首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the wood lemming (Myopus schisticolor) three genetic types of sex chromosome constitution in females are postulated: XX, X*X and X*Y (X*=X with a mutation inactivating the male determining effect of the Y chromosome). Males are all XY. It is shown in the present paper that the two types of X chromosomes, X and X*, exhibit differences in the G-band patterns of their short arms. In addition, it was demonstrated in unbanded chromosomes that the short arm in X* is shorter than in X. The origin of these differences is still obscure; but they allow to identify and to distinguish the individual types of sex chromosome constitution, as of XX versus X*X females and of X*Y females versus XY males, on the basis of G-banded chromosome preparations from somatic cells.  相似文献   

2.
The chromosome complement of hybrid males from the cross between Drosophila miranda female and D. persimilis male provides an interesting chromosomal situation where an autosome, the 3rd chromosome of D. persimilis, coexists with a homologue that developed into a sex chromosome, the X2 in D. miranda. Except for certain inversions and a few minor translocations, these two chromosomes (X2 and the 3rd) still look alike as polytene elements. However, in hybrid males pairing of the two chromosomes, the X2 and 3rd, is rare, while in female hybrids it occurs frequently. — 3H-TdR labeling shows that while the X2 and 3rd chromosomes replicate synchronously in hybrid female, in the hybrid male the former completes its replication earlier than the 3rd chromosome, as do the two arms of the X1 (XL and XR). The frequency and relative intensity of 3H-TdR labeling of each site of the X2 and that of the 3rd chromosome in hybrid males closely agree with those of the corresponding sites in the X2 of the miranda male and the 3rd chromosome of the persimilis male (or female), respectively. The results suggest that timing and rate of replication of the X2 are determined autonomously and follow the pattern in the respective parental species.  相似文献   

3.
R. H. Maddern  D. G. Bedo 《Genetica》1984,63(3):203-212
From a study of radiation-induced X-chromosome deletions the locus of black body (b) has been localized to the proximal portion of C-band defined euchromatin. Radiation produced mostly X-chromosome deletions rather than point mutations, total X or Y chromosome loss through breakage, or increased frequency of non-disjunction. Aberrant sex ratios obtained indicate that the X chromosome carries vital loci that were deleted with b + in many cases. The X/O karyotype produces fertile adult females with a characteristic phenotype which is also produced by X deletions. Sex chromosome non-disjunction to give X/O females and X/X/Y males is normally rare but is enhanced by the presence of chromosome rearrangements even when the X and Y are not involved.  相似文献   

4.
Driving X chromosomes (XDs) bias their own transmission through males by killing Y‐bearing gametes. These chromosomes can in theory spread rapidly in populations and cause extinction, but many are found as balanced polymorphisms or as “cryptic” XDs shut down by drive suppressors. The relative likelihood of these outcomes and the evolutionary pathways through which they come about are not well understood. An XD was recently discovered in the mycophagous fly, Drosophila testacea, presenting the opportunity to compare this XD with the well‐studied XD of its sister species, Drosophila neotestacea. Comparing features of independently evolved XDs in young sister species is a promising avenue towards understanding how XDs and their counteracting forces change over time. In contrast to the XD of D. neotestacea, we find that the XD of D. testacea is old, with its origin predating the radiation of three species: D. testacea, D. neotestacea and their shared sister species, Drosophila orientacea. Motivated by the suggestion that older XDs should be more deleterious to carriers, we assessed the effect of the XD on both male and female fertility. Unlike what is known from D. neotestacea, we found a strong fitness cost in females homozygous for the XD in D. testacea: a large proportion of homozygous females failed to produce offspring after being housed with males for several days. Our male fertility experiments show that although XD male fertility is lower under sperm‐depleting conditions, XD males have comparable fertility to males carrying a standard X chromosome under a free‐mating regime, which may better approximate conditions in wild populations of D. testacea. Lastly, we demonstrate the presence of autosomal suppression of X chromosome drive. Our results provide support for a model of XD evolution where the dynamics of young XDs are governed by fitness consequences in males, whereas in older XD systems, both suppression and fitness consequences in females likely supersede male fitness costs.  相似文献   

5.
Sex‐linked segregation distorters cause offspring sex ratios to differ from equality. Theory predicts that such selfish alleles may either go to fixation and cause extinction, reach a stable polymorphism or initiate an evolutionary arms race with genetic modifiers. The extent to which a sex ratio distorter follows any of these trajectories in nature is poorly known. Here, we used X‐linked sequence and simple tandem repeat data for three sympatric species of stalk‐eyed flies (Teleopsis whitei and two cryptic species of T. dalmanni) to infer the evolution of distorting X chromosomes. By screening large numbers of field and recently laboratory‐bred flies, we found no evidence of males with strongly female‐biased sex ratio phenotypes (SR) in one species but high frequencies of SR males in the other two species. In the two species with SR males, we find contrasting patterns of X‐chromosome evolution. T. dalmanni‐1 shows chromosome‐wide differences between sex‐ratio (XSR) and standard (XST) X chromosomes consistent with a relatively old sex‐ratio haplotype based on evidence including genetic divergence, an inversion polymorphism and reduced recombination among XSR chromosomes relative to XST chromosomes. In contrast, we found no evidence of genetic divergence on the X between males with female‐biased and nonbiased sex ratios in T. whitei. Taken with previous studies that found evidence of genetic suppression of sex ratio distortion in this clade, our results illustrate that sex ratio modification in these flies is undergoing recurrent evolution with diverse genomic consequences.  相似文献   

6.
Crosses betweenDrosophila melanogaster females andD. simulans males produce viable hybrid females, while males are lethal. These males are rescued if they carry theD. simulans Lhr gene. This paper reports that females of the wild-typeD. melanogaster population Staket do not produce viable hybrid males when crossed withD. simulans Lhr males, a phenomenon which we designate as the Staket phenotype. The agent responsible for this phenomenon was found to be the StaketX chromosome (X mel ,Stk). Analysis of the Staket phenotype showed that it is suppressed by extra copies ofD. melanogaster rDNA genes and that theX mel ,Stk chromosome manifests a weak bobbed phenotype inD. melanogaster X mel ,Stk/0 males. The numbers of functional rDNA genes inX mel ,Stk andX mel ,y w (control) chromosomes were found not to differ significantly. Thus a reduction in rDNA gene number cannot account for the weak bobbedX mel ,Stk phenotype let alone the Staket phenotype. The rRNA precursor molecules transcribed from theX mel ,Stk rDNA genes seem to be correctly processed in both intraspecific (melanogaster) and interspecific (melanogaster-simulans) conditions. It is therefore suggested that theX mel ,Stk rDNA genes are inefficiently transcribed in themelanogaster-simulans hybrids.  相似文献   

7.
Summary Drosophila melanogaster males heterozygous for the second chromosome locus Segregation Distorter preferentially transmit this chromosome to their progeny due to a dysfunctioning of SD +-bearing sperm. SD males with a normal sex chromosome constitution produce more females than males among SD + progeny. This report shows that this unequal recovery of sexes is enhanced from XY/Y; SD/SD + males and enhanced still further from XY/O; SD/SD + males. It is argued that the probability that a SD +-bearing sperm will dysfunction is related to its sex chromsome complement, with the relative probabilities of dysfunction ranked O> Y> X> XY. It is shown that a modified probit analysis accounts for the relationship between sex ratio and second chromosome segregation frequency for all paternal genotypes. Finally, SD/SD + males show no increase in sex chromosome nondisjunction with respect to a control.R. E. Denell was supported by U.S.P.H.S. Training Grant No. GM00337 and by a U.S.P.H.S. Postdoctoral Fellowship; George L. Gabor Miklos was supported by A.E.C. Contract No. AT (04-3)-34 PA150.  相似文献   

8.
Univalent sex chromosomes in spermatocytes of Sxr-carrying mice   总被引:1,自引:0,他引:1  
Pachytene configurations of the sex chromosomes were studied in whole-mount, silver-stained preparations of spermatocytes in mice with XY,Sxr, XX,Sxr, XO,Sxr, XO,Sxr+512 and T(X;4)37H,YSxr chromosomes, and non-Sxr-carrying controls. XY,Sxr males showed an increased number of X and Y univalents and of self-synapsed Y chromosomes. In T(X;4)37H,YSxr males an increased proportion of trivalent+Y configurations was also accompanied by higher numbers of self-paired Y univalents; the proportion of trivalent+X4 was not increased, but that of self-synapsed X4 univalents was. There was more selfsynapsis in cells containing one univalent than in cells containing two univalents. Spermatocytes of XX,Sxr mice contained single univalent X, which was never seen to be self-synapsed, but self-synapsis of the X occurred in a proportion of cells in XO,Sxr males. There were no self-paired X chromosomes in the XO,Sxr+512 mouse although lowlevel pairing of the 512 chromosome occurred. All four XX,Sxr and XO,Sxr males contained testicular sperm, and testicular sperm were also present in one T(X;4)37H male, while another such male had sperm in the caput. It is concluded that (1) self-synapsis of univalents is affected by variable conditions in the cell as well as by the DNA sequences of the chromosome, and (2) that the level of achievable spermatogenesis is not always rigidly predetermined by a chromosome anomaly but can be modulated by the genetic background.  相似文献   

9.
Bromodeoxyuridine-dye technique analysis of X chromosome DNA synthesis in female adult and fetal mice carrying the balanced form of the T(X; 16) 16H translocation demonstrated that the structurally normal X chromosome was late replicating (and hence presumably inactive) in 93% of the adult cells and 99% of the 9-day embryo cells, with the X16 chromosome late replicating in the remaining cells. We conclude from these results that in T16H/+ females either there is preferential inactivation of the normal X chromosome or that, if inactivation is random, cell selection takes place before 9 days of development. Two 9-day female embryos with an unbalanced karyotype were also studied; both had two late-replicating chromosomes in most of their cells, one being the chromosome 16X, the other a normal X chromosome. These results, together with the presence of a late-replicating X16 chromosome in T16H/+ adult and fetal mice, support the concept that more than one inactivation center is present on the X chromosome of the mouse because the X16 and the 16x chromosomes can be late replicating.  相似文献   

10.
In the mouse XYY males are sterile, presumably because pairing abnormalities resulting from the presence of three sex chromosomes lead to meiotic breakdown. We have produced male mice, designated XYY*X, that have three sex chromosome pairing regions but only one intact Y chromosome. Unexpectedly XYY*X males are fertile, although they are no more efficient in sex chromosome pairing than previously reported XYY males. We conclude that the sterility of XYY males is caused by a combination of the deleterious effect of two Y chromosomes, presumably acting prior to meiosis, and pairing abnormalities resulting in significant meiotic disruption.by P.B. Moens  相似文献   

11.
Summary The wood lemming, Myopus schisticolor, possesses a unique sex determining system comprising both XX and XY females. Normal female development in the presence of XY is guaranteed by a mutation on the X, apparently associated with a structural rearrangement in Xp. This mutation inactivates the testis-inducing and male-determining factor on the Y and distinguishes X* from X, and X*Y females from XY males. Normal fertility of X*Y females is ensured by a mitotic (double) nondisjunction mechanism which, at an early fetal stage, eliminates the Y from the germ line and replaces it by a copy of the X*.Numerical sex chromosome aberrations are not infrequent and the trisomics XXY and X*XY are relatively common. XXY individuals are sterile males with severe suppression of spermatogenesis. Among X*XY animals, both males and females, as well as a true lateral hermaphrodite have been observed. Primary deficiency of germ cells, impairment of spermatogenesis and sterility are characteristic traits of the X*XY males, whereas X*XY females have normal oogenesis and are fertile. Both these extremes (except female fertility) coexist in the true hermaphrodite described in the present study. These apparently contradictory observations are explainable under the assumption that X* and X in X*XY individuals are inactivated non-randomly or that the cells are distributed unequally. Inactivation of the X or X* determines whether or not the H-Y antigen will be expressed. When comparing conditions in Myopus and in man, an additional assumption has to be made in relation to the gene(s) involved in sex determination, located in Xp:In Myopus they do not escape inactivation, whereas in man they have been claimed to remain active.  相似文献   

12.
Summary In Drosophila melanogaster a partial loss of ribosomal genes leads to the bobbed phenotype. Magnification is a heritable increase in rDNA that may occur in males carrying a deleted X chromosome with a strong bobbed phenotype. The restriction patterns of X chromosome total rDNA, insertions and spacers from magnified bobbed strains were compared with those of the original bobbed mutations. It was found that magnification modifies restriction patterns and differentially affects gene types, increasing specific genes lacking insertions (INS-). Increases in copy number of genes with type I insertions are generally lower than the total number of INS- genes, while type II insertion genes are not perceptibly increased. The recovery of homogeneous progeny from a single premagnified male indicates that the magnification event might take place and become stable very early in the germ line, arguing against magnification being due to extrachromosomal amplification. Additionally, some gene types increase 3.5-fold while others are eliminated, indicating that they could not result from a single unequal cross-over. These results are in good agreement with the existence of partial clustering of rDNA genes according to type, and suggest that magnification could result from local amplification of genes.  相似文献   

13.
Helen V. Crouse 《Chromosoma》1966,18(2):230-253
Normally in Sciara males the sex chromosome constitution of the soma (X m O) differs from that of the germ line (X m X p ), the single X being of maternal origin. Males which are patroclinous for their sex-linked genes (X p O) are found regularly among the progeny of females heterozygous for any one of a number of X-translocations (X X t ). The patroclinous males are almost invariably completely sterile. In the present study a comparison is made of the patroclinous males derived from 5 different X-translocations in S. coprophila. The study includes data on the morphology and sexual behavior of the males as well as the cytology of the testis from late 4th instar through pupal life. The study is oriented towards the basic question of whether the paternally-derived X — normally destined to be eliminated — can function properly when it is retained. The comparative study supports our original suggestion that the patroclinous males arise from no-X eggs following 31 disjunction during oogenesis.Dedicated to Professor J. Seiler on the occasion of his 80th birthday.The studies reported here were supported by the National Science Foundation, grants GB-42 and GB 2857, and in part by Contract No. AT-(40-1)-2690 under the Division of Biology and Medicine, U. S. Atomic Energy Commission.  相似文献   

14.
The influence of magnetic fields on hatching and chromatin state of brine shrimp, Artemia sp., was investigated. Dry Artemia cysts were exposed to a magnetic field of intensity 25 mT for 10 min. The magnetic field was applied in different variants: constant field, rotating field of different directions (right-handed and left-handed) and different magnet polarization. The effect of ultra wideband pulse radiation and microwave radiation was also investigated. The energy density on the surface of object exposed to ultra wideband pulse radiation was 10−2, 10−3, 10−4, 10−5 and 10−6 W/cm2, the power of microwave radiation was 10−4 and 10−5 W/cm2, exposure time - 10 s. After incubation of the cysts for 48 hours in sea water the hatching percentage of Artemia from exposed cysts was higher than in controls. The number of heterochromatin granules was significantly higher in the nauplia (newborn larvae of Artemia) developed from cysts that had been exposed to magnetic and electromagnetic fields. The data obtained demonstrate an increase in percentage hatching of Artemia cysts after treatment with magnetic and electromagnetic fields and chromatin condensation in nauplia. We have also shown different effects of right-handed and left-handed rotating magnetic fields on these processes.  相似文献   

15.
D. G. Bedo 《Chromosoma》1987,95(2):126-135
Meiotic pairing of X and Y chromosomes in male Lucilia cuprina was studied by cytological observation of normal, rearranged and deficient sex chromosome karyotypes in spermatogenesis. Two X-Y pairing regions located distally in each arm of the X and Y chromosomes were defined. Contrasting with findings in Drosophila melanogaster, these pairing regions show specific recognition of their partners. By studying rearranged sex chromosomes short arm pairing was localised to their distal ends, closely associated with secondary constrictions containing nucleolar organisers in both sex chromosomes. Short arm pairing is very tight and not greatly disrupted by chromosome rearrangement, deficiency for the Y chromosome long arm or the presence of supernumerary X chromosomes. The pairing region of the long arms could not be precisely localised but probably also occurs at their distal ends. Pairing between the long arm sites is much weaker and is easily disrupted by chromosome rearrangement, failing completely in flies deficient for the Y chromosome short arm. No cytologically visible pairing was seen between X chromosomes and the remainder of the Y. In males with an extra X chromosome, the ends of both X chromosomes pair to form multivalents with normal and rearranged Y chromosomes provided the Y short arm is present, otherwise an independent X chromosome bivalent is formed. The mechanism of pairing in male Lucilia sex chromosomes thus seems to depend on specific loci of distinctive structure within the X and Y heterochromatin. Comparison of cytological and genetic data shows that increasing cytological pairing failure is matched by higher genetic X-Y nondisjunction but that the former occurs at much higher levels. In some karyotypes cytologically observed X-Y pairing failure is not matched by high frequencies of nondisjunction presumably because weak pairing associations are disrupted during slide preparation.  相似文献   

16.
The Drosophila simulans Lhr rescues lethal hybrids from the cross of D. melanogaster and D. simulans. We describe here, the phenotypes of Lhr dependent rescue hybrids and demonstrate the effects of Lhr on functional morphology of the salivary chromosomes in the hybrids. Our results reveal that the phenotypes of the ‘Lhr dependent rescued’ hybrids were largely dependent on the genetic background and the dominance in species and hybrids, and not on Lhr. Cytological examination reveal that while the salivary chromosome of ‘larval lethal’ male carrying melanogaster X chromosome was unusually thin and contracted, in ‘rescued’ hybrid males (C mel X mel Y sim ; A mel A sim ) the X chromosome showed typical pale staining, enlarged diameter and incorporated higher rate of 3H-uridine in presence of one dose Lhr in the genome. In hybrid males carrying simulans X chromosome (C mel X sim Y mel ; A mel A sim ), enlarged width of the polytene X chromosome was noted in most of the nuclei, in Lhr background, and transcribed at higher rate than that of the single X chromosome of male. In hybrid females (both viable, e.g., C mel X mel X sim ; A mel A sim and rescued, e.g., C mel X mel X mel ; A mel A sim ), the functional morphology of the X chromosomes were comparable to that of diploid autosomes in presence of one dose of Lhr. In hybrid metafemales, (C mel X mel X mel X sim ; A mel A sim ), two dose of melanogaster X chromosomes and one dose of simulans X chromosome were transcribed almost at ‘female’ rate in hybrid genetic background in presence of one dose of Lhr. In rescued hybrid males, the melanogaster-derived X chromosome appeared to complete its replication faster than autosomes. These results together have been interpreted to have suggested that Lhr suppresses the lethality of hybrids by regulating functional activities of the X chromosome(s) for dosage compensation.  相似文献   

17.
Chromosomes of a species of Eigenmannia presenting a X1X1X2X2:X1X2Y sex chromosome system, resulting from a Y-autosome Robertsonian translocation, were analyzed using the C-banding technique, chromomycin A3 (CMA3) and mithramycin (MM) staining and in situ digestion by the restriction endonuclease AluI. A comparison of the metacentric Y chromosome of males with the corresponding acrocentrics in females indicated that a C-band-positive, CMA3/MM-fluorescent and AluI digestion-resistant region had been lost during the process of translocation, resulting in a diminution of heterochromatin in the males. It is hypothesized that the presence of a smaller amount of G+C-rich heterochromatin in the sex chromosomes of the heteromorphic sex when compared with the homomorphic sex may be associated with the sex determination mechanism in this species and may be a more widely occurring phenomenon in fish with differentiated sex chromosomes than was initially thought. Received: 1 April 1999; in revised form: 16 October 1999 / Accepted: 4 December 1999  相似文献   

18.
R. L. Blackmail 《Chromosoma》1988,96(4):318-324
Autosomal dissociations are a common feature of aphid karyotype evolution, but multiple X chromosome systems are rare. Birch-feeding aphids of the genus Euceraphis, however, have X1X2O males as a general rule, X1 being always much larger than X2. Only one species has XO males, and this condition appears to be secondary. Most Euceraphis karyotypes also have one or more, usually heterochromatic, elements that occur in the same numbers in both males and females, yet behave like X chromosomes at male and female meiosis I. They appear to be supernumerary, non-functional X chromosomes, although showing greater within-species stability in size and number than typical B chromosomes. Euceraphis gillettei forms a separate group within the genus and feeds on alders (Alnus species), yet has a similar system, and the two most closely related genera, Symydobius and Clethrobius, also have additional chromosomal elements possibly representing non-functional X chromosomes. Thus the multiple X chromosome system in these aphids seems to be a primitive condition.  相似文献   

19.
Cephalota hispanica and Spiralia maura have similar numbers of autosomes but distinct chromosome morphology and sex chromosome systems, (9II+X1X2Y/9II+X1X2 and 9II+X1X2X3Y/9II+X1X2X3, respectively). The former sex chromosome system follows the pattern of Nearctic and Indian groups and the latter the Palearctic type. The chromosomal polymorphism found suggests the occurrence of other structural rearrangements in the process of differentiation of cicindelids than those usually referred to robertsonian translocations. Moreover, the polyploidy observed in males of both species suggests pre-meiotic endoreduplication phenomena.  相似文献   

20.
Nobuo Takagi 《Chromosoma》1980,81(3):439-459
By means of a cytological technique involving 5-bromodeoxyuridine, acridine orange, and fluorescence microscopy, the asynchronously replicating, hence genetically inactivated, X chromosome was identified in 6-to 8-day embryos from female mice heterozygous for Searle's translocation T(X;16)16H (abbreviated as T16H) mated with either karyotypically normal males or males carrying Cattanach's translocation T(X;7)lCt in order to analyse the way in which the total inactivation of the normal X is achieved in adult T16H heterozygotes. Embryos examined included 9 Xn/X(7);16/16, 3X16/Xn;16x/16, 12X16/X(7);16x/16, 5 X16/Xn; 16/16, 8 X16/X(7); 16/16 and 2 Xn/Y; 16x/16/16. In these notations X16, 16x, X(7) and Xn represent Searle's X with the centromeric segment of the X, Searle's X with the centomeric segment of chromosome 16, Cattanachs's X with insertion of a chromosome 7 segment, and normal X, respectively. The X(7) exerted no apparent effect upon embryonic development up to the 8th day of gestation and X chromosome inactivation. — The asynchronously replicating X was the Xn in X16/ Xn;16x/16 and X(7) in X16/X(7);16x/16 embryos except a small number of cells on day 6 (13/493) and on day 7 (1/886) in which almost the entire 16x replicated asynchronously. The X16, on the other hand, never showed replication asynchrony. That the X16 is indeed unable to become inactivated was indicated by the observation that the X16 as well as Xn or X(7) did not replicate asynchronously in Xn/X16; 16/16 and X16/X(7); 16/16 embryos. X16-inactive cell lines, if occurring, should have been genetically less unbalanced than any other cell line in such embryos. It is highly likely therefore that the ultimate inactivation pattern in T16H heterozygotes has been accomplished by (1) the inability of the X16 to become inactive; (2) inactivation in favor of the Xn; and (3) rapid elimination of 16x-inactive cells. Severe growth retardation and early death of X16/Xn;16/16 and X16/X(7); 16/16 embryos having no inactive X suggested that functional X disorny is detrimental to embryogenesis. These embryos further indicated that the concurrence of at least two X chromosomal loci separated by the T16H breakpoint is necessary for the homologous X chromosome becoming inactivated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号