首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The partial and complete cycle of the intestinal pH-dependent oligopeptide transporter PepT1 from three species (seabass, zebrafish and rabbit) were studied using an electrophysiological approach and a biophysical analysis, in order to identify similarities and differences. On the whole the presteady state currents of the fish transporters were similar to each other, while presenting some quantitative differences with respect to rabbit PepT1: this last form showed slower decaying currents and the charge vs. potential (Q/V) and time constant vs. potential (τ/V) curves shifted to more positive potentials. All isoforms were similarly affected by external pH, showing acidity-induced slowing of the transients and positive shifts in the Q/V and τ/V curves. Analysis of the pH dependence of the unidirectional rates of the intramembrane charge movement suggested that external protonation of the protein limits the speed of this process in both directions. The complete cycle of the transporter was studied using the neutral dipeptide Gly-Gln. Michaelis-Menten analysis confirmed that in all species the apparent affinity for the substrate is significantly increased by acidity, while the maximal transport current is not strongly affected. Simulations using a kinetic model incorporating the new findings show good agreement with experimental data for all three species both with respect to the presteady-state and transport currents.  相似文献   

2.

Background

In contrast to man the majority of higher plants use sucrose as mobile carbohydrate. Accordingly proton-driven sucrose transporters are crucial for cell-to-cell and long-distance distribution within the plant body. Generally very negative plant membrane potentials and the ability to accumulate sucrose quantities of more than 1 M document that plants must have evolved transporters with unique structural and functional features.

Methodology/Principal Findings

To unravel the functional properties of one specific high capacity plasma membrane sucrose transporter in detail, we expressed the sucrose/H+ co-transporter from maize ZmSUT1 in Xenopus oocytes. Application of sucrose in an acidic pH environment elicited inward proton currents. Interestingly the sucrose-dependent H+ transport was associated with a decrease in membrane capacitance (Cm). In addition to sucrose Cm was modulated by the membrane potential and external protons. In order to explore the molecular mechanism underlying these Cm changes, presteady-state currents (Ipre) of ZmSUT1 transport were analyzed. Decay of Ipre could be best fitted by double exponentials. When plotted against the voltage the charge Q, associated to Ipre, was dependent on sucrose and protons. The mathematical derivative of the charge Q versus voltage was well in line with the observed Cm changes. Based on these parameters a turnover rate of 500 molecules sucrose/s was calculated. In contrast to gating currents of voltage dependent-potassium channels the analysis of ZmSUT1-derived presteady-state currents in the absence of sucrose (I = Q/τ) was sufficient to predict ZmSUT1 transport-associated currents.

Conclusions

Taken together our results indicate that in the absence of sucrose, ‘trapped’ protons move back and forth between an outer and an inner site within the transmembrane domains of ZmSUT1. This movement of protons in the electric field of the membrane gives rise to the presteady-state currents and in turn to Cm changes. Upon application of external sucrose, protons can pass the membrane turning presteady-state into transport currents.  相似文献   

3.
Mouse GABA transporters belong to the family of Na(+) and Cl(-) dependent neurotransmitter transporter. GABA transport, by these family members, was shown to be electrogenic and driven by sodium ions. It was demonstrated that, as in several other transporters, sodium binding and release by GAT1, GAT3 and BGT-1, the canine homolog of GAT2, resulted in the appearance of presteady-state currents. In this work we show that each of the four GABA transporters exhibit unique presteady-state currents when expressed in Xenopus oocytes. The properties of the presteady-state currents correspond to the transporters affinities to Na(+). At 100 mM GAT1 exhibited symmetric presteady-state currents at all imposed potentials, whereas GAT2 exhibited asymmetric presteady-state currents exclusively at negative imposed potentials, GAT3 or GAT4 exhibited presteady-state currents predominantly at positive imposed potentials. GABA uptake by GAT2 and GAT4 was much more sensitive to external pH than GAT1 and GAT3. Reducing the external Na(+) concentration rendered the GABA uptake activity by GAT1 and GAT3 to be sensitive to pH. Lowering the external pH reduced the Na(+) affinity of GAT1. Substitution of the external Na(+) to Li(+) resulted in the appearance of leak currents exclusively at negative potentials in Xenopus oocyte expressing GAT1 and GAT3. Low Na(+) concentrations inhibited the leak currents of GAT1 but Na(+) had little effect on the leak currents of GAT3. Washing of occluded Na(+) in GAT1 enhanced the leak currents. Similarly addition of GABA in the presence of 80 mM Li(+), that presumably accelerated the release of the bound Na(+), also induced the leak currents. Conversely, addition of GABA to GAT3 expressing oocytes, in the presence of 80 mM Li(+), inhibited the leak currents.  相似文献   

4.
This study examines the conformations of the Na(+)/glucose cotransporter (SGLT1) during sugar transport using charge and fluorescence measurements on the human SGLT1 mutant G507C expressed in Xenopus oocytes. The mutant exhibited similar steady-state and presteady-state kinetics as wild-type SGLT1, and labeling of Cys507 by tetramethylrhodamine-6-maleimide had no effect on kinetics. Our strategy was to record changes in charge and fluorescence in response to rapid jumps in membrane potential in the presence and absence of sugar or the competitive inhibitor phlorizin. In Na(+) buffer, step jumps in membrane voltage elicited presteady-state currents (charge movements) that decay to the steady state with time constants tau(med) (3-20 ms, medium) and tau(slow) (15-70 ms, slow). Concurrently, SGLT1 rhodamine fluorescence intensity increased with depolarizing and decreased with hyperpolarizing voltages (DeltaF). The charge vs. voltage (Q-V) and fluorescence vs. voltage (DeltaF-V) relations (for medium and slow components) obeyed Boltzmann relations with similar parameters: zdelta (apparent valence of voltage sensor) approximately 1; and V(0.5) (midpoint voltage) between -15 and -40 mV. Sugar induced an inward current (Na(+)/glucose cotransport), and reduced maximal charge (Q(max)) and fluorescence (DeltaF(max)) with half-maximal concentrations (K(0.5)) of 1 mM. Increasing [alphaMDG](o) also shifted the V(0.5) for Q and DeltaF to more positive values, with K(0.5)'s approximately 1 mM. The major difference between Q and DeltaF was that at saturating [alphaMDG](o), the presteady-state current (and Q(max)) was totally abolished, whereas DeltaF(max) was only reduced 50%. Phlorizin reduced both Q(max) and DeltaF(max) (K(i) approximately 0.4 microM), with no changes in V(0.5)'s or relaxation time constants. Simulations using an eight-state kinetic model indicate that external sugar increases the occupancy probability of inward-facing conformations at the expense of outward-facing conformations. The simulations predict, and we have observed experimentally, that presteady-state currents are blocked by saturating sugar, but not the changes in fluorescence. Thus we have isolated an electroneutral conformational change that has not been previously described. This rate-limiting step at maximal inward Na(+)/sugar cotransport (saturating voltage and external Na(+) and sugar concentrations) is the slow release of Na(+) from the internal surface of SGLT1. The high affinity blocker phlorizin locks the cotransporter in an inactive conformation.  相似文献   

5.
The effects of temperature on the gamma-aminobutyric acid (GABA) uptake and on the presteady-state and transport-associated currents of the GABA cotransporter, rat gamma-aminobutyric acid transporter 1 (rGAT1), have been studied using heterologous oocyte expression and voltage-clamp. Increasing temperature from 15 to 30 degrees C increased GABA uptake, diminished the maximal value of the relaxation time constant of the presteady-state currents and increased the amplitude of the current associated with the transport of GABA. The curve of the presteady-state charge versus voltage was shifted toward negative potentials by increasing the temperature, while the maximal amount of charge (Q(max)) remained constant; the tau versus V curve was also negatively shifted by increasing temperatures. Analysis of the outward (alpha) and inward (beta) rate constants as functions of temperature showed that they are affected differently, with a Q(10)=3.4 for alpha and Q(10)=1.5 for beta. The different temperature coefficients of the rate constants account for the observed shifts. These observations are consistent with a charge moving mechanism based on a conformational change of the protein; the weaker temperature sensitivity of the inward rate constant suggests a rate-limiting diffusional component on this process.  相似文献   

6.
肽转运载体的分子特征及其分布   总被引:4,自引:0,他引:4  
Han F  Le GW  Shi YH 《生理科学进展》2003,34(3):222-226
动物体内的肽转运载体目前发现的至少有五种,其中研究最为广泛的是:PepT1和PepT2。PepT1和PepT2都是依质子的寡肽转运载体(POT)家族的成员。PepT1是低亲和力/高容量的肽载体,PepT2高亲和力/低容量的肽载体。PepT1主要在消化道中表达,在肾脏中也有微弱的表达;PepT2主要在肾脏中表达。这些肽载体的分子结构特征主要有:(1)有12个假想的穿膜区,在9区和10区之间有一大的胞外环,且所有穿膜区内的序列都高度保守,胞外环上的序列保守的很少;(2)被编码的蛋白上有多个N-糖基化和蛋白激酶的识别位点,它们可能参与肽转运的调控;(3)PepT1上的His-57和PepT2上的His-87是最关键的组氨酸残基,它们可能是转运蛋白发挥吸收功能时最关键的结合位点;(4)不同动物肽转运蛋白的氨基酸范围在707到729之间,且不同动物相同器官肽转运载体的同源性高(大约80%),同种动物不同器官肽转运载体的同源性低(大约50%)。了解肽载体的分子特征和组织分布,可以更好地理解肽吸收的分子机制并有利于肽类药物的研发。  相似文献   

7.
Positions 163, 166, and 173, within the putative external loop joining transmembrane segments IV and V of rabbit Na(+)/glucose cotransporter, form part of its Na(+) interaction and voltage-sensing domain. Since a Q170C mutation within this region exhibits anomalous behavior, its function was further investigated. We used Xenopus oocytes coinjected with mouse T-antigen to enhance Q170C expression, and the two-microelectrode voltage-clamp technique. For Q170C, alpha-methyl D-glucopyranoside, phloridzin, and Na(+) affinity values are equivalent to those of wild-type; but turnover is reduced approximately 50%. Decreased [Na(+)] reduces Q170C, but not wild-type, charge transfer. Q170C presteady-state currents exhibit three time constants, tau, identical to wild-type. MTSES decreases maximal alpha-methyl D-glucopyranoside-induced currents by approximately 64% and Na(+) leak by approximately 55%; phloridzin and Na(+) affinity are unchanged. MTSES also reduces charge transfer (dithiothreitol-reversible) and Q170C turnover by approximately 60-70%. MTSEA and MTSET protect against MTSES, but neither affect Q170C function. MTSES has no obvious effect on the tau-values. Q170A behaves the same as Q170C. The mutation Q170E affects voltage sensitivity and reduces turnover, but also appears to influence Na(+) interaction. We conclude that 1), glutamine 170 lies in the Na(+) pathway in rabbit Na(+)/glucose cotransporter and 2), altered polarity and charge at position 170 affect a cotransporter conformational state and transition, which is rate-limiting, but probably not associated with empty carrier reorientation.  相似文献   

8.
The mammalian proton-coupled peptide transporter PepT1 is the major route of uptake for dietary nitrogen, as well as the oral absorption of a number of drugs, including beta-lactam antibiotics and angiotensin-converting enzyme inhibitors. Here we have used site-directed mutagenesis to investigate further the role of conserved charged residues in transmembrane domains. Mutation of rabbit PepT1 arginine282 (R282, transmembrane domain 7) to a positive (R282K) or physiologically titratable residue (R282H), resulted in a transporter with wild-type characteristics when expressed in Xenopus laevis oocytes. Neutral (R282A, R282Q) or negatively charged (R282D, R282E) substitutions gave a transporter that was not stimulated by external acidification (reducing pH(out) from 7.4 to 5.5) but transported at the same rate as the wild-type maximal rate (pH(out) 5.5); however, only the R282E mutation was unable to concentrate substrate above the extracellular level. All of the R282 mutants showed trans-stimulation of efflux comparable to the wild-type, except R282E-PepT1 which was faster. A conserved negatively charged residue, aspartate341 (D341) in transmembrane domain 8 was implicated in forming a charge pair with R282, as R282E/D341R- and R282D/D341R-PepT1 had wild-type transporter characteristics. Despite their differences in ability to accumulate substrate, both R282E- and R282D-PepT1 showed an increased charge:peptide stoichiometry over the wild-type 1:1 ratio for the neutral dipeptide Gly-l-Gln, measured using two-electrode voltage clamp. This extra charge movement was linked to substrate transport, as 4-aminobenzoic acid, which binds but is not translocated, did not induce membrane potential depolarisation in R282E-expressing oocytes. A model is proposed for the substrate binding/translocation process in PepT1.  相似文献   

9.
We previously reported that the human Na(+)/nucleoside transporter pyrimidine-preferring 1 (hCNT1) is electrogenic and transports gemcitabine and 5'-deoxy-5-fluorouridine, a precursor of the active drug 5-fluorouracil. Nevertheless, a complete electrophysiological characterization of the basic properties of hCNT1-mediated translocation has not been performed yet, and the exact role of adenosine in hCNT1 function has not been addressed either. In the present work we have used the two-electrode voltage clamp technique to investigate hCNT1 transport mechanism and study the kinetic properties of adenosine as an inhibitor of hCNT1. We show that hCNT1 exhibits presteady-state currents that disappear upon the addition of adenosine or uridine. Adenosine, a purine nucleoside described as a substrate of the pyrimidine-preferring transporters, is not a substrate of hCNT1 but a high affinity blocker able to inhibit uridine-induced inward currents, the Na(+)-leak currents, and the presteady-state currents, with a K(i) of 6.5 microM. The kinetic parameters for uridine, gemcitabine, and 5'-deoxy-5-fluorouridine were studied as a function of membrane potential; at -50 mV, K(0.5) was 37, 18, and 245 microM, respectively, and remained voltage-independent. I(max) for gemcitabine was voltage-independent and accounts for approximately 40% that for uridine at -50 mV. Maximal current for 5'-DFUR was voltage-dependent and was approximately 150% that for uridine at all membrane potentials. K(0.5)(Na(+)) for Na(+) was voltage-independent at hyperpolarized membrane potentials (1.2 mM at -50 mV), whereas I(max)(Na(+)) was voltage-dependent, increasing 2-fold from -50 to -150 mV. Direct measurements of (3)H-nucleoside or (22)Na fluxes with the charge-associated revealed a ratio of two positive inward charges per nucleoside and one Na(+) per positive inward charge, suggesting a stoichiometry of two Na(+)/nucleoside.  相似文献   

10.
During digestion, dietary proteins cleaved in di and tri-peptides are translocated from the intestinal lumen into the enterocytes via PepT1 (SLC15A1) using an inwardly directed proton electrochemical gradient. The kinetic properties in various PepT1 orthologs (Dicentrarchus labrax, Oryctolagus cuniculus, Danio rerio) have been explored to determine the transport efficiency of different combinations of lysine, methionine, and glycine. Species-specific differences were observed. Lys-Met resulted the best substrate at all tested potentials in sea bass and rabbit PepT1, whereas in the zebrafish transporter all tested dipeptides (except Gly-Lys) elicited similar currents independently on the charge position or amino acid composition. For the sea bass and rabbit PepT1, kinetic parameters, K0.5 and Imax and their ratio, show the importance of the position of the charged lysine in the peptide. The PepT1 transporter of these species has very low affinity for Lys-Lys and Gly-Lys; this reduces the transport efficiency which is instead higher for Lys-Met and Lys-Gly. PepT1 from zebrafish showed relatively high affinity and excellent transport efficiency for Met-Lys and Lys-Met. These data led us to speculate about the structural determinants involved in substrate interaction according to the model proposed for this transporter.  相似文献   

11.
Grossman TR  Nelson N 《FEBS letters》2002,527(1-3):125-132
Mouse GABA transporters belong to the family of Na(+)- and Cl(-)-dependent neurotransmitter transporters. The four GABA transporters exhibit unique presteady-state currents when expressed in Xenopus oocytes. The properties of the presteady-state currents correspond to their different affinities to Na(+). In the presence of 20 microM GABA and at pH 7.5, the half-maximal uptake activity was 47, 120, 25 and 35 mM Na(+) for GAT1, GAT2, GAT3 and GAT4, respectively. The appearance of presteady-state currents at positive or negative imposed potentials was in correlation with the affinity to Na(+). Changing the external pH differentially affected the GABA uptake and the presteady-state activities of the various GABA transporters. It is suggested that protons compete with Na(+) on its binding site; however, the proton binding is not productive and is unable to drive GABA uptake.  相似文献   

12.
Expression and function of the oligopeptide transporter PepT1 in response to changes in environmental salinity have received little study despite the important role that dipeptides play in piscine nutrition. We cloned and sequenced two novel full-length cDNAs that encode Fundulus heteroclitus PepT1-type oligopeptide transporters, and examined their expression and functional properties in freshwater- and seawater-acclimated fish and in response to fasting and re-feeding. Phylogenetic analysis of vertebrate SLC15A1 sequences confirms the presence of two PepT1 isoforms, named SLC15A1a and SLC15A1b, in fish. Similar to other vertebrate SLC15A1s, these isoforms have 12 transmembrane domains, and amino acids essential for PepT1 function are conserved. Expression analysis revealed novel environment-specific expression of the SLC15A1 isoforms in F. heteroclitus, with only SLC15A1b expressed in seawater-acclimated fish, and both isoforms expressed in freshwater-acclimated fish. Fasting and re-feeding induced changes in the expression of SLC15A1a and SLC15A1b mRNA. Short-term fasting resulted in up-regulation of PepT1 mRNA levels, while prolonged fasting resulted in down-regulation. The resumption of feeding resulted in up-regulation of PepT1 above pre-fasted levels. Experiments using the in vitro gut sac technique suggest that the PepT1 isoforms differ in functional characteristics. An increased luminal pH resulted in decreased intestinal dipeptide transport in freshwater-acclimated fish but suggested an increased dipeptide transport in seawater-acclimated fish. Overall, this is the first evidence of multiple isoforms of PepT1 in fish whose expression is environmentally dependent and results in functional differences in intestinal dipeptide transport.  相似文献   

13.
We expressed the mouse gamma-aminobutyric acid (GABA) transporter GAT4 (homologous to rat/ human GAT-3) in Xenopus laevis oocytes and examined its functional and pharmacological properties by using electrophysiological and tracer uptake methods. In the coupled mode of transport (Na+/ Cl-/GABA cotransport), there was tight coupling between charge flux and GABA flux across the plasma membrane (2 charges/GABA). Transport was highly temperature-dependent with a temperature coefficient (Q10) of 4.3. The GAT4 turnover rate (1.5 s(-l); -50 mV, 21 degrees C) and temperature dependence suggest physiological turnover rates of 15-20 s(-1). No uncoupled current was observed in the presence of Na+. In the absence of external Na+, GAT4 exhibited two distinct uncoupled currents. (i) A Cl- leak current (ICl(leak)) was observed when Na+ was replaced with choline or tetraethylammonium. The reversal potential of (ICl(leak)) followed the Cl- Nernst potential. (ii) A Li+ leak current (ILi(leak)) was observed when Na+ was replaced with Li+. Both leak currents were inhibited by Na+, and both were temperature-independent (Q10 approximately 1). The two leak modes appeared not to coexist, as Li+ inhibited (ICl(leak)). The results suggest the existence of cation- and anion-selective channel-like pathways in GAT4. Flufenamic acid inhibited GAT4 Na+/Cl-/GABA cotransport, ILi(leak), and ICl(leak), (Ki approximately 30 microM), and the voltage-induced presteady-state charge movements (Ki approximately 440 microM). Flufenamic acid exhibited little or no selectivity for GAT1, GAT2, or GAT3. Sodium and GABA concentration jicroumps revealed that slow Na+ binding to the transporter is followed by rapid GABA-induced translocation of the ligands across the plasma membrane. Thus, Na+ binding and associated conformational changes constitute the rate-limiting steps in the transport cycle.  相似文献   

14.
We expressed mouse gamma-aminobutyric acid (GABA) transporter (mGAT3) in Xenopus laevis oocytes and examined its steady-state and presteady-state kinetics and turnover rate by using tracer flux and electrophysiological methods. In oocytes expressing mGAT3, GABA evoked a Na+-dependent and Cl(-)-facilitated inward current. The dependence on Na+ was absolute, whereas that for Cl(-) was not. At a membrane potential of -50 mV, the half-maximal concentrations for Na+, Cl(-), and GABA were 14 mM, 5 mM, and 3 microM. The Hill coefficient for GABA activation and Cl(-) enhancement of the inward current was 1, and that for Na+ activation was > or =2. The GABA-evoked inward current was directly proportional to GABA influx (2.2 +/- 0.1 charges/GABA) into cells, indicating that under these conditions, there is tight ion/GABA coupling in the transport cycle. In response to step changes in the membrane voltage and in the absence of GABA, mGAT3 exhibited presteady-state current transients (charge movements). The charge-voltage (Q-V) relation was fitted with a single Boltzmann function. The voltage at half-maximal charge (V(0.5)) was +25 mV, and the effective valence of the moveable charge (zdelta) was 1.6. In contrast to the ON transients, which relaxed with a time constant of < or =30 msec, the OFF transients had a time constant of 1.1 sec. Reduction in external Na+ ([Na+]o) and Cl(-) ([Cl(-)]o) concentrations shifted the Q-V relationship to negative membrane potentials. At zero [Na+]o (106 mM Cl(-)), no mGAT3-mediated transients were observed, and at zero [Cl(-)]o (100 mM Na+), the charge movements decreased to approximately 30% of the maximal charge (Q(max)). GABA led to the elimination of charge movements. The half-maximal concentrations for Na+ activation, Cl(-) enhancement, and GABA elimination of the charge movements were 48 mM, 19 mM, and 5 mM, respectively. Q(max) and I(max) obtained in the same cells yielded the mGAT3 turnover rate, 1.7 sec(-1) at -50 mV. The low turnover rate of mGAT3 may be due to the slow return of the empty transporter from the internal to the external membrane surface.  相似文献   

15.
The role of internal substrates in the biophysical properties of the GABA transporter GAT1 has been investigated electrophysiologically in Xenopus oocytes heterologously expressing the cotransporter. Increments in Cl(-) and/or Na(+) concentrations caused by intracellular injections did not produce significant effects on the pre-steady-state currents, while a positive shift of the charge-voltage (Q-V) and decay time constant (τ)-voltage (τ-V) curves, together with a slowing of τ at positive potentials, was observed following treatments producing cytosolic Cl(-) depletion. Activation of the reverse transport mode by injections of GABA caused a reduction in the displaced charge. In the absence of external Cl(-), a stronger reduction in the displaced charge, together with a significant increase in reverse transport current, was observed. Therefore, complementarity between pre-steady-state and transport currents, observed in the forward mode, is preserved in the reverse mode. All these findings can be qualitatively reproduced by a kinetic scheme in which, in the forward mode, the Cl(-) ion is released first, after the inward charge movement, while the two Na(+) ions can be released only after binding of external GABA. In the reverse mode, internal GABA must bind first to the empty transporter, followed by internal Na(+) and Cl(-).  相似文献   

16.
The peptide transporter (PTR) family represents a group of proton-coupled secondary transporters responsible for bulk uptake of amino acids in the form of di- and tripeptides, an essential process employed across species ranging from bacteria to humans. To identify amino acids critical for peptide transport in a prokaryotic PTR member, we have screened a library of mutants of the Escherichia coli peptide transporter YdgR using a high-throughput substrate uptake assay. We have identified 35 single point mutations that result in a full or partial loss of transport activity. Additional analysis, including homology modeling based on the crystal structure of the Shewanella oneidensis peptide transporter PepT(so), identifies Glu(56) and Arg(305) as potential periplasmic gating residues. In addition to providing new insights into transport by members of the PTR family, these mutants provide valuable tools for further study of the mechanism of peptide transport.  相似文献   

17.
The cloned canine betaine-GABA cotransporter BGT-1 has been heterologously expressed in Xenopus laevis oocytes in order to characterize its electrophysiological properties. Voltage-clamp experiments on transfected oocytes reveal the presence of three types of membrane current which are absent in non-injected oocytes: (i) an organic substrate-independent current (uncoupled current); (ii) a transport-associated current, seen upon addition of betaine or GABA; (iii) presteady-state currents induced by voltage changes. The three kinds of current are analogous to those reported in structurally similar cotransporters. The transport-associated current is strictly dependent on the presence of Na(+). The good correlation between the amount of charge underlying the presteady-state currents and the transport-associated current indicates that both processes are due to the activity of the transporter.  相似文献   

18.
CAATCH1 (cation-amino acid transporter/channel) is a recently cloned insect epithelial membrane protein related to mammalian Na(+)-, Cl(-)-coupled neurotransmitter transporters (Feldman, D. H., Harvey, W. R., and Stevens, B. R. (2000) J. Biol. Chem. 275, 24518-24526). In the present study we analyze the relationship between CAATCH1-mediated amino acid transport and ion fluxes by utilizing the Xenopus oocyte expression system in conjunction with electrophysiology and radiotracer uptake. Simultaneous flux measurements reveal that electrical currents and amino acid transport are thermodynamically uncoupled. This observation is supported by measuring significant uptake even in the absence of external alkali cations. Remarkably, CAATCH1-associated Na(+) or K(+) currents are large and do not saturate with voltage nor with cation concentration. These currents reverse in Nernstian fashion, thereby conferring channel activity in CAATCH1. Upon step-changes in the membrane potential, CAATCH1-expressing oocytes exhibit transient currents. Detailed analyses of these transients in the absence and presence of amino acids reveal direct ligand-protein interaction, demonstrating that binding by different amino acids (e.g. proline, threonine, methionine) differentially affects the state probability of CAATCH1 but has no effect on the maximal charge movement (Q(max)). Together these data suggest that CAATCH1 is a multifunction membrane protein that mediates thermodynamically uncoupled amino acid uptake but functions predominantly as an amino acid-gated alkali cation channel.  相似文献   

19.
The cloned intestinal peptide transporter is capable of electrogenic H+-coupled cotransport of neutral di- and tripeptides and selected peptide mimetics. Since the mechanism by which PepT1 transports substrates that carry a net negative or positive charge at neutral pH is poorly understood, we determined in Xenopus oocytes expressing PepT1 the characteristics of transport of differently charged glycylpeptides. Transport function of PepT1 was assessed by flux studies employing a radiolabeled dipeptide and by the two-electrode voltage-clamp-technique. Our studies show, that the transporter is capable of translocating all substrates by an electrogenic process that follows Michaelis Menten kinetics. Whereas the apparent K0.5 value of a zwitterionic substrate is only moderately affected by alterations in pH or membrane potential, K0.5 values of charged substrates are strongly dependent on both, pH and membrane potential. Whereas the affinity of the anionic dipeptide increased dramatically by lowering the pH, a cationic substrate shows only a weak affinity for PepT1 at all pH values (5.5–8.0). The driving force for uptake is provided mainly by the inside negative transmembrane electrical potential. In addition, affinity for proton interaction with PepT1 was found to depend on membrane potential and proton binding subsequently affects the substrate affinity. Furthermore, our studies suggest, that uptake of the zwitterionic form of a charged substrate contributes to overall transport and that consequently the stoichiometry of the flux-coupling ratios for peptide: H+/H3O+ cotransport may vary depending on pH. Received: 19 August 1996/Revised: 10 October 1996  相似文献   

20.
Primary carnitine deficiency is caused by impaired activity of the Na+-dependent OCTN2 carnitine/organic cation transporter. Carnitine is essential for entry of long-chain fatty acids into mitochondria and its deficiency impairs fatty acid oxidation. Most missense mutations identified in patients with primary carnitine deficiency affect putative transmembrane or intracellular domains of the transporter. Exceptions are the substitutions P46S and R83L located in an extracellular loop close to putative glycosylation sites (N57, N64, and N91) of OCTN2. P46S and R83L impaired glycosylation and maturation of OCTN2 transporters to the plasma membrane. We tested whether glycosylation was essential for the maturation of OCTN2 transporters to the plasma membrane. Substitution of each of the three asparagine (N) glycosylation sites with glutamine (Q) decreased carnitine transport. Substitution of two sites at a time caused a further decline in carnitine transport that was fully abolished when all three glycosylation sites were substituted by glutamine (N57Q/N64Q/N91Q). Kinetic analysis of carnitine and sodium-stimulated carnitine transport indicated that all substitutions decreased the Vmax for carnitine transport, but N64Q/N91Q also significantly increased the Km toward carnitine, indicating that these two substitutions affected regions of the transporter important for substrate recognition. Western blot analysis confirmed increased mobility of OCTN2 transporters with progressive substitutions of asparagines 57, 64 and/or 91 with glutamine. Confocal microscopy indicated that glutamine substitutions caused progressive retention of OCTN2 transporters in the cytoplasm, up to full retention (such as that observed with R83L) when all three glycosylation sites were substituted. Tunicamycin prevented OCTN2 glycosylation, but it did not impair maturation to the plasma membrane. These results indicate that OCTN2 is physiologically glycosylated and that the P46S and R83L substitutions impair this process. Glycosylation does not affect maturation of OCTN2 transporters to the plasma membrane, but the 3 asparagines that are normally glycosylated are located in a region important for substrate recognition and turnover rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号