobacco rattle virus - +CP CP expressing - -CP control plant, not expressing CP - CPMP coat protein-mediated protection - CPMCP coat crotein-mediated cross protection  相似文献   

15.
16.
The complete primary structure of the coat protein of strain VRU of alfalfa mosaic virus (AMV) is reported. The strain is morphologically different from all other AMV strains as it contains large amounts of unusually long virus particles. This is caused by structural differences in the coat protein chain. The amino acid sequence has mainly been established by the characterization of peptides obtained after cleavage with cyanogen bromide and digestion with trypsin, chymotrypsin, thermolysin or Staphylococcus aureus protease. The major sequencing technique used was the dansyl-Edman procedure. The VRU coat protein consists of 219 amino acid residues corresponding to a molecular weight of 24056. Compared to the coat protein of strain 425 [Van Beynum et al. (1977) Eur. J. Biochem. 72, 63-78], 15 amino acid substitutions were localized. Most of them have a conservative character and may be explained by single-point mutations. A correction is given for the AMV 425 coat protein: Asn-216 was shown to be Asp-216. The prediction of the secondary structure for the two viral coat proteins was not significantly influenced by the various amino acid substitutions except for the region containing residues 65-100. This led us to the hypothesis that the AMV coat protein may occur in two different conformations favouring its incorporation into either a pentagonal or hexagonal quasi-equivalent position in the lattice of the protein shell. The substitutions in the above-mentioned region of the VRU coat protein may have caused a strong preference for the hexagonal lattice conformation. The model is supported by preliminary sequence data of the same coat protein region in AMV 15/64, a strain morphologically intermediate between 425 and VRU.  相似文献   

17.
18.
A defining feature of alfalfa mosaic virus (AMV) and ilarviruses [type virus: tobacco streak virus (TSV)] is that, in addition to genomic RNAs, viral coat protein is required to establish infection in plants. AMV and TSV coat proteins, which share little primary amino acid sequence identity, are functionally interchangeable in RNA binding and initiation of infection. The lysine-rich amino-terminal RNA binding domain of the AMV coat protein lacks previously identified RNA binding motifs. Here, the AMV coat protein RNA binding domain is shown to contain a single arginine whose specific side chain and position are crucial for RNA binding. In addition, the putative RNA binding domain of two ilarvirus coat proteins, TSV and citrus variegation virus, is identified and also shown to contain a crucial arginine. AMV and ilarvirus coat protein sequence alignment centering on the key arginine revealed a new RNA binding consensus sequence. This consensus may explain in part why heterologous viral RNA-coat protein mixtures are infectious.  相似文献   

19.
20.
The hypersensitivity resistance response directed by the N' gene in Nicotiana sylvestris is elicited by the tobacco mosaic virus (TMV) coat protein R46G, but not by the U1 wild-type TMV coat protein. In this study, the structural and hydrodynamic properties of R46G and wild-type coat proteins were compared for variations that may explain N' gene elicitation. Circular dichroism spectroscopy reveals no significant secondary or tertiary structural differences between the elicitor and nonelicitor coat proteins. Analytical ultracentrifugation studies, however, do show different concentration dependencies of the weight average sedimentation coefficients at 4 degrees C. Viral reconstitution kinetics at 20 degrees C were used to determine viral assembly rates and as an initial assay of the rate of 20S formation, the obligate species for viral reconstitution. These kinetic results reveal a decreased lag time for reconstitution performed with R46G that initially lack the 20S aggregate. However, experiments performed with 20S initially present reveal no detectable differences indicating that the mechanism of viral assembly is similar for the two coat protein species. Therefore, an increased rate of 20S formation from R46G subunits may explain the differences in the viral reconstitution lag times. The inferred increase in the rate of 20S formation is verified by direct measurement of the 20S boundary as a function of time at 20 degrees C using velocity sedimentation analysis. These results are consistent with the interpretation that there may be an altered size distribution and/or lifetime of the small coat protein aggregates in elicitors that allows N. sylvestris to recognize the invading virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号