首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analysis of the antigenic surface of staphylococcal nuclease was begun by generating and characterizing a panel of mAb. Twelve mAb were selected from a large number of anti-nuclease mAb and characterized for affinity and isotype, by their ability to block enzyme activity, and by complementation and competitive inhibition assays for the relative location of epitopes. The mAb were placed in complementation groups based on their distinct binding patterns. These groups define a series of eight overlapping epitopes that are estimated to cover a large portion of the nuclease surface. Four mAb blocked the enzyme activity of nuclease. The epitopes defined by two of these four mAb were localized on the surface of nuclease using single amino acid variant Ag generated by site-directed mutagenesis of the cloned nuclease coding sequence. mAb-25 maps to residue 46 which is located at the edge of the enzyme active site consistent with its ability to inhibit enzyme activity. mAb-19, which also blocks enzyme activity and belongs to the same complementation group as mAb-25, was unaffected by the substitution at position 46. This suggests that mAb-19 and mAb-25, if they do react with the same epitope, have differences in fine specificity. mAb-22 blocks enzyme activity and belongs to an overlapping complementation group. The fourth mAb, mAb-1, which belongs to a distinct, nonoverlapping, complementation group, does not blocks enzyme activity, and is directed to a region of nuclease that includes the amino acid at position 133. This residue is located a short distance from the active site in a region that has been suggested to participate in binding of DNA, a substrate for nuclease. Therefore, the four epitopes defined by these mAb are localized at or near the enzyme active site.  相似文献   

2.
Starting with nine plaques of influenza A/Kamata/14/91(H3N2) virus, we selected mutants in the presence of monoclonal antibody 203 (mAb203). In total, amino acid substitutions were found at nine positions (77, 80, 131, 135, 141, 142, 143, 144 and 146), which localized in the antigenic site A of the hemagglutinin (HA). The escape mutants differed in the extent to which they had lost binding to mAb203. HA protein with substitutions of some amino acid residues created by site-directed mutagenesis in the escape mutants retained the ability to bind to mAb203. Changes in the amino acid character affecting charge or hydrophobicity accounted for the binding capacity to the antibody of the HA with most of the substitutions in the escape mutants and binding-positive mutants. However, the effect of some amino acid substitutions remained unexplained. A three-dimensional model of the 1991 HA was constructed and used to analyze substituted amino acids in these mutants for the accessible surface hydrophobic and hydrophilic characters. One amino acid substitution in an escape mutant and another amino acid substitution in a binding-positive mutant seemed to be explained by the changes noted on this model.  相似文献   

3.
The localization of the amino acid residues involved in the serologic specificity of the HLA-A2 molecule has been investigated using a combination of site-directed mutagenesis, DNA-mediated gene transfer, indirect immunofluorescence and flow cytometry techniques. Synthetic oligonucleotides were designed to introduce individual and combined amino acid substitutions in both the alpha 1 (positions 9, 43, and the highly polymorphic cluster of residues from aa 62 to 83) and alpha 2 (positions 107, 152, and 156) domains to investigate the effect of the specific mutation on the recognition of the molecule at the surface of transfected human and mouse cell lines by a panel of mAb that recognize monomorphic or polymorphic determinants in MHC class I molecules. At least three non-overlapping serologic epitopes were identified. Mutations in the highly polymorphic region at aa 62 to 66 completely eliminated binding of mAb MA2.1 (A2/B17 cross-reactive). Mutation at position 107 resulted in complete loss of binding of the A2/Aw69-specific mAb PA2.1 and MA2.2 and partial loss of mAb BB7.2 binding. The recognition by other allotypic mAbs was not affected by these mutations and they therefore represent at least a third serologic epitope. Mutations at positions 152 and 156, known to be important for T cell recognition, did not affect serologic recognition. Introduction of residues of HLA-B7 origin in the polymorphic segment spanning aa 70 to 80 created a molecule carrying the -Bw6 supertypic determinant as demonstrated by mAb SFR8-B6 binding.  相似文献   

4.
HLA-A2.1 and HLA-A2.3, which differ from one another at residues 149, 152, and 156, can be distinguished by the mAb CR11-351 and many allogeneic and xenogeneic CTL. Site-directed mutagenesis was used to incorporate several different amino acid substitutions at each of these positions in HLA-A2.1 to evaluate their relative importance to serologic and CTL-defined epitopes. Recognition by mAb CR11-351 was completely lost when Thr but not Pro was substituted for Ala149. A model to explain this result based on the 3-dimensional structure of HLA-A2.1 is presented. In screening eight other mAb, only the substitutions of Pro for Val152 or Gly for Leu156 led to the loss of mAb binding. Because other non-conservative substitutions at these same positions had no effect, these results suggest that the loss of serologic epitopes is in many cases due to a more indirect effect on molecular conformation. Specificity analysis using 28 HLA-A2.1-specific alloreactive and xenoreactive CTL clones showed 19 distinct patterns of recognition. The epitopes recognized by alloreactive CTL clones demonstrated a pronounced effect by all substitutions at residue 152, including the very conservation substitution of Ala for Val. Overall, the most disruptive substitution at amino acid residue 152 was Pro, followed by Glu, Gln, and then Ala. In contrast, substitutions at 156 had little or no effect on allogeneic CTL recognition, and most clones tolerated either Gly, Ser, or Trp at this position. Similar results were seen using a panel of murine HLA-A2.1-specific CTL clones, except that substitutions at position 156 had a greater effect. The most disruptive substitution was Trp, followed by Ser and then Gly. In addition, when assessed on the entire panel of CTL, the effects of Glu and Gln substitutions at position 152 demonstrated that the introduction of a charge difference is no more disruptive than a comparable change in side chain structure that does not alter charge. Taken together, these results indicate that the effect of amino acid replacements at positions 152 and 156 on CTL-defined epitopes depends strongly on the nature of the substitution. Thus, considerable caution must be exercised in evaluating the significance of particular positions on the basis of single mutations. Nonetheless, the more extensive analysis conducted here indicates that there are differences among residues in the class I Ag "binding pocket," with residue 152 playing a relatively more important role in formation of allogeneic CTL-defined epitopes than residue 156.  相似文献   

5.
Comparison of the inferred amino acid sequence of outer-membrane protein PIB from gonococcal strain P9 with those from other serovars reveals that sequence variations occur in two discrete regions of the molecule centred on residues 196 (Var1) and 237 (Var2). A series of peptides spanning the amino acid sequence of the protein were synthesized on solid-phase supports and reacted with a panel of monoclonal antibodies (mAbs) which recognize either type-specific or conserved antigenic determinants on PIB. Four type-specific mAbs reacted with overlapping peptides in Var1 between residues 192-198. Analysis of the effect of amino acid substitutions revealed that the mAb specificity is generated by differences in the effect of single amino acid changes on mAb binding, so that antigenic differences between strains are revealed by different patterns of reactivity within a panel of antibodies. The variable epitopes in Var1 recognized by the type-specific mAbs lie in a hydrophilic region of the protein exposed on the gonococcal surface, and are accessible to complement-mediated bactericidal lysis. In contrast, the epitope recognized by mAb SM198 is highly conserved but is not exposed in the native protein and the antibody is non-bactericidal. However, the conserved epitope recognized by mAb SM24 is centred on residues 198-199, close to Var1 , and is exposed for bactericidal killing.  相似文献   

6.
To study the active site(s) of IL-6 we combined mutagenesis of IL-6 with epitope mapping of IL-6 specific mAb. In addition to amino-terminal deletion mutants we described previously, carboxyl-terminal deletion mutants were prepared. Functional analysis showed that deletion of only five carboxyl-terminal amino acids already reduced the bioactivity 1000-fold. A panel of mAb to IL-6 was subsequently analyzed by antibody competition experiments and binding to the amino- and carboxyl-terminal deletion mutants. On the basis of the competition experiments the six neutralizing mAb were divided in two groups (I and II). The binding pattern with the deletion mutants suggested that the region recognized by the four mAb in group I is composed of residues of amino- and carboxyl-terminus: binding of two mAb was abolished after deletion of amino acid Ala I-Ile26, of the third mAb after deletion of the four carboxyl-terminal amino acids whereas the fourth mAb did not bind to either mutant. Group II mAb retained binding to these mutants. Taken together these data suggest that in the native IL-6 molecule amino acid residues of amino and carboxyl terminus are in close proximity and that together they constitute an active site. Furthermore our data suggest that the part of the molecule recognized by group II antibodies is a second site involved in biologic activity.  相似文献   

7.
We observed previously that the carboxyl-terminal region of the third loop of the TSH receptor (amino acid residues 617-625) is important in signal transduction. To analyze this region in more detail, in the present study we used site-directed mutagenesis to substitute, on an individual basis, the seven amino acids previously mutated as a group. These amino acids are either charged residues or potential phosphorylation sites. Six of the mutant TSH receptors with individual amino acid substitutions bound TSH with high affinity and displayed a cAMP response to TSH stimulation similar to the wild-type TSH receptor. The mutant receptor TSH-R-Gly625 (Arg----Gly) did not transduce a signal, but these results are noninformative because of the loss of high affinity TSH binding. The present data indicate that for each of the six informative amino acid substitutions, the individual residues are not critical for signal transduction. A corollary of this conclusion is that in the important carboxyl-terminal region of the third cytoplasmic loop of the TSH receptor multiple amino acid residues function as a unit.  相似文献   

8.
By sequence alignment of the extracellular Serratia marcescens nuclease with three related nucleases we have identified seven charged amino acid residues which are conserved in all four sequences. Six of these residues together with four other partially conserved His or Asp residues were changed to alanine by site-directed PCR-mediated mutagenesis using a variant of the nuclease gene in which the coding sequence of the signal peptide was replaced by the coding sequence for an N-terminal affinity tag [Met(His)6GlySer]. Four of the mutant proteins showed almost no reduction in nuclease activity but five displayed a 10- to 1000-fold reduction in activity and one (His110Ala) was inactive. Based upon these results it is suggested that the S.marcescens nuclease employs a mechanism in which His110 acts in concert with a Mg2+ ion and three carboxylates (Asp107, Glu148 and Glu232) as well as one or two basic amino acid residues (Arg108, Arg152).  相似文献   

9.
Site-directed mutagenesis of HLA-A2.1 has been used to identify the amino acid substitutions in HLA-A2.3 that are responsible for the lack of recognition of the latter molecule by the HLA-A2/A28 specific antibody, CR11-351, and by HLA-A2.1 specific CTL. Three genes were constructed that encoded HLA-A2 derivatives containing one of the amino acids known to occur in HLA-A2.3: Thr for Ala149, Glu for Val152, and Trp for Leu156. Three additional genes were constructed that encoded the different possible combinations of two amino acid substitutions at these residues. Finally, a gene encoding all three substitutions and equivalent to HLA-A2.3 was constructed. These genes were transfected into the class I negative, human cell line Hmy2.C1R. Analysis of this panel of cells revealed that recognition by the antibody CR11-351 was completely lost when Thr was substituted for Ala149, whereas substitutions at amino acids 152 and 156, either singly or in combination, had no effect on the binding of this antibody. The epitopes recognized by the allogeneic and xenogeneic HLA-A2.1 specific CTL clones used in this study were all affected by either one or two amino acid substitutions. Of those epitopes sensitive to single amino acid changes, none were affected by the substitution of Thr for Ala149, whereas all of them were affected by at least one of the substitutions of Glu for Val 152 or Trp for Leu156. Overall, amino acid residue 152 exerted a stronger effect on the epitopes recognized by HLA-A2.1 specific CTL than did residue 156. Of those epitopes affected only by multiple amino acid substitutions, double substitutions at residues 149 and 152 or at 152 and 156 resulted in a loss of recognition, whereas a mutant with substitutions at residues 149 and 156 was recognized normally. This reemphasizes the importance of residue 152 and indicates that residue 149 can affect epitope formation in conjunction with another amino acid substitution. These results are discussed in the context of current models for the recognition of alloantigens and in light of the recently published three-dimensional structure of the HLA-A2.1 molecule.  相似文献   

10.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), encoded by nonstructural protein 5B (NS5B), is absolutely essential for the viral replication. Here we describe the development, characterization, and functional properties of the panel of monoclonal antibodies (mAbs) and specifically describe the mechanism of action of two mAbs inhibiting the NS5B RdRp activity. These mAbs recognize and bind to distinct linear epitopes in the fingers subdomain of NS5B. The mAb 8B2 binds the N-terminal epitope of the NS5B and inhibits both primer-dependent and de novo RNA synthesis. mAb 8B2 selectively inhibits elongation of RNA chains and enhances the RNA template binding by NS5B. In contrast, mAb 7G8 binds the epitope that contains motif G conserved in viral RdRps and inhibits only primer-dependent RNA synthesis by specifically targeting the initiation of RNA synthesis, while not interfering with the binding of template RNA by NS5B. To reveal the importance of the residues of mAb 7G8 epitope for the initiation of RNA synthesis, we performed site-directed mutagenesis and extensively characterized the functionality of the HCV RdRp motif G. Comparison of the mutation effects in both in vitro primer-dependent RdRp assay and cellular transient replication assay suggested that mAb 7G8 epitope amino acid residues are involved in the interaction of template-primer or template with HCV RdRp. The data presented here allowed us to describe the functionality of the epitopes of mAbs 8B2 and 7G8 in the HCV RdRp activity and suggest that the epitopes recognized by these mAbs may be useful targets for antiviral drugs.  相似文献   

11.
Hemi-exon shuffling and site-directed mutagenesis have been used to determine which amino acid differences between HLA-A2.1 and HLA-A2.2 alter the CTL-defined epitopes on these two molecules. Two genes were constructed that encode novel molecules in which the effect of amino acid differences at residues 9, 43, and 95, or at residue 156 could be separately evaluated. Using both human and murine CTL that were specific for either HLA-A2.1 or HLA-A2.2, four types of epitopes were identified: 1) epitopes that were insensitive to substitutions at either residues 9, 43, and 95, or residue 156 but were lost when all four positions were changed; 2) epitopes that were dependent on the residues 9, 43, 95, but not residue 156; 3) epitopes that were dependent on residue 156, but not amino acid residues 9, 43, and 95; and 4) epitopes that were dependent on residues 9, 43, and 95, as well as amino acid residue 156. Overall, there was a roughly equal distribution of clones recognizing each of these types of epitopes. Additional molecules were constructed by hemi-exon shuffling between the HLA-A2.2 and HLA-A2.3 genes, and by site-directed mutagenesis, to analyze the epitopes recognized by two HLA-A2.2/A2.1 cross-reactive murine CTL that do not recognize HLA-A2.3. Although the epitopes recognized by these CTL were unaffected by changes occurring at residues 9, 43, and 95, or at residues 149, 152, and 156 alone, simultaneous changes in both of these regions acted in concert to destroy the epitopes. Both of the CTL recognized epitopes that were lost when substitutions were made at residues 9, 43, 95, 149, and 152. The epitope recognized by one of the CTL was also destroyed by the substitution of residues 9, 43, 95, 152, and 156. Overall, these results indicate that residues 9, 43, and 95, as well as residues in the alpha-helical region of the molecule, are all capable of contributing to the definition of the epitopes recognized by HLA-A2.1- and HLA-A2.2-specific CTL. They further indicate that some epitopes can be mapped to a particular region of the molecule, whereas other epitopes are formed through a complex interaction of residues in distant regions of the molecule.  相似文献   

12.
Abstract Site-directed mutagenesis of the lamB gene was used to introduce individual cysteine substitutions at 20 sites in two regions (surface loops L7 and L8) of LamB protein significant in antibody recognition. Characterisation of cysteine mutants involved immunoblotting with three surface-specific monoclonal antibodies (mAb72, mAb302, mAb347) before and after incubation with thiol-specific reagents. In contrast to an earlier study that showed no amino acid changes affecting recognition by all three antibodies, changes at six amino acids were found to influence a common core epitope. These core sites included one residue (T336) in the predicted loop L7 containing amino acids 329–342 and four (Y379, N387, N389, K392, F398) in the large surface loop involving residues 370–412. Individual antibodies made additional but distinct contacts within the two studied regions, with mAb347 binding the most different and affected by seven substitutions in the 328–338 regions. The lamB mutants were also tested for phage λ receptor activity and starch binding before and after thiol modification and were useful in extending previous maps of these ligand binding sites.  相似文献   

13.
mAb to rat cytochrome c (cyt c), totaling 556, were produced by individual clones of secondary B lymphocytes from nine groups of five BALB/c mice each in vitro using the splenic focus culture system. Inasmuch as rat and mouse cyt c are identical, these B cells can be considered specific for a self-antigen. The mAb were categorized into specificity groups based on their reactivities with a panel of seven cyts c that differ at two to six amino acid residues. The number of distinct specificities for the native protein was restricted to fewer than 20. Different groups of mice expressed the same specificities at comparable frequencies, including a single dominant one, and the total number of secondary cyt c-specific B cells was constant among groups of mice. This suggests that the acquisition of the secondary B cell specificity repertoire for this self-antigen is regulated. However, it is indeed possible that each specificity group may comprise a number of distinct mAb molecules that have arisen stochastically. Specificities expressed by as few as 1% of the total mAb were observed. Thus, it is likely that the identified specificities reflect the secondary B cell specificity repertoire for rat cyt c. The dominant specificity expressed by 50% of the mAb was characterized by elimination of antigen recognition as a result of replacement of aspartic acid by glutamic acid at position 62. Minor specificities expressed by 19% of the mAb were characterized by more subtle affects of an amino acid change at position 62 and/or an amino acid substitution from rat cyt c at position 60. Antibodies in other specificity groups reacted with epitopes in the region of residues 44 and 47. Whereas substitutions at positions 44, 47, 60, and 62 eliminated recognition by most of the mAb, changes at position 92 and at 103 also appeared to affect the binding of some mAb in the region around residues 60 and 62. The amino acid residues implicated in the recognition by murine mAb of murine cyt c have been shown previously to be involved in the epitopes of foreign mammalian cyt c. Therefore, self-tolerance cannot fully explain the restriction of the epitopes to these regions on foreign mammalian cyt c.  相似文献   

14.

Background

Cockroach allergy is strongly associated with asthma, and involves the production of IgE antibodies against inhaled allergens. Reports of conformational epitopes on inhaled allergens are limited. The conformational epitopes for two specific monoclonal antibodies (mAb) that interfere with IgE antibody binding were identified by X-ray crystallography on opposite sites of the quasi-symmetrical cockroach allergen Bla g 2.

Methodology/Principal Findings

Mutational analysis of selected residues in both epitopes was performed based on the X-ray crystal structures of the allergen with mAb Fab/Fab′ fragments, to investigate the structural basis of allergen-antibody interactions. The epitopes of Bla g 2 for the mAb 7C11 or 4C3 were mutated, and the mutants were analyzed by SDS-PAGE, circular dichroism, and/or mass spectrometry. Mutants were tested for mAb and IgE antibody binding by ELISA and fluorescent multiplex array. Single or multiple mutations of five residues from both epitopes resulted in almost complete loss of mAb binding, without affecting the overall folding of the allergen. Preventing glycosylation by mutation N268Q reduced IgE binding, indicating a role of carbohydrates in the interaction. Cation-π interactions, as well as electrostatic and hydrophobic interactions, were important for mAb and IgE antibody binding. Quantitative differences in the effects of mutations on IgE antibody binding were observed, suggesting heterogeneity in epitope recognition among cockroach allergic patients.

Conclusions/Significance

Analysis by site-directed mutagenesis of epitopes identified by X-ray crystallography revealed an overlap between monoclonal and IgE antibody binding sites and provided insight into the B cell repertoire to Bla g 2 and the mechanisms of allergen-antibody recognition, including involvement of carbohydrates.  相似文献   

15.
Analysis of the site in CD4 that binds to the HIV envelope glycoprotein.   总被引:20,自引:0,他引:20  
The first step in infection of human mononuclear cells with HIV involves the high affinity binding of the viral envelope glycoprotein, gp120, to the cell-surface receptor, CD4. To gain a better understanding of the molecular basis of this interaction, we have analyzed the ability of gp120 to bind to a panel of 40 mutant CD4 proteins containing single or double amino acid substitutions. In addition, the binding of several anti-CD4 mAb to the mutant CD4 proteins was measured. These mAb were chosen on the basis of the previous demonstration that they bind to epitopes in CD4 adjacent to the gp120-binding site. This analysis permits discrimination between mutations that probably cause localized conformational changes and those that alter residues likely to make direct contact with gp120 and with the mAb. Our results indicate that gp120 from two different strains of HIV binds to a larger region of the CD4 protein than previously described. The data has also been used to map the epitopes of mAb previously identified as anti-idiotype vaccine candidates. The results have important implications for the development of CD4-based therapies for AIDS.  相似文献   

16.
We used site-directed mutagenesis of HLA-DR beta-chains to localize the binding sites for two polymorphic DR-binding mAb to residues in the first and second external domains, respectively. Transfer of three first domain alpha-helical residues, G73, R74 and N77, normally present in DR3a and DRw52a, to a DR4 beta-chain was sufficient for recognition of this mutant DR molecule by a DR3-specific mAb, NDS 9. A polymorphism controlling the binding of a DR4-specific mAb, GS 359-13F10, was mapped to a tyrosine at position 96 of the DR4 beta-chain second domain by the construction fo a chimeric DR molecule containing a DR2-first domain and DR4-second domain. The mapping of these two polymorphic epitopes to specific positions on the DR beta-chain will allow further structural and functional analysis of the DR molecule.  相似文献   

17.
The function and specific structural aspects of the tryptophan-rich sensory protein (TspO) of Rhodobacter sphaeroides 2.4.1 were studied using site-directed mutagenesis involving some 17 different amino acids. The choice of these amino acids changes was dictated from an analysis of the TspO family of proteins derived from the data bases. These studies demonstrated the importance of several highly conserved tryptophan residues in the sensory transduction pathway involving TspO through the proposed binding of an intermediate(s) in the tetrapyrrole biosynthesis pathway. These studies also revealed that the substitution of one or several of the amino acid residues dramatically affected, either directly or indirectly, the levels of TspO in the membranes of R. sphaeroides. Mounting evidence is presented suggesting that TspO normally forms a dimer within the bacterial outer membrane, and the dimer form of TspO may be the active form for TspO function. Because our earlier studies provided us with a functional framework within which to view these amino acid substitutions, we are able to suggest a preliminary model for TspO structure-function. Not only do these studies tell us more about TspO, but they also shed light on the TspO homologue, the drug-binding component of the mitochondrial peripheral benzodiazepine receptor. Mounting evidence draws numerous parallelism between these proteins and supports the significance of using TspO as a model for the structure and function of the mitochondrial protein.  相似文献   

18.
《MABS-AUSTIN》2013,5(3):637-648
Although multiple different procedures to characterize the epitopes recognized by antibodies have been developed, site-directed mutagenesis remains the method of choice to define the energetic contribution of antigen residues to binding. These studies are useful to identify critical residues and to delineate functional maps of the epitopes. However, they tend to underestimate the roles of residues that are not critical for binding on their own, but contribute to the formation of the target epitope in an additive, or even cooperative, way. Mapping antigenic determinants with a diffuse energetic landscape, which establish multiple individually weak interactions with the antibody paratope, resulting in high affinity and specificity recognition of the epitope as a whole, is thus technically challenging. The current work was aimed at developing a combinatorial strategy to overcome the limitations of site-directed mutagenesis, relying on comprehensive randomization of discrete antigenic regions within phage-displayed antigen libraries. Two model antibodies recognizing epidermal growth factor were used to validate the mapping platform. Abrogation of antibody recognition due to the introduction of simultaneous replacements was able to show the involvement of particular amino acid clusters in epitope formation. The abundance of some of the original residues (or functionally equivalent amino acids sharing their physicochemical properties) among the set of mutated antigen variants selected on a given antibody highlighted their contributions and allowed delineation of a detailed functional map of the corresponding epitope. The use of the combinatorial approach could be expanded to map the interactions between other antigens/antibodies.  相似文献   

19.
Although multiple different procedures to characterize the epitopes recognized by antibodies have been developed, site-directed mutagenesis remains the method of choice to define the energetic contribution of antigen residues to binding. These studies are useful to identify critical residues and to delineate functional maps of the epitopes. However, they tend to underestimate the roles of residues that are not critical for binding on their own, but contribute to the formation of the target epitope in an additive, or even cooperative, way. Mapping antigenic determinants with a diffuse energetic landscape, which establish multiple individually weak interactions with the antibody paratope, resulting in high affinity and specificity recognition of the epitope as a whole, is thus technically challenging. The current work was aimed at developing a combinatorial strategy to overcome the limitations of site-directed mutagenesis, relying on comprehensive randomization of discrete antigenic regions within phage-displayed antigen libraries. Two model antibodies recognizing epidermal growth factor were used to validate the mapping platform. Abrogation of antibody recognition due to the introduction of simultaneous replacements was able to show the involvement of particular amino acid clusters in epitope formation. The abundance of some of the original residues (or functionally equivalent amino acids sharing their physicochemical properties) among the set of mutated antigen variants selected on a given antibody highlighted their contributions and allowed delineation of a detailed functional map of the corresponding epitope. The use of the combinatorial approach could be expanded to map the interactions between other antigens/antibodies.  相似文献   

20.
Human ICAM-1 is the cellular receptor for the major group of human rhinoviruses (HRVs). Previous studies have suggested that the N-terminal domain of ICAM-1 is critical for binding of the major group rhinoviruses. To further define the residues within domain 1 that are involved in virus binding, we constructed an extensive series of ICAM-1 cDNAs containing single and multiple amino acid residue substitutions. In each case, substitutions involved replacement of the human amino acids with those found in murine ICAM-1 to minimize conformational effects. To facilitate the mutagenesis process, a synthetic gene encompassing the first two domains of ICAM-1 was constructed which incorporated 27 additional restriction sites to allow mutagenesis by oligonucleotide replacement. Each of the new constructs was placed into a Rous sarcoma virus vector and expressed in primary chicken embryo fibroblast cells. Binding assays were performed with six major group HRVs, including one high-affinity binding mutant of HRV-14, and two monoclonal antibodies. Results indicated that different serotypes displayed a range of sensitivities to various amino acid substitutions. Amino acid residues of ICAM-1 showing the greatest effect on virus and antibody binding included Pro-28, Lys-29, Leu-30, Leu-37, Lys-40, Ser-67, and Pro-70.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号