首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the two-stage cell transformation theory, cancer cells first receive initiation, which is mainly caused by DNA damage, and then promotion, which enhances transformation. Murine Balb/c 3T3 cells are widely used for transformation experiments because they lose contact inhibition ability when transformed. Electrolyzed reduced water (ERW), which is produced near a cathode during electrolysis of water, is an alkaline drinking water that is beneficial to health. ERW contains a high concentration of dissolved hydrogen and scavenge reactive oxygen species (ROS), along with a small amount of platinum (Pt) nanoparticles (Pt nps) derived from Pt-coated titanium electrodes. Pt nps stably disperse in aqueous solution for a long time, and convert hydrogen molecules to active hydrogen (atomic hydrogen) that can scavenge ROS. Therefore, ERW supplemented with synthesized Pt nps is a model strong reduced water. This is the first report that ERW supplemented with synthesized Pt nps strongly prevents transformation of Balb/c 3T3 cells. ERW was prepared by electrolysis of 0.002 M NaOH solution using a batch-type electrolysis device. Balb/c 3T3 cells were treated with 3-methyl cholanthrene (MCA) as an initiation substance, followed by treatment with phorbol-12-myristate-13-acetate (PMA) as a promotion substance. MCA/PMA-induced formation of a transformation focus was strongly suppressed by ERW supplemented with Pt nps but not by ERW or Pt nps individually. ERW supplemented with Pt nps suppressed transformation at the promoter stage, not at initiation, suggesting that ERW supplemented with Pt nps suppressed the PMA-induced augmentation of intracellular ROS. ERW supplemented with Pt nps is a potential new antioxidant against carcinogenesis.  相似文献   

2.
Electrolyzed reduced water (ERW) has attracted much attention because of its therapeutic effects. In the present study, a new culture medium, which we designated Water medium, was developed to elucidate the effects of ERW on the lifespan of Caenorhabditis elegans. Wild-type C. elegans had a significantly shorter lifespan in Water medium than in conventional S medium. However, worms cultured in ERW-Water medium exhibited a significantly extended lifespan (from 11% to 41%) compared with worms cultured in ultrapure water-Water medium. There was no difference between the lifespans of worms cultured in ERW-S medium and ultrapure water-S medium. Nematodes cultured in ultrapure water-Water medium showed significantly higher levels of reactive oxygen species than those cultured in ultrapure water-S medium. Moreover, ERW-Water medium significantly reduced the ROS accumulation induced in the worms by paraquat, suggesting that ERW-Water medium extends the longevity of nematodes at least partly by scavenging ROS.  相似文献   

3.
Electrolyzed reduced water (ERW) has attracted much attention because of its therapeutic effects. In the present study, a new culture medium, which we designated Water medium, was developed to elucidate the effects of ERW on the lifespan of Caenorhabditis elegans. Wild-type C. elegans had a significantly shorter lifespan in Water medium than in conventional S medium. However, worms cultured in ERW-Water medium exhibited a significantly extended lifespan (from 11% to 41%) compared with worms cultured in ultrapure water-Water medium. There was no difference between the lifespans of worms cultured in ERW-S medium and ultrapure water-S medium. Nematodes cultured in ultrapure water-Water medium showed significantly higher levels of reactive oxygen species than those cultured in ultrapure water-S medium. Moreover, ERW-Water medium significantly reduced the ROS accumulation induced in the worms by paraquat, suggesting that ERW-Water medium extends the longevity of nematodes at least partly by scavenging ROS.  相似文献   

4.
The nematode Caenorhabditis elegans arrests development at the first larval stage if food is not present upon hatching. Larvae in this stage provide an excellent model for studying stress responses during development. We found that supplementing starved larvae with ethanol markedly extends their lifespan within this L1 diapause. The effects of ethanol-induced lifespan extension can be observed when the ethanol is added to the medium at any time between 0 and 10 days after hatching. The lowest ethanol concentration that extended lifespan was 1 mM (0.005%); higher concentrations to 68 mM (0.4%) did not result in increased survival. In spite of their extended survival, larvae did not progress to the L2 stage. Supplementing starved cultures with n-propanol and n-butanol also extended lifespan, but methanol and isopropanol had no measurable effect. Mass spectrometry analysis of nematode fatty acids and amino acids revealed that L1 larvae can incorporate atoms from ethanol into both types of molecules. Based on these data, we suggest that ethanol supplementation may extend the lifespan of L1 larvae by either serving as a carbon and energy source and/or by inducing a stress response.  相似文献   

5.
Plasma is generated by ionizing gas molecules. Helium (He)‐based cold atmospheric plasma (CAP) was generated using a high‐voltage power supply with low‐frequency excitation (60 Hz at 7 kV) and He flow at 2 l/min. Platinum nanoparticles (Pt‐NPs) are potent antioxidants due to their unique ability to scavenge superoxides and peroxides. These features make them useful for the protection against oxidative stress‐associated pathologies. Here, the effects of Pt‐NPs on He‐CAP‐induced apoptosis and the underlying mechanism were examined in human lymphoma U937 cells. Apoptosis was measured after cells were exposed to He‐CAP in the presence or absence of Pt‐NPs. The effects of combined treatment were determined by observing the changes in intracellular reactive oxygen species (ROS) and both mitochondrial and Fas dependent pathway. The results indicate that Pt‐NPs substantially scavenge He‐CAP‐induced superoxides and peroxides and inhibit all the pathways involved in apoptosis execution. This might be because of the SOD/catalase mimetic effects of Pt‐NPs. These results showed that the Pt‐NPs can induce He‐CAP desensitization in human lymphoma U937 cells.  相似文献   

6.
Y Li  W Wang  Q Wu  Y Li  M Tang  B Ye  D Wang 《PloS one》2012,7(9):e44688
With growing concerns of the safety of nanotechnology, the in vivo toxicity of nanoparticles (NPs) at environmental relevant concentrations has drawn increasing attentions. We investigated the possible molecular mechanisms of titanium nanoparticles (Ti-NPs) in the induction of toxicity at predicted environmental relevant concentrations. In nematodes, small sizes (4 nm and 10 nm) of TiO(2)-NPs induced more severe toxicities than large sizes (60 nm and 90 nm) of TiO(2)-NPs on animals using lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and reactive oxygen species (ROS) production as endpoints. Locomotion behaviors could be significantly decreased by exposure to 4-nm and 10-nm TiO(2)-NPs at concentration of 1 ng/L in nematodes. Among genes required for the control of oxidative stress, only the expression patterns of sod-2 and sod-3 genes encoding Mn-SODs in animals exposed to small sizes of TiO(2)-NPs were significantly different from those in animals exposed to large sizes of TiO(2)-NPs. sod-2 and sod-3 gene expressions were closely correlated with lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and ROS production in TiO(2)-NPs-exposed animals. Ectopically expression of human and nematode Mn-SODs genes effectively prevented the induction of ROS production and the development of toxicity of TiO(2)-NPs. Therefore, the altered expression patterns of Mn-SODs may explain the toxicity formation for different sizes of TiO(2)-NPs at predicted environmental relevant concentrations. In addition, we demonstrated here a strategy to investigate the toxicological effects of exposure to NPs upon humans by generating transgenic strains in nematodes for specific human genes.  相似文献   

7.
Kim MJ  Kim HK 《Life sciences》2006,79(24):2288-2292
Oxidative stress is produced under diabetic conditions and is likely involved in progression of pancreatic beta-cell dysfunction found in diabetes. Both an increase in reactive oxygen free radical species (ROS) and a decrease in the antioxidant defense mechanism lead to the increase in oxidative stress in diabetes. Electrolyzed reduced water (ERW) with ROS scavenging ability may have a potential effect on diabetic animals, a model for high oxidative stress. Therefore, the present study examined the possible anti-diabetic effect of ERW in two different diabetic animal models. The genetically diabetic mouse strain C57BL/6J-db/db (db/db) and streptozotocin (STZ)-induced diabetic mouse were used as insulin deficient type 1 and insulin resistant type 2 animal model, respectively. ERW, provided as a drinking water, significantly reduced the blood glucose concentration and improved glucose tolerance in both animal models. However, ERW fail to affect blood insulin levels in STZ-diabetic mice whereas blood insulin level was markedly increased in genetically diabetic db/db mice. This improved blood glucose control could result from enhanced insulin sensitivity, as well as increased insulin release. The present data suggest that ERW may function as an orally effective anti-diabetic agent and merit further studies on its precise mechanism.  相似文献   

8.
9.
BackgroundReactive oxygen species (ROS)-mediated cancer therapeutic has been at higher appreciation than those mediated by reactive nitrogen species. Cytotoxic mechanism of a novel nitric oxide (NO) inducing-Pt coated Au nanoparticle (NP) has been comparatively studied with the well-established ROS inducing Pt-based anticancer drug cisplatin in human lung A549 carcinoma cells.MethodsCytotoxicity was evaluated by MTT assay, lactate dehydrogenase (LDH) release, thiobarbituric acid substances (TBARS) and C11-Boron dipyrromethene (BODIPY). ROS (O2·− and H2O2) was measured with dihydroethidium (DHE) and H2O2-specific sensor. Nitric oxide (NO) and mitochondrial dysfunction were evaluated respectively by NO-specific probe DAR-1 and JC-1. Autophagy was determined by lysotracker (LTR) and monodansylcadaverine (MDC) applied tandemly whereas apoptosis/necrosis by Hoechst/PI and caspase 3 activity.ResultsIC50 (concentration that inhibited cell viability by 50%) of Pt coated Au NP came to be 0.413 μM whereas IC50 of cisplatin came out to 86.5 μM in A549 cells treated for 24 h meaning NPs toxicity was over 200 times higher than cisplatin. However, no significant stimulation of intracellular ROS was observed at the IC50 of Pt coated Au NPs in A549 cells. However, markers like LDH release, TBARS, BODIPY and ROS were significantly higher due to cisplatin in comparison to Pt coated Au NP.ConclusionsPt coated Au NP caused NO-dependent mitochondrial dysfunction and autophagy. Mode of cell death due to NP was much different from ROS-inducing cisplatin.General significancePt coated Au NP offer promising opportunity in cancer therapeutic and warrants advanced study in vivo models of cancer.  相似文献   

10.
This study used a replicative lifespan assay of K6001 yeast to screen anti-aging food factors in commercial flavonoids. Hesperidin derived from the Citrus genus extended the lifespan of yeast at doses of 5 and 10 μM as compared with the control group (p<0.01, p<0.01). Reactive oxygen species (ROS), real-time PCR (RT-PCR), and lifespan assays of uth1 and skn7 mutants with the K6001 background were used to study the anti-aging mechanisms in yeast. The results indicate that hesperidin significantly inhibits the ROS of yeast, and UTH1 gene expression, and that SKN7 gene are involved in hesperidin-mediated lifespan extension. Further, increases in the Sir2 homolog, SIRT1 activity, and SOD gene expression were confirmed at doses of 5 (p<0.01) and 10 μM (p<0.05). This suggests that Sir2, UTH1 genes, and ROS inhibition after administration of hesperidin have important roles in the anti-aging effects of yeast. However, the aglycon hesperetin did not exhibit anti-aging effects in yeast.  相似文献   

11.
Temperature (T) reduction increases lifespan, but the mechanisms are not understood. Because reactive oxygen species (ROS) contribute to aging, we hypothesized that lowering T might decrease mitochondrial ROS production. We measured respiratory response and ROS production in isolated mitochondria at 32, 35, and 37 °C. Lowering T decreased the rates of resting (state 4) and phosphorylating (state 3) respiration phases. Surprisingly, this respiratory slowdown was associated with an increase of ROS production and hydrogen peroxide release and with elevation of the mitochondrial membrane potential, ΔΨm. We also found that at lower T mitochondria produced more carbon-centered lipid radicals, a species known to activate uncoupling proteins. These data indicate that reduced mitochondrial ROS production is not one of the mechanisms mediating lifespan extension at lower T. They suggest instead that increased ROS leakage may mediate mitochondrial responses to hypothermia.  相似文献   

12.
Hematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood production for their lifetime. Appropriate control of HSC self-renewal is crucial for the maintenance of hematopoietic homeostasis. Here we show that activation of p38 MAPK in response to increasing levels of reactive oxygen species (ROS) limits the lifespan of HSCs in vivo. In Atm(-/-) mice, elevation of ROS levels induces HSC-specific phosphorylation of p38 MAPK accompanied by a defect in the maintenance of HSC quiescence. Inhibition of p38 MAPK rescued ROS-induced defects in HSC repopulating capacity and in the maintenance of HSC quiescence, indicating that the ROS-p38 MAPK pathway contributes to exhaustion of the stem cell population. Furthermore, prolonged treatment with an antioxidant or an inhibitor of p38 MAPK extended the lifespan of HSCs from wild-type mice in serial transplantation experiments. These data show that inactivation of p38 MAPK protects HSCs against loss of self-renewal capacity. Our characterization of molecular mechanisms that limit HSC lifespan may lead to beneficial therapies for human disease.  相似文献   

13.
14.
自由基过度引起的氧化应激是多种疾病发生的因素。连翘花黄色素(forsythia flower yellow pigment, FFYP)中含有大量的抗氧化活性物质,但其对氧化应激的抵抗性仍不清楚。本文首先通过化学方法检测FFYP的体外抗氧化活性;用细胞内抗氧化活性(cellular antioxidant activity,CAA)方法检测FFYP细胞内抗氧化活性;然后以秀丽隐杆线虫(Caenorhabditis elegans,C. elegans)为模型,检测FFYP对线虫氧化应激抵抗力及体内抗氧化指标的影响;用Daf 16和Skn 1突变体线虫和qRT PCR实验探究其作用机制。研究结果表明,FFYP具有1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl, DPPH)自由基清除能力,铁离子还原能力和活性氧自由基(reactive oxygen species, ROS)清除能力,并且具有浓度依赖性。用500 μmol/L的胡桃醌提供氧化应激压力时,FFYP能显著提高线虫在氧化应激下的寿命,表明FFYP可以提高线虫对氧化应激的抵抗力。进一步研究发现,FFYP可显著降低线虫体内ROS自由基含量,提高超氧化物歧化酶(superoxide dismutase, SOD)和过氧化氢酶(catalase, CAT)活性,增加还原型谷胱甘肽(glutathione, GSH)含量,表明FFYP通过提高线虫体内抗氧化防御系统活性清除自由基来提高线虫对氧化应激的抵抗力。突变体线虫实验显示,FFYP对线虫延长氧化应激下寿命的效应在Skn-1突变体线虫中完全消失,在Daf-16突变体中效应被减弱。qRT-PCR实验也显示,Daf-16和Skn-1靶基因的表达量均被提高。表明FFYP对线虫氧化应激抵抗力提高的作用是通过Daf-16和Skn-1共同作用。这预示着FFYP具有很好的抗氧化及抗应激药用价值,有潜力成为一种新的有生物活性的天然色素。  相似文献   

15.
16.
Superoxide dismutases (SODs) promote a conversion of harmful reactive oxygen species (ROS) to relatively moderate forms, resulting in the extension of lifespan in the nematode Caenorhabditis elegans under caloric restriction. The lifespan of the rotifer Brachionus plicatilis is also markedly extended by caloric restriction. We, therefore, cloned cDNA encoding SOD activated with Mn (Mn SOD) from B. plicatilis and examined its expression pattern in rotifers raised with energy restricted diet. The full length deduced amino acid sequence of the rotifer Mn SOD showed 61% identity with the C. elegans ortholog. Four amino acid residues that are essential to the binding of this enzyme to Mn were conserved in the rotifer Mn SOD. Subsequently we examined the mRNA expression patterns of Mn SOD using highly sensitive quantitative real-time PCR for various rotifer populations that are likely to differ in their lifespans in experiments on calorie restricted diets. The accumulated mRNA levels of Mn SOD were found to increase in supposedly long-lived rotifers. These results suggest that Mn SOD is possibly related to the aging of B. plicatilis.  相似文献   

17.
18.
Reactive oxygen species (ROS) are no longer considered merely toxic by-products of the oxidative metabolism. Tightly controlled concentrations of ROS and fluctuations in redox potential may be important mediators of signaling processes. Understanding the role of ROS and redox status in physiology, stress response, development, and aging requires their nondisruptive, spatiotemporal, real-time quantification in a living organism. We established Caenorhabditis elegans strains bearing the genetically encoded fluorescent biosensors HyPer and Grx1-roGFP2 for the detection of hydrogen peroxide (H(2)O(2)) and the glutathione redox potential, respectively. Although, given its transparency and genetic tractability, C. elegans is perfectly suitable as a model organism for such approaches, they have never been tried before in this nematode. We found that H(2)O(2) treatment clearly induces a dose-dependent, reversible response of both biosensors in the living worms. The ratio of oxidized to reduced glutathione decreases during postembryonic development. H(2)O(2) levels increase with age and this effect is delayed when life span is extended by dietary restriction. In young adults, we detected several regions with distinct redox properties that may be linked to their biological function. Our findings demonstrate that genetically encoded biosensors can reveal previously unknown details of in vivo redox biology in multicellular organisms.  相似文献   

19.
20.
Magnetic nanoparticles (NPs) are used to a large extent in the targeted delivery of therapeutic agents. In this study, we aimed to investigate the possible toxicity of Fe2O 3 NPs on human cells, including blood lymphocytes. We isolated blood lymphocytes from healthy humans using Ficoll polysaccharide and subsequently by gradient centrifugation. Then, the toxicity parameters, including cell viability, reactive oxygen species (ROS) formation, lipid peroxidation, cellular glutathione (GSH) level, mitochondrial and lysosomal damage, were measured in blood lymphocytes after exposure to Fe 2O 3 NPs. Our results indicated that Fe 2O 3 NPs significantly (dependent on concentration) reduced the cell viability, and the IC 50 was determined to be 1 mM. With increasing concentrations, we found that Fe 2O 3 NPs–induced cell toxicity was associated with a significant increase in intracellular ROS and loss of mitochondrial membrane potential and lysosomal membrane leakiness. Consequently, these NPs at different concentrations affect GSH level and cause oxidative stress in human lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号