首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During chemical denaturation different intermediate states are populated or suppressed due to the nature of the denaturant used. Chemical denaturation by guanidine-HCl (GuHCl) of human carbonic anhydrase II (HCA II) leads to a three-state unfolding process (Cm,NI=1.0 and Cm,IU=1.9 M GuHCl) with formation of an equilibrium molten-globule intermediate that is stable at moderate concentrations of the denaturant (1-2 M) with a maximum at 1.5 M GuHCl. On the contrary, urea denaturation gives rise to an apparent two-state unfolding transition (Cm=4.4 M urea). However, 8-anilino-1-naphthalene sulfonate (ANS) binding and decreased refolding capacity revealed the presence of the molten globule in the middle of the unfolding transition zone, although to a lesser extent than in GuHCl. Cross-linking studies showed the formation of moderate oligomer sized (300 kDa) and large soluble aggregates (>1000 kDa). Inclusion of 1.5 M NaCl to the urea denaturant to mimic the ionic character of GuHCl leads to a three-state unfolding behavior (Cm,NI=3.0 and Cm,IU=6.4 M urea) with a significantly stabilized molten-globule intermediate by the chloride salt. Comparisons between NaCl and LiCl of the impact on the stability of the various states of HCA II in urea showed that the effects followed what could be expected from the Hofmeister series, where Li+ is a chaotropic ion leading to decreased stability of the native state. Salt addition to the completely urea unfolded HCA II also led to an aggregation prone unfolded state, that has not been observed before for carbonic anhydrase. Refolding from this state only provided low recoveries of native enzyme.  相似文献   

2.
Cation-induced toroidal condensation of DNA studies with Co3+(NH3)6   总被引:30,自引:0,他引:30  
The unfolding and refolding of Staphylococcus aureus penicillinase have been followed by urea-gradient electrophoresis. Unfolding of the native state proceeds by an all-or-none transition to fully unfolded protein, with no detectable accumulation of partially unfolded states. In contrast, refolding is complex and proceeds by very rapid, reversible formation of a partially folded state, H, which had been detected and characterized previously, as it is the most stable conformation at intermediate denaturant concentrations. At very low urea concentrations, a more compact conformational state was observed as a transient intermediate in refolding. There was little kinetic heterogeneity of the unfolded protein, as is normally observed with proteins containing proline residues.  相似文献   

3.
Equilibrium and kinetic effects on the folding of T4 lysozyme were investigated by fluorescence emission spectroscopy in cryosolvent. To study the role of disulfide cross-links in stability and folding, a comparison was made with a mutant containing an engineered disulfide bond between Cys-3 (Ile-3 in the wild type) and Cys-97, which links the C-terminal domain to the N terminus of the protein [Perry & Wetzel (1984) Science 226, 555]. In our experimental system, stability toward thermal and denaturant unfolding was increased slightly as a result of the cross-link. The corresponding reduced protein was significantly less stable than the wild type. Unfolding and refolding kinetics were carried out in 35% methanol, pH 6.8 at -15 degrees C, with guanidine hydrochloride as the denaturant. Unfolding/refolding of the wild-type and reduced enzyme showed biphasic kinetics both within and outside the denaturant-induced transition region and were consistent with the presence of a populated intermediate in folding. Double-jump refolding experiments eliminated proline isomerization as a possible cause for the biphasicity. The disulfide mutant protein, however, showed monophasic kinetics in all guanidine concentrations studied.  相似文献   

4.
The structural and functional aspects of ervatamin B were studied in solution. Ervatamin B belongs to the alpha + beta class of proteins. The intrinsic fluorescence emission maximum of the enzyme was at 350 nm under neutral conditions, and at 355 nm under denaturing conditions. Between pH 1.0- 2.5 the enzyme exists in a partially unfolded state with minimum or no tertiary structure, and no proteolytic activity. At still lower pH, the enzyme regains substantial secondary structure, which is predominantly a beta-sheet conformation and shows a strong binding to 8-anilino-1- napthalene-sulfonic acid (ANS). In the presence of salt, the enzyme attains a similar state directly from the native state. Under neutral conditions, the enzyme was stable in urea, while the guanidine hydrochloride (GuHCl) induced equilibrium unfolding was cooperative. The GuHCl induced unfolding transition curves at pH 3.0 and 4.0 were non-coincidental, indicating the presence of intermediates in the unfolding pathway. This was substantiated by strong ANS binding that was observed at low concentrations of GuHCl at both pH 3.0 and 4.0. The urea induced transition curves at pH 3.0 were, however, coincidental, but non-cooperative. This indicates that the different structural units of the enzyme unfold in steps through intermediates. This observation is further supported by two emission maxima in ANS binding assay during urea denaturation. Hence, denaturant induced equilibrium unfolding pathway of ervatamin B, which differs from the acid induced unfolding pathway, is not a simple two-state transition but involves intermediates which probably accumulate at different stages of protein folding and hence adds a new dimension to the unfolding pathway of plant proteases of the papain superfamily.  相似文献   

5.
Sridevi K  Udgaonkar JB 《Biochemistry》2002,41(5):1568-1578
The folding and unfolding rates of the small protein, barstar, have been monitored using stopped-flow measurements of intrinsic tryptophan fluorescence at 25 degrees C, pH 8.5, and have been compared over a wide range of urea and guanidine hydrochloride (GdnHCl) concentrations. When the logarithms of the rates of folding from urea and from GdnHCl unfolded forms are extrapolated linearly with denaturant concentration, the same rate is obtained for folding in zero denaturant. Similar linear extrapolations of rates of unfolding in urea and GdnHCl yield, however, different unfolding rates in zero denaturant, indicating that such linear extrapolations are not valid. It has been difficult, for any protein, to determine unfolding rates under nativelike conditions in direct kinetic experiments. Using a novel strategy of coupling the reactivity of a buried cysteine residue with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) to the unfolding reaction of barstar, the global unfolding and refolding rates have now been determined in low denaturant concentrations. The logarithms of unfolding rates obtained at low urea and GdnHCl concentrations show a markedly nonlinear dependence on denaturant concentration and converge to the same unfolding rate in the absence of denaturant. It is shown that the native protein can sample the fully unfolded conformation even in the absence of denaturant. The observed nonlinear dependences of the logarithms of the refolding and unfolding rates observed for both denaturants are shown to be due to the presence of (un)folding intermediates and not due to movements in the position of the transition state with a change in denaturant concentration.  相似文献   

6.
A recombinant human interleukin-6 mutant with enhanced conformational stability toward denaturant was obtained by site-specific mutagenesis. The clone was identified as having a single amino acid substitution of Lys70Glu. When urea-induced denaturation was monitored by the change in fluorescence intensity at 360 nm, Lys70Glu mutation shifted the midpoint of unfolding transition from 5.8 M (wild type) to 6.6 M urea. This mutation did not impair the biological activity.  相似文献   

7.
1. The fluorescence and circular dichroism of four homogeneous preparations of ATPase (adenosine triphosphatase) from Micrococcus lysodeikticus differing in molecular structure and enzymic properties were examined at pH 7.5 and 25 degrees. Emission was maximum at 325 and 335 nm and the relative intensities at these wavelengths may be used to characterize the different ATPase preparations. The circular-dichroism spectra exhibited negative extrema at 208 and 220 nm, and the relative value of the molar ellipticity at these wavelengths was also different for each molecular form of the enzyme. 2. The four preparations undergo two consecutive major unfolding transitions in guanidinium chloride (midpoints at 0.94 and 1.5 M denaturant), with concomitant destruction of the quaternary structure of the protein. A comparatively minor alteration in the ATPase structure also occurred in 0.05-0.2M-guanidine and led to complete inactivation of the enzyme. The inactivation and the first unfolding transition were reversible by dilution of the denaturant; the transition with midpoint at 1.5M-guanidine was irreversible. 3. Similar results were obtained in urea, except that the successive transitions had midpoints at concentrations of denaturant of 0.4, 2.0 and 4.5M. Low concentrations of urea caused a noticeable activation of the enzyme activity and alterations of the electrophoretic mobility of the ATPase. 4. A model is proposed in which one of the major subunits, alpha, is first dissociated and unfolded reversibly by the denaturants, followed by the irreversible unfolding and dissociation of the other major subunit, beta, from subunit delta and/or the components of relative mobility 1.0 in dodecyl sulphate/polyacrylamide-gel electrophoresis (rho).  相似文献   

8.
M Herold  K Kirschner 《Biochemistry》1990,29(7):1907-1913
The unfolding and dissociation of the dimeric enzyme aspartate aminotransferase (D) from Escherichia coli by guanidine hydrochloride have been investigated at equilibrium. The overall process was reversible, as judged from almost complete recovery of enzymic activity after dialysis of 0.7 mg of denatured protein/mL against buffer. Unfolding and dissociation were monitored by circular dichroism and fluorescence spectroscopy and occurred in three separate phases: D in equilibrium 2M in equilibrium 2M* in equilibrium 2U. The first transition at about 0.5 M guanidine hydrochloride coincided with loss of enzyme activity. It was displaced toward higher denaturant concentrations by the presence of either pyridoxal 5'-phosphate or pyridoxamine 5'-phosphate and toward lower denaturant concentrations by decreasing the protein concentration. Therefore, bound coenzyme stabilizes the dimeric state, and the monomer (M) is inactive because the shared active sites are destroyed by dissociation of the dimer. M was converted to M* and then to the fully unfolded monomer (U) in two subsequent transitions. M* was stable between 0.9 and 1.1 M guanidine hydrochloride and had the hydrodynamic radius, circular dichroism, and fluorescence of a monomeric, compact "molten globule" state.  相似文献   

9.
The activity and conformational change of human placental cystatin (HPC), a low molecular weight thiol proteinase inhibitor (12,500) has been investigated in presence of guanidine hydrochloride (GdnHCl) and urea. The denaturation of HPC was followed by activity measurements, fluorescence spectroscopy and Circular Dichroism (CD) studies. Increasing the denaturant concentration significantly enhanced the inactivation and unfolding of HPC. The enzyme was 50% inactivated at 1.5 M GdnHCl or 3 M urea. Up to 1.5 M GdnHCl concentration there was quenching of fluorescence intensity compared to native form however at 2 M concentration intensity increased and emission maxima had 5 nm red shift with complete unfolding in 4–6 M range. The mid point of transition was in the region of 1.5–2 M. In case of urea denaturation, the fluorescence intensity increased gradually with increase in the concentration of denaturant. The protein unfolded completely in 6–8 M concentration of urea with a mid-point of transition at 3 M. CD spectroscopy shows that the ellipticity of HPC has increased compared to that of native up to 1.5 M GdnHCl and then there is gradual decrease in ellipticity from 2 to 5 M concentration. At 6 M GdnHCl the protein had random coil conformation. For urea the ellipticity decreases with increase in concentration showing a sigmoidal shaped transition curve with little change up to 1 M urea. The protein greatly loses its structure at 6 M urea and at 8 M it is a random coil. The urea induced denaturation follows two-state rule in which Native→Denatured state transition occurs in a single step whereas in case of GdnHCl, intermediates or non-native states are observed at lower concentrations of denaturant. These intermediate states are possibly due to stabilizing properties of guanidine cation (Gdn+) at lower concentrations, whereas at higher concentrations it acts as a classical denaturant.  相似文献   

10.
Ervatamin C, a novel cysteine protease, belongs to alpha + beta class of proteins, probably with two domains, and retains both secondary and tertiary structures along with biological activity over a wide range of pH (2-12). Under neutral conditions, GuHCl and temperature-induced unfolding was cooperative with high transition midpoints and shows no structural changes in the presence of urea reflecting a remarkable stability. The fluorescence emission maximum at 350 nm suffers a blue shift of 4-5 nm upon lowering the pH and a red shift of 5 nm under denatured conditions. Unfolding transition curves at pH 2.0 are non-coincidental indicating the presence of intermediates in the unfolding pathway. At extremely low pH, the enzyme loses all the tertiary structure and proteolytic activity but retains a predominant secondary structure and a strong binding to ANS. GuHCl-induced unfolding of the enzyme in this intermediate state is noncooperative and indicates sequential unfolding of the domains.  相似文献   

11.
以往对绿脓杆菌去辅基天青蛋白变性机制的研究认为它经历了一个复杂的反应过程,相比之下,锌离子替代的天青蛋白的变性符合简单的二态模型。以脲为变性剂对去辅基天青蛋白突变体M121L的变性过程进行了研究。结果表明,虽然稳态条件下突变体的变性/复性符合二态模型,但其动力学过程复杂,并可用溶液中存在着两种可以相互转化的构象的变性/复性来解释。天然态N1去折叠的速度快,其重折叠的速度也快,N1的折叠机制可用存在着折叠途径上的快速折叠中间体模型来描述;天然态N2的去折叠速度慢,其重折叠主要是首先生成天然态N1,然后再缓慢地转化成N2。添加Zn^2 能够把两种构象整合成一种构象,相应地,Zn^2 替代的天青蛋白突变体的变性过程简化为单指数过程。对该突变体的研究加深了对天青蛋白去折叠机制的理解。  相似文献   

12.
The unfolding transition and kinetic refolding of dimeric creatine kinase after urea denaturation were monitored by intrinsic fluorescence and far ultraviolet circular dichroism. An equilibrium intermediate and a kinetic folding intermediate were identified and characterized. The fluorescence intensity of the equilibrium intermediate is close to that of the unfolded state, whereas its ellipticity at 222 nm is about 50% of the native state. The transition curves measured by these two methods are therefore non-coincident. The kinetic folding intermediate, formed during the burst phase of refolding under native-like conditions, possesses 75% of the native secondary structure, but is mostly lacking in native tertiary structure. In moderate concentrations of urea, only the initial, rapid change in fluorescence intensity or negative ellipticity is observed, and the final state values do not reach the equivalent unfolding values. The unfolding and refolding transition curves measured under identical conditions are non-coincident within the transition from intermediate to fully unfolded state. It is observed by SDS-PAGE that disulfide bond-linked dimeric or oligomeric intermediates are formed in moderate urea concentrations, especially in the refolding reaction. These rapidly formed, soluble intermediates represent an off-pathway event that leads to the hysteresis in the refolding transition curves.  相似文献   

13.
The activity and the conformational changes of methanol dehydrogenase (MDH), a quinoprotein containing pyrrolo-quinoline quinone as its prosthetic group, have been studied during denaturation in guanidine hydrochloride (GdnHCl) and urea. The unfolding of MDH was followed using the steady-state and time resolved fluorescence methods. Increasing the denaturant concentration in the denatured system significantly enhanced the inactivation and unfolding of MDH. The enzyme was completely inactivated at 1 M GdnHCl or 6 M urea. The fluorescence emission maximum of the native enzyme was at 332 nm. With increasing denaturant concentrations, the fluorescence emission maximum red-shifted in magnitude to a maximum value (355 nm) at 5 M GdnHCl or 8 M urea. Comparison of inactivation and conformational changes during denaturation showed that in general accord with the suggestion made previously by Tsou, the active sites of MDH are situated in a region more flexible than the molecule as a whole.  相似文献   

14.
The cytosolic malic enzyme from the pigeon liver is sensitive to chemical denaturant urea. When monitored by protein intrinsic fluorescence or circular dichroism spectral changes, an unfolding of the enzyme in urea at 25 degrees C and pH 7.4 revealed a biphasic phenomenon with an intermediate state detected at 4-5 m urea. The enzyme activity was activated by urea up to 1 m but was completely lost before the intermediate state was detected. This suggests that the active site region of the enzyme was more sensitive to chemical denaturant than other structural scaffolds. In the presence of 4 mm Mn(2+), the urea denaturation pattern of malic enzyme changed to monophasic. Mn(2+) helped the enzyme to resist phase I urea denaturation. The [urea](0.5) for the enzyme inactivation shifted from 2.2 to 3.8 m. Molecular weight determined by the analytical ultracentrifuge indicated that the tetrameric enzyme was dissociated to dimers in the early stage of phase I denaturation. In the intermediate state at 4-5 m urea, the enzyme showed polymerization. However, the polymer forms were dissociated to unfolded monomers at a urea concentration greater than 6 m. Mn(2+) retarded the polymerization of the malic enzyme. Three mutants of the enzyme with a defective metal ligand (E234Q, D235N, E234Q/D235N) were cloned and purified to homogeneity. These mutant malic enzymes showed a biphasic urea denaturation pattern in the absence or presence of Mn(2+). These results indicate that the Mn(2+) has dual roles in the malic enzyme. The metal ion not only plays a catalytic role in stabilization of the reaction intermediate, enol-pyruvate, but also stabilizes the overall tetrameric protein architecture.  相似文献   

15.
The intestinal fatty acid binding protein contains two tryptophan residues (Trp6 and Trp82) both of which have been shown by X-ray and NMR methods to be buried in hydrophobic clusters. By using a combination of steady-state and time-resolved fluorescence experiments, we have deconvoluted the lifetime weighted contribution of each of the tryptophans to the steady-state fluorescence quantum yield. While Trp82 has been implicated in an intermediate that appears at relatively high denaturant concentrations, the variation of the lifetime weighted contribution of Trp6 with urea or guanidium hydrochloride shows formation of an intermediate state at low concentrations of the denaturant before the actual unfolding starts. Trp82 did not show similar behavior. Fluorescence quenching experiments by acrylamide show that while Trp6 in the native protein is less solvent-exposed, its accessibility is increased significantly at low urea concentration indicating that the early intermediate state is partially unfolded. Time-resolved anisotropy experiments indicate that the volume of the partially unfolded intermediates is larger than the native protein and lead to the speculation that the last step of the protein folding might be the removal of solvent molecules from the protein.  相似文献   

16.
The significance of two interface arginine residues on the structural integrity of an obligatory dimeric enzyme thymidylate synthase (TS) from Lactobacillus casei was investigated by thermal and chemical denaturation. While the R178F mutant showed apparent stability to thermal denaturation by its decreased tendency to aggregate, the Tm of the R218K mutant was lowered by 5 degrees C. Equilibrium denaturation studies in guanidinium chloride (GdmCl) and urea indicate that in both the mutants, replacement of Arg residues results in more labile quaternary and tertiary interactions. Circular dichroism studies in aqueous buffer suggest that the protein interior in R218K may be less well-packed as compared to the wild type protein. The results emphasize that quaternary interactions may influence the stability of the tertiary fold of TS. The amino acid replacements also lead to notable alteration in the ability of the unfolding intermediate of TS to aggregate. The aggregated state of partially unfolded intermediate in the R178F mutant is stable over a narrower range of denaturant concentrations. In contrast, there is an exaggerated tendency on the part of R218K to aggregate in intermediate concentrations of the denaturant. The 3 A crystal structure of the R178F mutant reveals no major structural change as a consequence of amino acid substitution. The results may be rationalized in terms of mutational effects on both the folded and unfolded state of the protein. Site specific amino acid substitutions are useful in identifying specific regions of TS involved in association of non-native protein structures.  相似文献   

17.
Anil B  Li Y  Cho JH  Raleigh DP 《Biochemistry》2006,45(33):10110-10116
Interest in the unfolded state of proteins has grown with the realization that this state can have considerable structure in the absence of denaturants. Natively unfolded proteins, mutations that unfold proteins under native conditions, and changes in pH that induce unfolding are attractive models for the unfolded state in the absence of denaturant. The unfolded state of the N-terminal domain of ribosomal protein L9 (NTL9) was previously shown to contain significant non-native electrostatic interactions [Cho, J. H., Sato, S., and Raleigh, D. P. (2004) J. Mol. Biol. 338, 827-837]. NTL9 has a mixed alpha-beta structure and folds via a two-state mechanism. We have generated a model of the unfolded state of NTL9 in the absence of denaturant by substitution of an alanine for phenylalanine 5 located in the core of this protein. The CD spectrum of the variant, denoted as F5A, exhibits significantly less structure than the wild type; however, the mean residue ellipticity of F5A at 222 nm (-8200 deg cm(2) dmol(-)(1)) is considerably larger than expected for a fully unfolded protein, indicating that residual secondary structure is populated. F5A also has more residual structure than the urea-unfolded wild type. The stability of F5A is estimated to be at least 1 kcal/mol unfavorable, showing that the unfolded state is populated to 84% or more. NMR pulsed-field gradient measurements yield a hydrodynamic radius of 16.1 A for wild-type NTL9 and 20.8 A for the F5A variant in native buffer. The physiologically relevant unfolded state of wild-type NTL9 is likely to be even more compact than F5A since the mutation should reduce the level of hydrophobic clustering in the unfolded state in the absence of denaturant. The hydrodynamic radius of F5A increases to 25.9 A in 8 M urea, and a value of 23.5 A is obtained for the wild type under similar conditions. The results show that the unfolded state of F5A in the absence of denaturant is more compact and contains more structure than the urea-unfolded form.  相似文献   

18.
The inactivation of lobster muscle D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) (GAPDH) during guanidine hydrochloride (GdnHCl) denaturation has been compared with its state of aggregation and unfolding, by light scattering and fluorescence measurements. The enzyme first dissociates at low concentrations of GdnHCl, followed by the formation of a highly aggregated state with increasing denaturant concentrations, and eventually by complete unfolding and dissociation to the monomer at concentrations of greater than 2 M GdnHCl. The aggregation and final dissociation correspond roughly with the two stages of fluorescence changes reported previously (Xie, G.-F. and Tsou, C.-L. (1987) Biochim. Biophys. Acta 911, 19-24). Rate measurements show a very rapid inactivation, the extents of which increase with increasing concentrations of GdnHCl. This initial rapid phase of inactivation which takes place before dissociation and unfolding of the molecule is in agreement with the results obtained with other enzymes, that the active site is affected before noticeable conformational changes can be detected for the enzyme molecule as a whole. A scheme for the steps leading to the final denaturation, and dissociation of the enzyme to the inactive and unfolded monomer, is proposed.  相似文献   

19.
Unassisted refolding of urea unfolded rhodanese   总被引:4,自引:0,他引:4  
In vitro refolding after urea unfolding of the enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) normally requires the assistance of detergents or chaperonin proteins. No efficient, unassisted, reversible unfolding/folding transition has been demonstrated to date. The detergents or the chaperonin proteins have been proposed to stabilize folding intermediates that kinetically limit folding by aggregating. Based on this hypothesis, we have investigated a number of experimental conditions and have developed a protocol for refolding, without assistants, that gives evidence of a reversible unfolding transition and leads to greater than 80% recovery of native enzyme. In addition to low protein concentration (10 micrograms/ml), low temperatures are required to maximize refolding. Otherwise optimal conditions give less than 10% refolding at 37 degrees C, whereas at 10 degrees C the recovery approaches 80%. The unfolding/refolding phases of the transition curves are most similar in the region of the transition, and refolding yields are significantly reduced when unfolded rhodanese is diluted to low urea concentrations, rather than to concentrations near the transition region. This is consistent with the formation of "sticky" intermediates that can remain soluble close to the transition region. Apparently, nonnative structures, e.g. aggregates, can form rapidly at low denaturant concentrations, and their subsequent conversion to the native structure is slow.  相似文献   

20.
Equilibrium unfolding of stem bromelain (SB) with urea as a denaturant has been monitored as a function of pH using circular dichroism and fluorescence emission spectroscopy. Urea-induced denaturation studies at pH 4.5 showed that SB unfolds through a two-state mechanism and yields ΔG (free energy difference between the fully folded and unfolded forms) of ∼5.0 kcal/mol and C m (midpoint of the unfolding transition) of ∼6.5 M at 25°C. Very high concentration of urea (9.5 M) provides unusual stability to the protein with no more structural loss and transition to a completely unfolded state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号