首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity   总被引:2,自引:0,他引:2  
The synthesis of extracellular molecules such as biosurfactants should have major consequences on bacterial adhesion. These molecules may be adsorbed on surfaces and modify their hydrophobicities. Certain strains of Bacillus subtilis synthesize the lipopeptides, which exhibit antibiotic and surface active properties. In this study the high-performance liquid chromatography (HPLC) analysis of the culture supernatants of the seven B. subtilis strains, showed that the lipopeptide profile varied greatly according to the strain. Among the three lipopeptide types, only iturin A was produced by all B. subtilis strains. Bacterial hydrophobicity, evaluated by the water contact angle measurements and the hydrophobic interaction chromatography, varied according to the strain. Two strains (ATCC 15476 and ATCC 15811) showing extreme behaviors in term of hydrophobicity were selected to study surfactin and iturin A effects on bacterial hydrophobicity. The two lipopeptides modified the B. subtilis surface hydrophobicity. Their effects varied according to the bacterial surface hydrophobic character, the lipopeptide type and the concentration. Lipopeptide adsorption increased the hydrophobicity of the hydrophilic strain but decreased that of the hydrophobic. Comparison of lipopeptide effects on B. subtilis surface hydrophobicity showed that surfactin was more effective than iturin A for the two strains tested.  相似文献   

2.
Labelling experiments using a positively charged topographical marker for electron microscopy, polycationized ferritin, showed that the S-layers of two closely related clostridia Clostridium thermohydrosulfuricum L111-69 and C. thermosaccharolyticum D120-70 do not exhibit a net negative charge, as usually observed for bacterial cell surfaces. Chemical modification of reactive sites confirmed that amino and carboxyl groups are exposed on the S-layer surface of both strains. Amino-specific, bifunctional agents crosslinked both S-layer lattices. Studies with carbodiimides revealed that only the S-layer surface of C. thermohydrosulfuricum L111-69 had amino and carboxyl groups closely enough aligned to permit electrostatic interactions between the constituent protomers. The regular structure of this S-layer lattice was lost upon converting the carboxyl groups into neutral groups by amidation. Disintegration of both S-layer lattices occurred upon N-acetylation or N-succinylation of the free amino groups. Adhesion experiments showed that in neutral and weakly alkaline environment whole cells of C. thermosaccharolyticum D120-70 exhibited a stronger tendency to bind to charged surfaces than whole cells of C. thermohydrosulfuricum L111-69, but showed a lower tendency to bind to hydrophobic materials.  相似文献   

3.
Intact cells of Bacillus stearothermophilus PV72 revealed, after conventional thin-sectioning procedures, the typical cell wall profile of S-layer-carrying gram-positive eubacteria consisting of a ca. 10-nm-thick peptidoglycan-containing layer and a ca. 10-nm-thick S layer. Cell wall preparations obtained by breaking the cells and removing the cytoplasmic membrane by treatment with Triton X-100 revealed a triple-layer structure, with an additional S layer on the inner surface of the peptidoglycan. This profile is characteristic for cell wall preparations of many S-layer-carrying gram-positive eubacteria. Among several variants of strain PV72 obtained upon single colony isolation, we investigated the variant PV72 86-I, which does not exhibit an inner S layer on isolated cell walls but instead possesses a profile identical to that observed for intact cells. In the course of a controlled mild autolysis of isolated cell walls, S-layer subunits were released from the peptidoglycan of the variant and assembled into an additional S layer on the inner surface of the walls, leading to a three-layer cell wall profile as observed for cell wall preparations of the parent strain. In comparison to conventionally processed bacteria, freeze-substituted cells of strain PV72 and the variant strain revealed in thin sections a ca. 18-nm-wide electron-dense peptidoglycan-containing layer closely associated with the S layer. The demonstration of a pool of S-layer subunits in such a thin peptidoglycan layer in an amount at least sufficient for generating one coherent lattice on the cell surface indicated that the subunits must have occupied much of the free space in the wall fabric of both the parent strain and the variant. It can even be speculated that the rate of synthesis and translation of the S-layer protein is influenced by the packing density of the S-layer subunits in the periplasm of the cell wall delineated by the outer S layer and the cytoplasmic membrane. Our data indicate that the matrix of the rigid wall layer inhibits the assembly of the S-layer subunits which are in transit to the outside.  相似文献   

4.
Different LPS mutants ofSalmonella typhimurium andSalmonella minnesota have been investigated with respect to (1) their tendency to associate, with HeLa cell monolayers, and (2) their physicochemical surface properties. Aqueous biphasic partitioning, hydrophobic interaction chromatography, and ion exchange chromatography have been used to characterize the bacterial cell surface properties with respect to charge and hydrophobicity. Liability to hydrophobic interaction was defined either by the change of partition in a dextran-polyethylene-glycol (PEG) system by the addition of PEG-palmitate (P-PEG), or by the elution pattern from Octyl-Sepharose. Accordingly, charge was assessed by the effect of positively charged trimethylamino-PEG (TMA-PEG) on the partition, and by the elution from DEAE-Sephacel. Bacterial being negatively charged and liable to hydrophobic interaction had the highest tendency to associate with HeLa cells. In some cases the methods for surface analysis gave conflicting results on charge and/or liability to hydrophobic interaction of the same LPS mutant. Possible reasons for these differences and the role of bacterial cell surface structures contributing to physicochemical character are discussed.  相似文献   

5.
Hydrophobic and charge-charge interactions of Salmonella typhimirium and Serratia marcescens were determined and related to their content of fimbriae and lipopolysaccharide (LPS). The cell surface structures were characterized with hydrophobic interaction chromatography (HIC), electrostatic interaction chromatography (ESIC) and particle electrophoresis measurements. The degree of interaction at the air-water interface was tested using a monolayered lipid film applied to an aqueous surface. The cell surface hydrophobicity of S. typhimurium in the presence of fimbriae was less in smooth than in rought bacteria. Examination of a series of rough mutants of S. typhimurium indicates that reduction of the O-side chain and core oligosaccharides was correlated with increased cell hydrophobicity. The enrichment factors at the air-water interface were significantly higher for fimbriated than for non-fimbriated S. typhimurium cells. Fimbriated S. marcescens cells were less hydrophobic and adhered to a lesser degree at the air-water surface than non-fimbriated counterparts. Electrophoretic measurements and adsorption to ion exchangers gives different information about the surface charge of bacteria. The latter technique gives the interaction between localized charged surfaces.Abbreviations HIC hydrophobic interaction chromatography - ESIC electrostatic interaction chromatography - LPS lipopolysaccharide - PBS phosphate buffered saline solution  相似文献   

6.
A model oligotrophic aquatic system involving localization of fatty acids on a solid surface was used to quantitate scavenging by three bacteria; Leptospira biflexa patoc 1 which adheres reversibly, pigmented Serratia marcescens EF190 which adheres irreversibly, and a non-pigmented hydrophilic mutant of EF190. The Leptospira and pigmented Serratia displayed two distinct scavenging strategies which are related to their different methods of adhesion. The Leptospira efficiently scavenged [1-14C] stearic acid from the surface in 24 h, whereas the pigmented hydrophobic Serratia initially showed a faster rate of removal but the overall rate was considerably slower than that of the Leptospira. The hydrophilic, non-pigmented Serratia required 50h incubation to remove significant amounts of the labelled fatty acid. The greater scavenging ability of the hydrophobic pigmented Serratia strain compared to the hydrophilic non-pigmented mutant could not be attributed to differences in viability of fatty acid metabolism. The hydrophobicity of the pigmented Serratia allows for firmer adhesion and greater interaction with the surface localized nutrients.  相似文献   

7.
Bacteriophage-resistant mutant strains of the root-colonizing Pseudomonas strains WCS358 and WCS374 lack the O-antigenic side chain of the lipopolysaccharide, as was shown by the loss of the typical lipopolysaccharide ladder pattern after analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These strains differed from their parent strains in cell surface hydrophobicity and in cell surface charge. The observed variation in these physicochemical characteristics could be explained by the differences in sugar composition. The mutant strains had no altered properties of adherence to sterile potato roots compared with their parental strains, nor were differences observed in the firm adhesion to hydrophilic, lipophilic, negatively charged, or positively charged artificial surfaces. These results show that neither physicochemical cell surface properties nor the presence of the O-antigenic side chain plays a major role in the firm adhesion of these bacterial cells to solid surfaces, including potato roots.  相似文献   

8.
Two strains of rod-shaped, pyrite-oxidizing acidithiobacilli, their cell envelope structure and their interaction with pyrite were investigated in this study. Cells of both strains, Acidithiobacillus ferrooxidans strain SP5/1 and the moderately thermophilic Acidithiobacillus sp. strain HV2/2, were similar in size, with slight variations in length and diameter. Two kinds of cell appendages were observed: flagella and pili. Besides a typical Gram-negative cell architecture with inner and outer membrane, enclosing a periplasm, both strains were covered by a hitherto undescribed, regularly arranged 2-D protein crystal with p2-symmetry. In A. ferrooxidans, this protein forms a stripe-like structure on the surface. A similar surface pattern with almost identical lattice vectors was also seen on the cells of strain HV2/2. For the surface layer of both bacteria, a direct contact to pyrite crystals was observed in ultrathin sections, indicating that the S-layer is involved in maintaining this contact site. Observations on an S-layer-deficient strain show, however, that cell adhesion does not strictly depend on the presence of the S-layer and that this surface protein has an influence on cell shape. Furthermore, the presented data suggest the ability of the S-layer protein to complex Fe3+ ions, suggesting a role in the physiology of the microorganisms.  相似文献   

9.
The cell surface hydrophobicities of a variety of aquatic and terrestrial gliding bacteria were measured by an assay of bacterial adherence to hydrocarbons (BATH), hydrophobic interaction chromatography, and the salt aggregation test. The bacteria demonstrated a broad range of hydrophobicities. Results among the three hydrophobicity assays performed on very hydrophilic strains were quite consistent. Bacterial adhesion to glass did not correlate with any particular measure of surface hydrophobicity. Several adhesion-defective mutants of Cytophaga sp. strain U67 were found to be more hydrophilic than the wild type, particularly by the BATH assay and hydrophobic interaction chromatography. The very limited adhesion of these mutants correlated well with hydrophilicity as determined by the BATH assay. The hydrophobicities of several adhesion-competent revertants ranged between those of the wild type and the mutants. As measured by the BATH assay, starvation increased hydrophobicity of both the wild type and an adhesion-defective mutant. During filament fragmentation of Flexibacter sp. strain FS-1, marked changes in hydrophobicity and adhesion were accompanied by changes in the arrays of surface-exposed proteins as detected by an immobilized radioiodination procedure.  相似文献   

10.
The cell surface characteristics of two types of PL-1 phage-resistant strains of Lactobacillus casei: K-12, which does not permit adsorption of the phage; and YIT 9021, which permits phage adsorption but not genome injection, were compared with those of the parent strain. There were no differences in the electron microscopic features of the cell surface. However, both the phage-resistant strains were more hydrophobic than the parent strain as judged by hydrocarbon affinity test. A colloid titration test showed that these mutant strains were less negatively charged than the parent one. They differed in the composition of the polysaccharide of their cell walls, which were all free from teichoic acids.  相似文献   

11.
The hydrophilic and hydrophobic properties of single cells of natural bacterioplankton communities were determined using a recently developed staining method combined with confocal laser scanning microscopy and advanced image analysis. On an average, about 50% of the bacterial cell area was covered by hydrophobic and only 16% by hydrophilic properties, while about 72% was covered by the genome. However, the size of these properties was independent of the bacterial cell size. Bacterial hydrophobicity was positively correlated with ambient NH(4)(+) concentrations and negatively correlated with overall bacterial abundance. The expression of hydrophilicity was more dynamic. Over the spring phytoplankton bloom, the bacterioplankton ratio(phil/phob) repeatedly reached highest values shortly before peaks in bacterioplankton abundance were observed, indicating a direct and fast response of bacterial surface properties, especially hydrophilicity, to changing environmental conditions. Compared to bacterial strains, recently studied with the same method, cells of marine bacterioplankton communities are much smaller and less frequently covered by hydrophobic or hydrophilic properties. While the percentage area covered by the genome is essentially the same, the percentage area covered by hydrophobic or hydrophilic properties is much smaller.  相似文献   

12.
Different LPS mutants of Salmonella typhimurium and Salmonella minnesota have been investigated with respect to (1) their tendency to associate with HeLa cell monolayers, and (2) their physicochemical surface properties. Aqueous biphasic partitioning, hydrophobic interaction chromatography, and ion exchange chromatography have been used to characterize the bacterial cell surface properties with respect to charge and hydrophobicity. Liability to hydrophobic interaction was defined either by the change of partition in a dextran-polyethylene-glycol (PEG) system by the addition of PEG-palmitate (P-PEG), or by the elution pattern from Octyl-Sepharose. Accordingly, charge was asssessed by the effect of positively charged trimethylamino-PEG (TMA-PEG) on the partition, and by the elution from DEAE-Sephacel. Bacterial being negatively charged and liable to hydrophobic interaction had the highest tendency to associate with HeLa cells. In some cases the methods for surface analysis gave conflicting results on charge and/or liability to hydrophobic interaction of the same LPS mutant. Possible reasons for these differences and the role of bacterial cell surface structures contributing to physicochemical character are discussed.  相似文献   

13.
During growth on starch medium, the S-layer-carrying Bacillus stearothermophilus ATCC 12980 and an S-layer-deficient variant each secreted three amylases, with identical molecular weights of 58,000, 122,000, and 184,000, into the culture fluid. Only the high-molecular-weight amylase (hmwA) was also identified as cell associated. Extraction and reassociation experiments showed that the hmwA had a high-level affinity to the peptidoglycan-containing layer and to the S-layer surface, but the interactions with the peptidoglycan-containing layer were stronger than those with the S-layer surface. For the S-layer-deficient variant, no changes in the amount of cell-associated and free hmwA could be observed during growth on starch medium, while for the S-layer-carrying strain, cell association of the hmwA strongly depended on the growth phase of the cells. The maximum amount of cell-associated hmwA was observed 3 h after inoculation, which corresponded to early exponential growth. The steady decrease in cell-associated hmwA during continued growth correlated with the appearance and the increasing intensity of a protein with an apparent molecular weight of 60,000 on sodium dodecyl sulfate gels. This protein had a high-level affinity to the peptidoglycan-containing layer and was identified as an N-terminal S-layer protein fragment which did not result from proteolytic cleavage of the whole S-layer protein but seems to be a truncated copy of the S-layer protein which is coexpressed with the hmwA under certain culture conditions. During growth on starch medium, the N-terminal S-layer protein fragment was integrated into the S-layer lattice, which led to the loss of its regular structure over a wide range and to the loss of amylase binding sites. Results obtained in the present study provide evidence that the N-terminal part of the S-layer protein is responsible for the anchoring of the subunits to the peptidoglycan-containing layer, while the surface-located C-terminal half could function as a binding site for the hmwA.  相似文献   

14.
G. Saini  C. S. Chan 《Geobiology》2013,11(2):191-200
Microbial survival in mineralizing environments depends on the ability to evade surface encrustation by minerals, which could obstruct nutrient uptake and waste output. Some organisms localize mineral precipitation away from the cell; however, cell surface properties – charge and hydrophobicity – must also play a role in preventing surface mineralization. This is especially relevant for iron‐oxidizing bacteria (FeOB), which face an encrustation threat from both biotic and abiotic mineralization. We used electron microscopy and surface characterization techniques to study the surfaces of two stalk‐forming neutrophilic FeOB: the marine Zetaproteobacterium Mariprofundus ferrooxydans PV‐1 and the recently isolated freshwater Betaproteobacterium Gallionellales strain R‐1. Both organisms lack detectable iron on cell surfaces. Live and azide‐inhibited M. ferrooxydans PV‐1 cells had small negative zeta potentials (?0.34 to ?2.73 mV), over the pH range 4.2–9.4; Gallionellales strain R‐1 cells exhibited an even smaller zeta potential (?0.10 to ?0.19 mV) over pH 4.2–8.8. Cells have hydrophilic surfaces, according to water contact angle measurements and microbial adhesion to hydrocarbons tests. Thermodynamic and extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) calculations showed that as low charge causes low electrostatic attraction, hydrophilic repulsion dominates cell–mineral interactions. Therefore, we conclude that surface properties help enable these FeOB to survive in highly mineralizing environments. Given both mineral‐repelling surface properties and the ability to sequester Fe(III) biominerals in an organomineral stalk, these two FeOB have a well‐coordinated system to localize both biotic and abiotic mineral distribution.  相似文献   

15.
Well-defined laboratory strains as well as 72 clinical strains ofStaphylococcus aureus isolated from bovine mastitis were investigated for surface hydrophobicity by the salt aggregation test (SAT).Staphylococcus aureus strain Cowan 1, rich in protein A and fibronectin-binding surface proteins, was found to show high surface hydrophobicity, whereas strain Wood 46, deficient in these surface proteins, showed low surface hydrophobicity. SAT showed a significant difference in surface hydrophobicity (P<0.001) between protein A-positive and A-negative strains measured by 2-test analysis. Comparison of SAT values with results obtained from hydrophobic interaction chromatography (HIC) showed a good correlation (P<0.025). A high-level protein-A-producing mutant (SA 113prA-3) showed increased surface hydrophobicity as compared with the parent strain (SA 113), whereas ten protein-A-negative mutants showed low surface hydrophobicity in SAT. Of the 72 clinical isolates tested by SAT, 47 (65%) showed autoaggregating properties, i.e., the strains aggregated even in isotonic buffers. Tween 80 (1% vol/vol) and ethylene glycol (50% vol/vol) prevented autoaggregation of some hydrophobic strains aggregating in phosphate-buffered saline. However, 2M of a chaotropic agent (NaSCN) was more efficient in preventing autoaggregation of the strains tested. Heating of cell suspensions to 80°C or 100°C as well as trypsin andStreptomyces griseus protease treatment generally caused a decrease in the cell surface hydrophobicity. This indicates that protein A, fibronectin-binding proteins, and probably other as yet unidentified proteins contribute to the high surface hydrophobicity of most strains isolated from bovine mastitis.  相似文献   

16.
The present study was undertaken to comparatively investigate the attachment capacities of Azospirillum brasilenseSp245 and its lipopolysaccharide-defective Omegon-Km mutants KM018 and KM252, as well as their activities with respect to the alteration of the morphology of wheat seedling root hairs. The adsorption dynamics of the parent Sp245 and mutant KM252 strains of azospirilla on the seedling roots of the soft spring wheat cv. Saratovskaya 29 were similar; however, the attachment capacity of the mutant KM252 was lower than that of the parent strain throughout the incubation period (15 min to 48 h). The mutation led to a considerable decrease in the hydrophobicity of the Azospirillumcell surface. The lipopolysaccharides extracted from the outer membrane of A. brasilenseSp245 and mutant cells with hot phenol and purified by chromatographic methods were found to induce the deformation of the wheat seedling root hairs, the lipopolysaccharide of the parent strain being the most active in this respect. The role of the carbohydrate moiety of lipopolysaccharides in the interaction of Azospirillumcells with plants is discussed.  相似文献   

17.
The influence of macromolecules other than lipopolysaccharide on the hydrophobic properties ofPasteurella multocida was investigated by assessing cell surface hydrophobicity (CSH) after experimentally modifying surfaces of various strains. CSH of hydrophobic variants was enhanced by growth on blood-supplemented medium and mechanical shearing, whereas chloramphenicol, oxytetracycline, trypsin, and pronase E treatments decreased CSH. No such modifications were observed for hydrophilic strains. Microscopic observations revealed hydrophilic strains to be heavily encapsulated in contrast to hydrophobic strains. Repeated subculturing reduced encapsulation with a concomitant increase in CSH for one hydrophilic strain while exerting no changes in the other hydrophilic strain examined. Hyaluronidase removal of capsular material from a serotype A strain resulted in increased CSH; subsequent exposure to pronase E resulted in partial restoration of hydrophilicity. These data suggest the encapsulation of hydrophilicP. multocida strains masks a relatively hydrophobic surface that is conferred, at least in part, by the presence of one or more surface-exposed proteins common to both hydrophilic and hydrophobic variants.  相似文献   

18.
Bacillus stearothermophilus strains PV 72 and ATCC 12980 carry a crystalline surface layer (S-layer) with hexagonal (p6) and oblique (p2) symmetry, respectively. Sites of insertions of new subunits into the regular lattice during cell growth have been determined by the indirect fluorescent antibody technique and the protein A/colloidal gold technique.During S-layer growth on both bacillus strains the following common features were noted: 1. shedding of intact S-layer or turnover of individual subunits was not seen; 2. new S-layer was deposited in helically-arranged bands over the cylindrical surface of the cell at a pitch angle related to the orientation of the lattice vectors of the crystalline array; 3. little or no S-layer was inserted into pre-existing S-layer at the poles, and 4. septal regions and, subsequently, newly formed cell poles were covered with new S-layer protein.  相似文献   

19.
Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanometer scale. For AFM, bacterial cells need to be firmly anchored to a substratum surface in order to withstand the friction forces from the silicon nitride tip. Different strategies for the immobilization of bacteria have been described in the literature. This paper compares AFM interaction forces obtained between Klebsiella terrigena and silicon nitride for three commonly used immobilization methods, i.e., mechanical trapping of bacteria in membrane filters, physical adsorption of negatively charged bacteria to a positively charged surface, and glutaraldehyde fixation of bacteria to the tip of the microscope. We have shown that different sample preparation techniques give rise to dissimilar interaction forces. Indeed, the physical adsorption of bacterial cells on modified substrata may promote structural rearrangements in bacterial cell surface structures, while glutaraldehyde treatment was shown to induce physicochemical and mechanical changes on bacterial cell surface properties. In general, mechanical trapping of single bacterial cells in filters appears to be the most reliable method for immobilization.  相似文献   

20.
The influence of the physicochemical properties of biomaterials on microbial cell adhesion is well known, with the extent of adhesion depending on hydrophobicity, surface charge, specific functional groups and acid–base properties. Regarding yeasts, the effect of cell surfaces is often overlooked, despite the fact that generalisations may not be made between closely related strains. The current investigation compared adhesion of three industrially relevant strains of Saccharomyces cerevisiae (M-type, NCYC 1681 and ALY, strains used in production of Scotch whisky, ale and lager, respectively) to the biomaterial hydroxylapatite (HAP). Adhesion of the whisky yeast was greatest, followed by the ale strain, while adhesion of the lager strain was approximately 10-times less. According to microbial adhesion to solvents (MATS) analysis, the ale strain was hydrophobic while the whisky and lager strains were moderately hydrophilic. This contrasted with analyses of water contact angles where all strains were characterised as hydrophilic. All yeast strains were electron donating, with low electron accepting potential, as indicated by both surface energy and MATS analysis. Overall, there was a linear correlation between adhesion to HAP and the overall surface free energy of the yeasts. This is the first time that the relationship between yeast cell surface energy and adherence to a biomaterial has been described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号