首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety of nucleic acid synthetic and degradative enzymes and proteases are shown to bind to trityl sepharose columns and, for the most part, retain moderate amounts of activity for periods of days to weeks. Non-covalent hydrophobic interactions are believed to be largely responsible for the observed binding and maintenance of activity. In addition the hydrophobic binding mechanism of poly A to trityl sepharose columns under a variety of conditions is compared with that to nitrocellulose columns and contrasted with that of dT cellulose columns.  相似文献   

2.
The concepts of rational design and solid phase combinatorial chemistry were used to develop affinity adsorbents for glycoproteins. A detailed assessment of protein–carbohydrate interactions was used to identify key residues that determine monosaccharide specificity, which were subsequently exploited as the basis for the synthesis of a library of glycoprotein binding ligands. The ligands were synthesised using solid phase combinatorial chemistry and were assessed for their sugar‐binding ability with the glycoenzymes, glucose oxidase and RNase B. Partial and completely deglycosylated enzymes were used as controls. The triazine‐based ligand, histamine/tryptamine (8/10) was identified as a putative glycoprotein binding ligand, since it displayed particular affinity for glucose oxidase and other mannosylated glycoproteins. Experiments with deglycosylated control proteins, specific eluants and retardation in the presence of competing sugars strongly suggest that the ligand binds the carbohydrate moiety of glucose oxidase rather than the protein itself. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Binding of Xenopus oocyte masking proteins to mRNA sequences.   总被引:1,自引:0,他引:1       下载免费PDF全文
It has been shown previously that maternal mRNA, synthesized and stored in growing oocytes, is stabilized and blocked from translation through various mechanisms including restricted polyadenylation and the binding of proteins to 3' regulatory elements. In addition to binding sequence-specific proteins, the bulk of stored mRNA is packaged with a set of 'masking' proteins, the most abundant of which are the phosphoproteins pp56 and pp60. In this report these proteins are shown to be bound to heterogeneous mRNA sequences and not to the 3' poly(A) tract. Crosslinking studies demonstrate that all of the pp56/60 present makes direct contact with the RNA. In vitro binding studies confirm that pp56/60 interact with single-stranded RNA of heterogeneous sequence, such as occurring in the maternal mRNA encoding cyclin B1. However, binding is equally effective to capped and polyadenylated cyclin mRNA, to truncated mRNA lacking 5' and 3' non-coding regions and even to the antisense sequence. Lengths of 70-80 nucleotides are protected from ribonuclease digestion after protein binding. Although no extended binding motif could be detected, binding does appear to have some specificity in that it is not competed out by 100-fold excess of double-stranded RNA, transfer RNA, poly(A) and various other homopolymers and heteropolymers. The sequence which competes most efficiently is the mixed polypyrimidine, poly(C,U). Crosslinking of RNA-protein complexes, followed by ribonuclease digestion, suggests that the arrangement of proteins on RNA is as dimers. Dimerization appears to be stabilized by phosphorylation of pp56/60. These results are discussed in terms of the known structures of pp56/60.  相似文献   

4.
5.
A procedure is described for the detection of opiate binding sites synthesized during in vitro translation of various mRNA preparations. RNA were isolated from membrane bound polysomes which were prepared from NG 108-15 hybridoma, C6BU1 glioma cells, as well as from N18TG2, NB2aAg and NB41A3 neuroblastoma cells. Polyadenylated [poly(A)+] RNA were purified, translated in vitro in a rabbit reticulocyte lysate and the translation products assayed for their ability to bind [3H] bremazocine. Bound and free ligands were separated by column chromatography. After translation of poly(A)+ RNA obtained from NG 108-15 cells we demonstrated a stereospecific, saturable binding of [3H]bremazocine (displaced by levorphanol and not by dextrorphan) with a Kd of 2.4 ± 1.0 nM. The total amount of opiate binding sites synthesized was 6.2 ± 0.5 fmol per μg of poly(A)+ RNA. Opiate binding sites were undetectable at zero time and a plateau was reached after translation had proceeded for 20 min. Five time less opiate binding sites were synthesized when the poly(A)+ RNA purified from N18TG2 neuroblastoma cells were used under the same experimental conditions. There was no detectable binding of opiate ligands with poly(A)+ RNA obtained from C6BU1 glioma cells, NB2aAg or NB41A3 neuroblastoma cells.  相似文献   

6.
We have determined the solution structure of the PABC domain from Saccharomyces cerevisiae Pab1p and mapped its peptide-binding site. PABC domains are peptide binding domains found in poly(A)-binding proteins (PABP) and are a subset of HECT-family E3 ubiquitin ligases (also known as hyperplastic discs proteins (HYDs)). In mammals, the PABC domain of PABP functions to recruit several different translation factors to the mRNA poly(A) tail. PABC domains are highly conserved, with high specificity for peptide sequences of roughly 12 residues with conserved alanine, phenylalanine, and proline residues at positions 7, 10, and 12. Compared with human PABP, the yeast PABC domain is missing the first alpha helix, contains two extra amino acids between helices 2 and 3, and has a strongly bent C-terminal helix. These give rise to unique peptide binding specificity wherein yeast PABC binds peptides from Paip2 and RF3 but not Paip1. Mapping of the peptide-binding site reveals that the bend in the C-terminal helix disrupts binding interactions with the N terminus of peptide ligands and leads to greatly reduced binding affinity for the peptides tested. No high affinity or natural binding partners from S. cerevisiae could be identified by sequence analysis of known PABC ligands. Comparison of the three known PABC structures shows that the features responsible for peptide binding are highly conserved and responsible for the distinct but overlapping binding specificities.  相似文献   

7.
A few drug-like molecules have recently been found to bind poly(A) and induce a stable secondary structure (Tm ≈ 60°C), even though this RNA homopolymer is single-stranded in the absence of a ligand. Here, we report results from experiments specifically designed to explore the association of small molecules with poly(A). We demonstrate that coralyne, the first small molecule discovered to bind poly(dA), binds with unexpectedly high affinity (Ka >107 M−1), and that the crescent shape of coralyne appears necessary for poly(A) binding. We also show that the binding of similar ligands to poly(A) can be highly cooperative. For one particular ligand, at least six ligand molecules are required to stabilize the poly(A) self-structure at room temperature. This highly cooperative binding produces very sharp transitions between unstructured and structured poly(A) as a function of ligand concentration. Given the fact that junctions between Watson–Crick and A·A duplexes are tolerated, we propose that poly(A) sequence elements and appropriate ligands could be used to reversibly drive transitions in DNA and RNA-based molecular structures by simply diluting/concentrating a sample about the poly(A)-ligand ‘critical concentration’. The ligands described here may also find biological or medicinal applications, owing to the 3′-polyadenylation of mRNA in living cells.  相似文献   

8.
将KGM凝胶和Sepharose 4B在同样条件下活化偶联,制成Cu~(2 )金属螫合亲和胶,亲和纯化猪血SOD,并对这两种亲和胶的层析效果和性能进行了比较。KGM金属螫合胶对猪血SOD吸附量、纯化倍数、纯化SOD的比活力和回收率分别为53000U/ml胶、19倍、12000U/mg蛋白和94.6%,而Sepharose 4B亲和胶对SOD 的吸附量、纯化倍数、纯化SOD的比活力和回收率分别为79920U/ml胶、11倍、10125U/mg蛋白和95.4%。两种亲和胶所纯化的SOD经聚丙烯酰胺凝胶电泳(PAGE)、活性染色及SDS聚丙烯酰胺凝胶电泳(SDS-PAGE)证明其均为电泳纯。KGM金属螯合胶使用六次后,其对SOD吸附量、去Cu量及SOD的回收率均无明显影响。  相似文献   

9.
Recent advances in the structural biology of the enzymes involved in fatty acid oxidation have revealed their catalytic mechanisms and modes of substrate binding. Although these enzymes all use coenzyme A (CoA) thioesters as substrates, they share no common polypeptide folding topology or CoA-binding motif. Each family adopts an entirely unique protein fold. Their mode of binding the CoA thioester is similar in that the fatty-acyl moiety is buried inside the protein and the nucleotide portion is mainly exposed to solvent; however, the conformations of the enzyme-bound CoA ligands vary considerably. Furthermore, a comparison of these structures suggests a structural basis for the broad substrate chain length specificity that is a unique feature of these enzymes.  相似文献   

10.
The availability of a high-resolution structure of the Thermobifida fusca endocellulase Cel6A catalytic domain makes this enzyme ideal for structure-based efforts to engineer cellulases with high activity on native cellulose. In order to determine the role of conserved, noncatalytic residues in cellulose hydrolysis, 14 mutations of six conserved residues in or near the Cel6A active-site cleft were studied for their effects on catalytic activity, substrate specificity, processivity and ligand-binding affinity. Eleven mutations were generated by site-directed mutagenesis using PCR, while three were from previous studies. All the CD spectra of the mutant enzymes were indistinguishable from that of Cel6A indicating that the mutations did not dramatically change protein conformation. Seven mutations in four residues (H159, R237, K259 and E263) increased activity on carboxymethyl cellulose (CM-cellulose), with K259H (in glucosyl subsite -2) creating the highest activity (370%). Interestingly, the other mutations in these residues reduced CM-cellulose activity. Only the K259H enzyme retained more activity on acid-swollen cellulose than on filter paper, suggesting that this mutation affected the rate-limiting step in crystalline cellulose hydrolysis. All the mutations lowered activity on cellotriose and cellotetraose, but two mutations, both in subsite +1 (H159S and N190A), had higher kcat/Km values (6.6-fold and 5.0-fold, respectively) than Cel6A on 2,4-dinitrophenyl-beta-D-cellobioside. Measurement of enzyme : ligand dissociation constants for three methylumbelliferyl oligosaccharides and cellotriose showed that all mutant enzymes bound these ligands either to the same extent as or more weakly than Cel6A. These results show that conserved noncatalytic residues can profoundly affect Cel6A activity and specificity.  相似文献   

11.
Treatment of rats with Cordycepin (3'-deoxyadenosine), an inhibitor of nuclear poly(A) synthesis, selectively decreased the energy and cytosol-dependent release of a portion of the mRNA species from the isolated hepatic nuclei in a cell-free system by approximately 40%. An analysis of the differential binding of the transported mRNA containing poly(A) tracts to nitrocellulose filters, and to cellulose or poly(U)-Sepharose columns suggested that the poly(A) tracts in the mRNA transported from the isolated hepatic nuclei of Cordycepin-treated rats, are decreased in size. This size decrease was confirmed through an analysis of the average size of the poly(A) tracts, released from the messengers by ribonuclease activity, on sucrose density gradients.  相似文献   

12.
Medina-Kauwe LK  Leung V  Wu L  Kedes L 《BioTechniques》2000,29(3):602-4, 606-8, 609
We have developed a simple scheme for characterizing ligand-receptor binding and post-binding activity on living cells. Our approach makes use of green fluorescent protein (GFP) as an auto-fluorescent tag to label protein ligands. We have constructed GFP-tagged ligands that can be expressed in bacteria as soluble fusion proteins. A cell-binding assay using fluorescence-activated cell sorting (FACS) demonstrates that GFP-tagged proteins retain their wild-type receptor-binding specificity. Using this assay, we measure ligand binding on unfixed cells and demonstrate receptor specificity using specific competitors. To determine the ability of receptor targets to internalize, we developed a second FACS-based assay to detect the rate and percentage of internalized ligand in living cells. Noninternalizing control ligands and fluorescence microscopy of treated cells confirm that our assay is reliable for determining receptor internalization activity.  相似文献   

13.
The recycling of photosynthetically fixed carbon, by the action of microbial plant cell wall hydrolases, is integral to one of the major geochemical cycles and is of considerable industrial importance. Non-catalytic carbohydrate-binding modules (CBMs) play a key role in this degradative process by targeting hydrolytic enzymes to their cognate substrate within the complex milieu of polysaccharides that comprise the plant cell wall. Family 29 CBMs have, thus far, only been found in an extracellular multienzyme plant cell wall-degrading complex from the anaerobic fungus Piromyces equi, where they exist as a CBM29-1:CBM29-2 tandem. Here we present both the structure of the CBM29-1 partner, at 1.5 A resolution, and examine the importance of hydrophobic stacking interactions as well as direct and solvent-mediated hydrogen bonds in the binding of CBM29-2 to different polysaccharides. CBM29 domains display unusual binding properties, exhibiting specificity for both beta-manno- and beta-gluco-configured ligands such as mannan, cellulose, and glucomannan. Mutagenesis reveals that "stacking" of tryptophan residues in the n and n+2 subsites plays a critical role in ligand binding, whereas the loss of tyrosine-mediated stacking in the n+4 subsite reduces, but does not abrogate, polysaccharide recognition. Direct hydrogen bonds to ligand, such as those provided by Arg-112 and Glu-78, play a pivotal role in the interaction with both mannan and cellulose, whereas removal of water-mediated interactions has comparatively little effect on carbohydrate binding. The interactions of CBM29-2 with the O2 of glucose or mannose contribute little to binding affinity, explaining why this CBM displays dual gluco/manno specificity.  相似文献   

14.
A novel resin designed for solid‐phase synthesis of peptide hydroxamic acids (PHA) combining the trityl linker with poly(ethylene glycol)‐based support, ChemMatrix® type, is described. The synthesis of PHA can be performed according to a standard protocol, providing products in excellent purity and reasonable yields. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
To investigate poly(A)-lacking mRNA in mouse kidney, we studied a fraction of renal mRNA that does not bind to oligo(dT)-cellulose but can be purified by benzoylated cellulose chromatography. Nominal poly(A)-lacking mRNA and poly(A)-containing mRNA have complete nucleotide sequence homology, suggesting that kidney does not contain mRNAs that are not represented in the polyadenylated RNA fraction. Translation products directed by nominal poly(A)-lacking mRNA and poly(A)-containing mRNA are qualitatively and quantitatively similar in one-dimensional polyacrylamide gels. [3H]cDNA transcribed from poly(A)-containing mRNA hybridizes with its template and with nominal poly(A)-lacking mRNA to the same extent (95%) and with the same kinetics; reaction of [3H]cDNA to nominal poly(A)-lacking mRNA with the two mRNA populations gives the same result. The extensive homology these two mRNA populations share is important to the interpretation of mRNA lifetime and to the analysis of authentic poly(A)-lacking mRNAs.  相似文献   

16.
Different binding affinities of various distamycin analogs including the deformylated derivative with poly(dA-dC)·poly(dG-dT) were investigated using CD measurements. The inhibitory effect of distamycins on the DNAase I cleavage activity of DNA duplexes strongly supports the binding data. The base specificity of the ligand interaction with duplex DNA depends on the chain length of distamycin analogs. Netropsin, distamycin-2 and the deformylated distamycin-3 show no binding to dG·dC containing sequences at moderate ionic strength and are classified as highly dA·dT specific. In contrast distamycin having three, four or five methylpyrrolecarboxamide groups also forms more or less stable complexes with dG·dC-containing duplexes. These ligands possess a lower basepair specificity. The correlation between binding behavior and oligopeptide structure shows that presence of the number of hydrogen acceptor and donor sites determines the basepair and sequence specificity. The additional interaction with dG·dC pairs becomes essential when the number of hydrogen acceptor sites exceeds n = 3.  相似文献   

17.
Abstract The five conserved tryptophan residues in the cellulose binding domain of xylanase A from Pseudomonas fluorescens subsp. cellulosa were replaced with alanine and phenylalanine. The mutated domains were fused to mature alkaline phosphatase, and the capacity of the hybrid proteins to bind cellulose was assessed. Alanine substitution of the tryptophan residues, in general, resulted in a significant decrease in the capacity of the cellulose binding domains to bind cellulose. Mutant domains containing phenylalanine substitution retained some affinity for cellulose. The C-terminal proximal tryptophan did not play an important role in ligand binding, while Trp13, Trp34 and Trp38 were essential for the cellulose binding domain to retain cellulose binding capacity. Data presented in this study suggest major differences in the mechanism of cellulose attachment between Pseudomonas and Cellulomonas cellulose binding domains.  相似文献   

18.
Nucleic acid editing enzymes are essential components of the human immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins. Among these enzymes are cytidine deaminases of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide‐like (APOBEC) super family, each with unique target sequence specificity and subcellular localization. We focus on the DNA‐editing APOBEC3 enzymes that have recently attracted attention because of their involvement in cancer and potential in gene‐editing applications. We review and compare the crystal structures of APOBEC3 (A3) domains, binding interactions with DNA, substrate specificity, and activity. Recent crystal structures of A3A and A3G bound to ssDNA have provided insights into substrate binding and specificity determinants of these enzymes. Still many unknowns remain regarding potential cooperativity, nucleic acid interactions, and systematic quantification of substrate preference of many APOBEC3s, which are needed to better characterize the biological functions and consequences of misregulation of these gene editors.  相似文献   

19.
20.
Heteromultivalency provides a route to increase binding avidity and to high specificity when compared to monovalent ligands. The enhanced specificity can potentially serve as a unique platform to develop diagnostics and therapeutics. To develop new imaging agents based upon multivalency, we employed heterobivalent constructs of optimized ligands. In this report, we describe synthetic methods we have developed for the preparation of heterobivalent constructs consisting of ligands targeted simultaneously to the melanocortin receptor, hMC4R, and the cholecystokinin receptors, CCK-2R. Modeling data suggest that a linker distance span of 20–50 Å is needed to crosslink these two G-protein coupled receptors (GPCRs). The two ligands were tethered with linkers of varying rigidity and length, and flexible polyethylene glycol based PEGO chain or semi-rigid [poly(Pro-Gly)] linkers were employed for this purpose. The described synthetic strategy provides a modular way to assemble ligands and linkers on solid-phase supports. Examples of heterobivalent ligands are provided to illustrate the increased binding avidity to cells that express the complementary receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号