首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus subtilis LmrA is known to be a repressor that regulates the lmrAB and yxaGH operons; lmrB and yxaG encode a multidrug resistance pump and quercetin 2,3-dioxygenase, respectively. DNase I footprinting analysis revealed that LmrA and YxaF, which are paralogous to each other, bind specifically to almost the same cis sequences, LmrA/YxaF boxes, located in the promoter regions of the lmrAB operon, the yxaF gene, and the yxaGH operon for their repression and containing a consensus sequence of AWTATAtagaNYGgTCTA, where W, Y, and N stand for A or T, C or T, and any base, respectively (three-out-of-four match [in lowercase type]). Gel retardation analysis indicated that out of the eight flavonoids tested, quercetin, fisetin, and catechin are most inhibitory for LmrA to DNA binding, whereas quercetin, fisetin, tamarixetin, and galangin are most inhibitory for YxaF. Also, YxaF bound most tightly to the tandem LmrA/YxaF boxes in the yxaGH promoter region. The lacZ fusion experiments essentially supported the above-mentioned in vitro results, except that galangin did not activate the lmrAB and yxaGH promoters, probably due to its poor incorporation into cells. Thus, the LmrA/YxaF regulon presumably comprising the lmrAB operon, the yxaF gene, and the yxaGH operon is induced in response to certain flavonoids. The in vivo experiments to examine the regulation of the synthesis of the reporter beta-galactosidase and quercetin 2,3-dioxgenase as well as that of multidrug resistance suggested that LmrA represses the lmrAB and yxaGH operons but that YxaF represses yxaGH more preferentially.  相似文献   

2.
The periplasmic maltose-binding protein (MBP or MalE protein) of Escherichia coli is an essential element in the transport of maltose and maltodextrins and in the chemotaxis towards these sugars. On the basis of previous results suggesting their possible role in the activity and fluorescence of MBP, we have changed independently to alanine each of the eight tryptophan residues as well as asparagine 294, which is conserved among four periplasmic sugar-binding proteins. Five of the tryptophan mutations affected activity. In four cases (substitution of Trp62, Trp230, Trp232 and Trp340), there was a decrease in MBP affinity towards maltose correlated with modifications in transport and chemotaxis. According to the present state of the 2.3 A three-dimensional structure of MBP, all four residues are in the binding site. Residues Trp62 and Trp340 are in the immediate vicinity of the bound substrate and appear to have direct contacts with maltose; this is in agreement with the drastic increases in Kd values (respectively 67 and 300-fold) upon their substitution by alanine residues. The modest increase in Kd (12-fold) observed upon mutation of Trp230 would be compatible with the lesser degree of interaction this residue has with the bound substrate and the idea that it plays an indirect role, presumably by keeping other residues involved directly in binding in their proper orientation. Substitution of Trp232 resulted in a small increase in Kd value (2-fold) in spite of the fact that this residue is the closest to the ligand of the tryptophan residues according to the three-dimensional model. In the fifth case, replacement of Trp158, which is distant from the binding site, strongly reduced the chemotactic response towards maltose without affecting the transport parameters or the sugar-binding activities of the mutant protein. Trp158 may therefore be specifically implicated in the interaction of MBP with the chemotransducer Tar, but this effect is likely to be indirect, since Trp158 is buried in the structure of MBP. Of course, some structural rearrangements could be responsible in part for the effects of these mutations. The remaining four mutations were silent. The corresponding residues (Trp10, Trp94, Trp129 and Asn294) are all distant from the sugar-binding site on the crystallographic model of MBP, which is in agreement with their lack of effect on binding. In addition, our results show that they play no role in the interactions with the other proteins of the maltose transport (MalF, MalG or MalK) or chemotaxis (Tar) systems.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
We have shown previously that Phe93 in the extracellular domain of the erythropoietin (EPO) receptor (EPOR) is crucial for binding EPO. Substitution of Phe93 with alanine resulted in a dramatic decrease in EPO binding to the Escherichia coli-expressed extracellular domain of the EPOR (EPO-binding protein or EBP) and no detectable binding to full-length mutant receptor expressed in COS cells. Remarkably, Phe93 forms extensive contacts with a peptide ligand in the crystal structure of the EBP bound to an EPO-mimetic peptide (EMP1), suggesting that Phe93 is also important for EMP1 binding. We used alanine substitution of EBP residues that contact EMP1 in the crystal structure to investigate the function of these residues in both EMP1 and EPO binding. The three largest hydrophobic contacts at Phe93, Met150, and Phe205 and a hydrogen bonding interaction at Thr151 were examined. Our results indicate that Phe93 and Phe205 are important for both EPO and EMP1 binding, Met150 is not important for EPO binding but is critical for EMP1 binding, and Thr151 is not important for binding either ligand. Thus, Phe93 and Phe205 are important binding determinants for both EPO and EMP1, even though these ligands share no sequence or structural homology, suggesting that these residues may represent a minimum epitope on the EPOR for productive ligand binding.  相似文献   

4.
Mutational analyses of the secreted recombinant insulin receptor extracellular domain have identified a ligand binding site composed of residues located in the L1 domain (amino acids 1-470) and at the C terminus of the alpha subunit (amino acids 705-715). To evaluate the physiological significance of this ligand binding site, we have transiently expressed cDNAs encoding full-length receptors with alanine mutations of the residues forming the functional epitopes of this binding site and determined their insulin binding properties. Insulin bound to wild-type receptors with complex kinetics, which were fitted to a two-component sequential model; the Kd of the high affinity component was 0.03 nM and that of the low affinity component was 0.4 nM. Mutations of Arg14, Phe64, Phe705, Glu706, Tyr708, Asn711, and Val715 inactivated the receptor. Alanine mutation of Asn15 resulted in a 20-fold decrease in affinity, whereas mutations of Asp12, Gln34, Leu36, Leu37, Leu87, Phe89, Tyr91, Lys121, Leu709, and Phe714 all resulted in 4-10-fold decreases. When the effects of the mutations were compared with those of the same mutations of the secreted recombinant receptor, significant differences were observed for Asn15, Leu37, Asp707, Leu709, Tyr708, Asn711, Phe714, and Val715, suggesting that the molecular basis for the interaction of each form of the receptor with insulin differs. We also examined the effects of alanine mutations of Asn15, Gln34, and Phe89 on insulin-induced receptor autophosphorylation. They had no effect on the maximal response to insulin but produced an increase in the EC50 commensurate with their effect on the affinity of the receptor for insulin.  相似文献   

5.
The high resolution crystal structure of an N-terminal fragment of the IGF-I receptor, has been reported. While this fragment is itself devoid of ligand binding activity, mutational analysis has indicated that its N terminus (L1, amino acids 1-150) and the C terminus of its cysteine-rich domain (amino acids 190-300) contain ligand binding determinants. Mutational analysis also suggests that amino acids 692-702 from the C terminus of the alpha subunit are critical for ligand binding. A fusion protein, formed from these fragments, binds IGF-I with an affinity similar to that of the whole extracellular domain, suggesting that these are the minimal structural elements of the IGF-I binding site. To further characterize the binding site, we have performed structure directed and alanine-scanning mutagenesis of L1, the cysteine-rich domain and amino acids 692-702. Alanine mutants of residues in these regions were transiently expressed as secreted recombinant receptors and their affinity was determined. In L1 alanine mutants of Asp(8), Asn(11), Tyr(28), His(30), Leu(33), Leu(56), Phe(58), Arg(59), and Trp(79) produced a 2- to 10-fold decrease in affinity and alanine mutation of Phe(90) resulted in a 23-fold decrease in affinity. In the cysteine-rich domain, mutation of Arg(240), Phe(241), Glu(242), and Phe(251) produced a 2- to 10-fold decrease in affinity. In the region between amino acids 692 and 702, alanine mutation of Phe(701) produced a receptor devoid of binding activity and alanine mutations of Phe(693), Glu(693), Asn(694), Leu(696), His(697), Asn(698), and Ile(700) exhibited decreases in affinity ranging from 10- to 30-fold. With the exception of Trp(79), the disruptive mutants in L1 form a discrete epitope on the surface of the receptor. Those in the cysteine-rich domain essential for intact affinity also form a discrete epitope together with Trp(79).  相似文献   

6.
Recent crystal structures of G protein-coupled receptors (GPCRs) show the remarkable structural diversity of extracellular loop 2 (ECL2), implying its potential role in ligand binding and ligand-induced receptor conformational selectivity. Here we have applied molecular modeling and mutagenesis studies to the TM4/ECL2 junction (residues Pro(174(4.59))-Met(180(4.66))) of the human gonadotropin-releasing hormone (GnRH) receptor, which uniquely has one functional type of receptor but two endogenous ligands in humans. We suggest that the above residues assume an α-helical extension of TM4 in which the side chains of Gln(174(4.60)) and Phe(178(4.64)) face toward the central ligand binding pocket to make H-bond and aromatic contacts with pGlu(1) and Trp(3) of both GnRH I and GnRH II, respectively. The interaction between the side chains of Phe(178(4.64)) of the receptor and Trp(3) of the GnRHs was supported by reciprocal mutations of the interacting residues. Interestingly, alanine mutations of Leu(175(4.61)), Ile(177(4.63)), and Met(180(4.66)) decreased mutant receptor affinity for GnRH I but, in contrast, increased affinity for GnRH II. This suggests that these residues make intramolecular or intermolecular contacts with residues of transmembrane (TM) domain 3, TM5, or the phospholipid bilayer, which couple the ligand structure to specific receptor conformational switches. The marked decrease in signaling efficacy of I177A and F178A also indicates that IIe(177(4.63)) and Phe(178(4.64)) are important in stabilizing receptor-active conformations. These findings suggest that the TM4/ECL2 junction is crucial for peptide ligand binding and, consequently, for ligand-induced receptor conformational selection.  相似文献   

7.
The high affinity receptor for IgE (FcepsilonRI) plays an integral role in triggering IgE-mediated hypersensitivity reactions. The IgE-interactive site of human FcepsilonRI has previously been broadly mapped to several large regions in the second extracellular domain (D2) of the alpha-subunit (FcepsilonRIalpha). In this study, the IgE binding site of human FcepsilonRIalpha has been further localized to subregions of D2, and key residues putatively involved in the interaction with IgE have been identified. Chimeric receptors generated between FcepsilonRIalpha and the functionally distinct but structurally homologous low affinity receptor for IgG (FcgammaRIIa) have been used to localize two IgE binding regions of FcepsilonRIalpha to amino acid segments Tyr129-His134 and Lys154-Glu161. Both regions were capable of independently binding IgE upon placement into FcgammaRIIa. Molecular modeling of the three-dimensional structure of FcepsilonRIalpha-D2 has suggested that these binding regions correspond to the "exposed" C'-E and F-G loop regions at the membrane distal portion of the domain. A systematic site-directed mutagenesis strategy, whereby each residue in the Tyr129-His134 and Lys154-Glu161 regions of FcepsilonRIalpha was replaced with alanine, has identified key residues putatively involved in the interaction with IgE. Substitution of Tyr131, Glu132, Val155, and Asp159 decreased the binding of IgE, whereas substitution of Trp130, Trp156, Tyr160, and Glu161 increased binding. In addition, mutagenesis of residues Trp113, Val115, and Tyr116 in the B-C loop region, which lies adjacent to the C'-E and F-G loops, has suggested Trp113 also contributes to IgE binding, since the substitution of this residue with alanine dramatically reduces binding. This information should prove valuable in the design of strategies to intervene in the FcepsilonRIalpha-IgE interaction for the possible treatment of IgE-mediated allergic disease.  相似文献   

8.
The roles of extracellular residues of G-protein-coupled receptors (GPCRs) are not well defined compared with residues in transmembrane helices. Nevertheless, it has been established that extracellular domains of both peptide-GPCRs and amine-GPCRs incorporate functionally important residues. Extracellular loop 2 (ECL2) has attracted particular interest, because the x-ray structure of bovine rhodopsin revealed that ECL2 projects into the binding crevice within the transmembrane bundle. Our study provides the first comprehensive investigation into the role of the individual residues comprising the entire ECL2 domain of a small peptide-GPCR. Using the V(1a) vasopressin receptor, systematic substitution of all of the ECL2 residues by Ala generated 30 mutant receptors that were characterized pharmacologically. The majority of these mutant receptor constructs (24 in total) had essentially wild-type ligand binding and intracellular signaling characteristics, indicating that these residues are not critical for normal receptor function. However, four aromatic residues Phe(189), Trp(206), Phe(209), and Tyr(218) are important for agonist binding and receptor activation and are highly conserved throughout the neurohypophysial hormone subfamily of peptide-GPCRs. Located in the middle of ECL2, juxtaposed to the highly conserved disulfide bond, Trp(206) and Phe(209) project into the binding crevice. Indeed, Phe(209) is part of the Cys-X-X-X-Ar (where Ar is an aromatic residue) motif, which is well conserved in both peptide-GPCRs and amine-GPCRs. In contrast, Phe(189) and Tyr(218), located at the extreme ends of ECL2, may be important for determining the position of the ECL2 cap over the binding crevice. This study provides mechanistic insight into the roles of highly conserved ECL2 residues.  相似文献   

9.
Escherichia coli dinJ-yafQ operon codes for a functional toxin-antitoxin (TA) system. YafQ toxin is an RNase which, upon overproduction, specifically inhibits the translation process by cleaving cellular mRNA at specific sequences. DinJ is an antitoxin and counteracts YafQ-mediated toxicity by forming a strong protein complex. In the present study we used site-directed mutagenesis of YafQ to determine the amino acids important for its catalytic activity. His50Ala, His63Ala, Asp67Ala, Trp68Ala, Trp68Phe, Arg83Ala, His87Ala, and Phe91Ala substitutions of the predicted active-site residues of YafQ abolished mRNA cleavage in vivo, whereas Asp61Ala and Phe91Tyr mutations inhibited YafQ RNase activity only moderately. We show that YafQ, upon overexpression, cleaved mRNAs preferably 5' to A between the second and third nucleotides in the codon in vivo. YafQ also showed RNase activity against mRNA, tRNA, and 5S rRNA molecules in vitro, albeit with no strong specificity. The endoribonuclease activity of YafQ was inhibited in the complex with DinJ antitoxin in vitro. DinJ-YafQ protein complex and DinJ antitoxin alone selectively bind to one of the two palindromic sequences present in the intergenic region upstream of the dinJ-yafQ operon, suggesting the autoregulation mode of this TA system.  相似文献   

10.
Because light is not required for catalytic turnover of the cytochrome b 6 f complex, the role of the single chlorophyll a in the structure and function of the complex is enigmatic. Photodamage from this pigment is minimized by its short singlet excited-state lifetime ( approximately 200 ps), which has been attributed to quenching by nearby aromatic residues ( Dashdorj et al., 2005). The crystal structure of the complex shows that the fifth ligand of the chlorophyll a contains two water molecules. On the basis of this structure, the properties of the bound chlorophyll and the complex were studied in the cyanobacterium, Synechococcus sp. PCC 7002, through site-directed mutagenesis of aromatic amino acids in the binding niche of the chlorophyll. The b 6 f complex was purified from three mutant strains, a double mutant Phe133Leu/Phe135Leu in subunit IV and single mutants Tyr112Phe and Trp125Leu in the cytochrome b 6 subunit. The purified b 6 f complex from Tyr112Phe or Phe133Leu/Phe135Leu mutants was characterized by (i) a loss of bound Chl and b heme, (ii) a shift in the absorbance peak and increase in bandwidth, (iii) multiple lifetime components, including one of 1.35 ns, and (iv) relatively small time-resolved absorbance anisotropy values of the Chl Q y band. A change in these properties was minimal in the Trp125Leu mutant. In vivo, no decrease in electron-transport efficiency was detected in any of the mutants. It was concluded that (a) perturbation of its aromatic residue niche influences the stability of the Chl a and one or both b hemes in the monomer of the b 6 f complex, and (b) Phe residues (Phe133/Phe135) of subunit IV are important in maintaining the short lifetime of the Chl a singlet excited state, thereby decreasing the probability of singlet oxygen formation.  相似文献   

11.
Galanin, a neuroendocrine peptide of 29 amino acids, binds to Gi/Go-coupled receptors to trigger cellular responses. To determine which amino acids of the recently cloned seven-transmembrane domain-type human galanin receptor are involved in the high-affinity binding of the endogenous peptide ligand, we performed a mutagenesis study. Mutation of the His264 or His267 of transmembrane domain VI to alanine, or of Phe282 of transmembrane domain VII to glycine, results in an apparent loss of galanin binding. The substitution of Glu271 to serine in the extracellular loop III of the receptor causes a 12-fold loss in affinity for galanin. We combined the mutagenesis results with data on the pharmacophores (Trp2, Tyr9) of galanin and with molecular modelling of the receptor using bacteriorhodopsin as a model. Based on these studies, we propose a binding site model for the endogenous peptide ligand in the galanin receptor where the N-terminus of galanin hydrogen bonds with Glu271 of the receptor, Trp2 of galanin interacts with the Zn2+ sensitive pair of His264 and His267 of transmembrane domain VI, and Tyr9 of galanin interacts with Phe282 of transmembrane domain VII, while the C-terminus of galanin is pointing towards the N-terminus of th  相似文献   

12.
Aromatic amino acid residues within kringle domains play important roles in the structural stability and ligand-binding properties of these protein modules. In previous investigations, it has been demonstrated that the rigidly conserved Trp25 is primarily involved in stabilizing the conformation of the kringle-2 domain of tissue-type plasminogen activator (K2tpA), whereas Trp63, Trp74, and Tyr76 function in omega-amino acid ligand binding, and, to varying extents, in stabilizing the native folding of this kringle module. In the current study, the remaining aromatic residues of K2tPA, viz., Tyr2, Phe3, Tyr9, Tyr35, Tyr52, have been subjected to structure-function analysis via site-directed mutagenesis studies. Ligand binding was not significantly influenced by conservative amino acid mutations at these residues, but a radical mutation at Tyr35 destabilized the interaction of the ligand with the variant kringle. In addition, as reflected in the values of the melting temperatures, changes at Tyr9 and Tyr52 generally destabilized the native structure of K2tPA to a greater extent than changes at Tyr2, Phe3, and Tyr35. Taken together, results to date show that, in concert with predictions from the crystal structure of K2tpA, ligand binding appears to rely most on the integrity of Trp63 and Trp74, and aromaticity at Tyr76. With regard to aromatic amino acids, kringle folding is most dependent on Tyr9, Trp25, Tyr52, Trp63, and Tyr76. As yet, no obvious major roles have been uncovered for Tyr2, Phe3, or Tyr35 in K2tpA.  相似文献   

13.
J Wess  S Nanavati  Z Vogel    R Maggio 《The EMBO journal》1993,12(1):331-338
Most G protein-coupled receptors contain a series of highly conserved proline and tryptophan residues within their hydrophobic transmembrane domains (TMD I-VII). To study their potential role in ligand binding and receptor function, the rat m3 muscarinic acetylcholine receptor was used as a model system. A series of mutant receptors in which the conserved proline and tryptophan residues were individually replaced with alanine and phenylalanine, respectively, was created and transiently expressed in COS-7 cells. [3H]N-methylscopolamine ([3H]NMS) saturation binding studies showed that three of the seven mutant receptors studied (Pro242-->Ala, TMD V; Pro505-->Ala, TMD VI; Pro540-->Ala, TMD VII) were expressed at 35-100 times lower levels than the wild-type receptor while displaying 'm3-like' antagonist binding affinities. Pro201-->Ala (TMD IV) showed drastically reduced binding affinities (up to 450-fold) for both muscarinic agonists and antagonists. Whereas most mutant receptors retained strong functional activity, Pro540-->Ala (TMD VII) was found to be severely impaired in its ability to stimulate carbachol-induced phosphatidyl inositol hydrolysis (Emax approximately 25% of wild type m3). Interestingly, this mutant receptor bound muscarinic agonists with 7- to 19-fold higher affinities than the wild type receptor. The Trp-->Phe substitutions (Trp192-->Phe, TMD IV; Trp503-->Phe, TMD VI; Trp530-->Phe, TMD VII) resulted in less pronounced changes (compared with the Pro-->Ala mutant receptors) in both ligand binding and receptor function. Our data indicate that the proline residues that are highly conserved across the entire superfamily of G protein-coupled receptors play key roles in receptor expression, ligand binding and receptor activation.  相似文献   

14.
Chemically prepared hevein domains (HDs), N-terminal domain of an antifungal protein from Nicotiana tabacum (CBP20-N) and an antimicrobial peptide from Amaranthus caudatus (Ac-AMP2), were examined for their affinity for chitin, a beta-1,4-linked polymer of N-acetylglucosamine. An intact binding domain, CBP20-N, showed a higher affinity than a C-terminal truncated domain, Ac-AMP2. The formation of a pyroglutamate residue from N-terminal Gln of CBP20-N increased the affinity. The single replacement of any aromatic residue of Ac-AMP2 with Ala resulted in a significant reduction in affinity, suggesting the importance of the complete set of three aromatic residues in the ligand binding site. The mutations of Phe18 of Ac-AMP2 to the residues with larger aromatic rings, i.e. Trp, beta-(1-naphthyl)alanine or beta-(2-naphthyl)alanine, enhanced the affinity, whereas the mutation of Tyr20 to Trp reduced the affinity. The affinity of an HD for chitin might be improved by adjusting the size and substituent group of stacking aromatic rings.  相似文献   

15.
The Bacillus subtilis lmrAB operon is involved in multidrug resistance. LmrA is a repressor of its own operon, while LmrB acts as a multidrug efflux transporter. LmrA was produced in Escherichia coli cells and was shown to bind to the lmr promoter region, in which an LmrA-binding site was identified. Genome-wide screening involving DNA microarray analysis allowed us to conclude that LmrA also repressed yxaGH, which was not likely to contribute to the multidrug resistance. LmrA bound to a putative yxaGH promoter region, in which two tandem LmrA-binding sites were identified. The LmrA regulon was thus determined to comprise lmrAB and yxaGH. All three LmrA-binding sites contained an 18-bp consensus sequence, TAGACCRKTCWMTATAWT, which could play an important role in LmrA binding.  相似文献   

16.
The type III secretion system (T3SS) of Pseudomonas aeruginosa is a key virulence determinant whose expression is induced by polyamine signals from mammalian host. SpuD and SpuE were postulated to be spermidine-preferential binding proteins, which regulate the polyamine content in this bacterial pathogen. In this study, we found that SpuD is a putrescine-preferential binding protein, while SpuE binds to spermidine exclusively. We have determined the crystal structures of SpuD in free form and in complex with putrescine and SpuE in free form and in complex with spermidine. Upon ligand binding, SpuD and SpuE undergo an "open-to-closed" conformational switch with the resultant closed ligand-bound forms, SpuD-putrescine and SpuE-spermidine, similar to their Escherichia coli counterparts PotF-putrescine and PotD-spermidine, respectively. Structural comparison suggested that two aromatic residues, Trp271 of SpuE and Phe273 of SpuD in segment II region, are the key structural determinants for putrescine/spermidine recognition specificity. Mutagenesis combined with isothermal titration calorimetry showed that substitution of Trp271 by Phe enabled SpuE to gain substantial binding affinity for putrescine, while replacement of Phe273 by Trp reduced the binding affinity of SpuD toward putrescine by 250-fold. Altogether, these results revealed the molecular mechanism governing polyamine recognition specificity by SpuD and SpuE and provide the basis for further structural and functional studies of polyamine signal importation system in P. aeruginosa.  相似文献   

17.
An atomic model of tetrameric manganese superoxide dismutase from Thermus thermophilus HB8 has been built into an electron density map at 2.4 A resolution, using chemical sequences of Mn dismutases from Thermus aquaticus and Bacillus stearothermophilus. The monomer fold is structurally very similar to the fold of iron dismutase and comprises two domains, each contributing two ligands to the metal. The Mn(III) ion is bound by protein ligands assigned as His 28, His 83, Asp 165, and His 169. Near neighbors in the metal-ligand environment include a series of hydrophobic residues, Phe 86, Trp 87, Trp 131, and Trp 167. The hydroxyl groups of two Tyr residues, at 36 and 182, are less than 7 A from the metal, as is His 32. Gln 150 forms a bridge between Tyr 36 and Trp 131. These ligands and nearby residues are strongly conserved in the known sequences of Mn dismutases. Only one of the two oxygens of Asp 165 has been assigned as a metal ligand, so that in the current model four protein atoms bind Mn(III). These ligand atoms form part of an approximate trigonal bipyramid in which water may occupy an axial position on the side opposite His 28. The conformation of the protein is unusual in the vicinity of the first ligand, His 28, as a consequence of the insertion of an extra residue in an alpha-helix. The distortion of the helix allows His 32 to stack against the ligand, His 169, and brings Tyr 36 close to the Mn ion. Across one of the dimer interfaces, the two Mn ions are separated by about 18 A, and active center residues from adjoining subunits interdigitate; Tyr 172 interacts with His 32 of the neighboring chain and Glu 168 with the backbone of 168 and with the ligand His 169 from the opposite subunit. Only one other dimer interface occurs in the tetramer; it involves residues 55-62 and sequences near 140 and 156. The center of the oligomeric molecule is filled with solvent.  相似文献   

18.
Li H  Frieden C 《Biochemistry》2005,44(7):2369-2377
(19)F-Nuclear magnetic resonance (NMR) studies have been carried out after incorporation of 4-(19)F-phenylalanine into the intestinal fatty acid binding protein (IFABP), a protein composed of two beta-sheets containing a large hydrophobic cavity into which ligands bind. NMR spectra have been obtained with both the ligand-free and ligand-bound (oleate) forms. There are 29 residues involved in van der Waals or hydrophobic interactions or both to form a U-shaped ligand binding pocket (Sacchettni J. C., Scapin G., Gopaul D., and Gordon J. I. (1992) J. Biol. Chem. 267, 23534-23545). The protein contains eight phenylalanines, and all are included in those residues that line the pocket. Peak assignments were made using site-specific incorporation of 4-(19)F-phenylalanine. Fluorine is a highly sensitive probe to monitor the conformation and dynamics of the side chains in native state. We find that chemical exchange in the binding pocket exists in the native apo- and holo-state. Of the eight phenylalanine residues, Phe2, Phe47, Phe62, Phe68, and Phe93 are arranged on one side of the binding pocket, and all exist in two conformations with Phe2, Phe47, and Phe62 showing exchange cross-peaks with minor conformation in (19)F-(19)F nuclear Overhauser effect (NOESY) spectra. The line widths of Phe68 and Phe93 are broader than those of other phenylalanine residues and can be deconvoluted into two peaks. Phe47, Phe62, Phe68, Phe93, and Trp82 have been proposed to be involved in the early stage of collapse (Ropson, I. J., and Frieden, C. (1992) Proc. Natl. Acad. Sci U.S.A. 89, 7222-7226), but a temperature study suggests that Phe47 behaves differently than other residues and may be more involved in a later stage of folding, for example, side chain stabilization. In the holo-form, Phe17 shows an extra exchange cross-peak in addition to those exchange cross-peaks observed in apo-form. Holo-IFABP exhibits broader line width than the apo-form, suggesting more flexibility of the binding cavity upon ligand binding.  相似文献   

19.
Aromatic amino acids are important components of the ligand binding site in the Cys loop family of ligand-gated ion channels. To examine the role of tryptophan residues in the ligand binding domain of the 5-hydroxytryptamine(3) (5-HT(3)) receptor, we used site-directed mutagenesis to change each of the eight N-terminal tryptophan residues in the 5-HT(3A) receptor subunit to tyrosine or serine. The mutants were expressed as homomeric 5-HT(3A) receptors in HEK293 cells and analyzed with radioligand binding, electrophysiology, and immunocytochemistry. Mutation of Trp(90), Trp(183), and Trp(195) to tyrosine resulted in functional receptors, although with increased EC(50) values (2-92-fold) to 5-HT(3) receptor agonists. Changing these residues to serine either ablated function (Trp(90) and Trp(183)) or resulted in a further increase in EC(50) (Trp(195)). Mutation of residue Trp(60) had no effect on ligand binding or receptor function, whereas mutation of Trp(95), Trp(102), Trp(121), and Trp(214) ablated ligand binding and receptor function, and all but one of the receptors containing these mutations were not expressed at the plasma membrane. We propose that Trp(90), Trp(183), and Trp(195) are intimately involved in ligand binding, whereas Trp(95), Trp(102), Trp(121), and Trp(214) have a critical role in receptor structure or assembly.  相似文献   

20.
Wyman AJ  Popelkova H  Yocum CF 《Biochemistry》2008,47(24):6490-6498
The extrinsic photosystem II PsbO subunit (manganese-stabilizing protein) contains near-UV CD signals from its complement of aromatic amino acid residues (one Trp, eight Tyr, and 13 Phe residues). Acidification, N-bromosuccinimide modification of Trp, reduction or elimination of a disulfide bond, or deletion of C-terminal amino acids abolishes these signals. Site-directed mutations that substitute Phe for Trp241 and Tyr242, near the C-terminus of PsbO, were used to examine the contribution of these residues to the activity and spectral properties of the protein. Although this substitution is, in theory, conservative, neither mutant binds efficiently to PSII, even though these proteins appear to retain wild-type solution structures. Removal of six residues from the N-terminus of the W241F mutant restores activity to near-wild-type levels. The near-UV CD spectra of the mutants are modified; well-defined Tyr and Trp peaks are lost. Characterizations of the fluorescence spectra of the full-length WF and YF mutants indicate that Y242 contributes significantly to PsbO's Tyr fluorescence emission and that an excited-state tyrosinate could be present in PsbO. Deletion of W241 shows that this residue is a major contributor to PsbO's fluorescence emission. Loss of function is consistent with the proposal that a native C-terminal domain is required for PsbO binding and activity, and restoration of activity by deletion of N-terminal amino acids may provide some insights into the evolution of this important photosynthetic protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号