首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
Mechanisms underlying Kv4 channel inactivation and recovery are presently unclear, although there is general consensus that the basic characteristics of these processes are not consistent with Shaker (Kv1) N- and P/C-type mechanisms. Kv4 channels also differ from Shaker in that they can undergo significant inactivation from pre-activated closed-states (closed-state inactivation, CSI), and that inactivation and recovery kinetics can be regulated by intracellular KChIP2 isoforms. To gain insight into the mechanisms regulating Kv4.3 CSI and recovery, we have analyzed the effects of increasing [K+]o from 2 mM to 98mM in the absence and in the presence of KChIP2b, the major KChIP2 isoform expressed in the mammalian ventricle. In the absence of KChIP2b, high [K+]o promoted Kv4.3 inactivated closed-states and significantly slowed the kinetics of recovery from both macroscopic and closed-state inactivation. Coexpression of KChIP2b in 2 mM [K+]o promoted non-inactivated closed-states and accelerated the kinetics of recovery from both macroscopic and CSI. In high [K+]o, KChIP2b eliminated or significantly reduced the slowing effects on recovery. Attenuation of CSI by the S4 charge-deletion mutant R302A, which produced significant stabilization of non-inactivated closed-states, effectively eliminated the opposing effects of high [K+]o and KChiP2b on macroscopic recovery kinetics, confirming that these results were due to alterations of CSI. Elevated [K+]o therefore slows Kv4.3 recovery by stabilizing inactivated closed-states, while KChIP2b accelerates recovery by destabilizing inactivated closed-states. Our results challenge underlying assumptions of presently popular Kv4 gating models and suggest that Kv4.3 possesses novel allosteric mechanisms, which are absent in Shaker, for coupling interactions between intracellular KChIP2b binding motifs and extracellular K+-sensitive regulatory sites.  相似文献   

2.
The Kv1.3 channel inactivates via the P/C-type mechanism, which is influenced by a histidine residue in the pore region (H399, equivalent of Shaker 449). Previously we showed that the electric field of the protonated histidines at low extracellular pH (pHe) creates a potential barrier for K+ ions just outside the pore that hinders their exit from the binding site controlling inactivation (control site) thereby slowing inactivation kinetics. Here we examined the effects of extracellular potassium [K+]e and pHe on the rate of inactivation of Kv1.3 using whole-cell patch-clamp. We found that in 150 mM [K+]e inactivation was accelerated upon switching to pHe 5.5 as opposed to the slowing at 5 mM [K+]e. The transition from slowing to acceleration occurred at 40 mM [K+]e, whereas this "turning point" was at 20 mM [K+]e for inward currents. The rate of entry of Ba(2+) ions from the extracellular space to the control site was significantly slowed by low pHe in wild-type hKv1.3, but it was insensitive to pH(e) in H399K and H399L mutants. Based on these observations we expanded our model and propose that the potential barrier created by the protonated histidines impedes the passage of K+ ions between the extracellular medium and the control site in both directions and the effect on inactivation rate (acceleration or slowing) depends on the relative contribution of filling from the extracellular and intracellular sides.  相似文献   

3.
Effects of the K+ concentration in the bathing fluid ([K+]l) on the intracellular K+, Na+ and Cl- concentrations ([K+]i [Na+]i and [Cl-]i) as well as on the electrical potential were studied in rat duodenum. Changes in the mucosal K+ concentration ([K+]m), bringing the sum of Na+ and K+ concentrations to 147.2 mM constant, had little effect on the transmural potential difference (PDt), but did induce marked changes in the mucosal membrane potential (Vm). As [K+]m increased, Vm was depolarized gradually and obeyed the Nernst equation for a potassium electrode in the range of [K+]m greater than approx. 60 mM. Experiments of ion analyses were carried out on strips of duodenum to determine the effect of changing the external K+ concentrations on [K+] i, [Na+]i and [Cl-]i. An increase in [K+]o resulted in increases in [K+]i and [Cl-]i and a decrease in [Na+]i, [K+]i approaching its maximum at [K+]o greater than 70 mM. Such changes in [K+]i and [Na+]i seem to correlate quantitatively with the changes in [K+]o and [Na+]o. The values of the ratio of permeability coefficients, Pna+/PK+ were estimated using the Vm values and intracellular ion concentrations measured in these experiments. The results suggested that there appeared a rather abrupt increase in the PNa+/PK+ ratio from 0 to approx. 0.1, as [K+]m decreased.  相似文献   

4.
The contribution of Ca2(+)-activated and delayed rectifying K+ channels to the voltage-dependent outward current involved in spike repolarization in mouse pancreatic beta-cells (Rorsman, P., and G. Trube. 1986. J. Physiol. 374:531-550) was assessed using patch-clamp techniques. A Ca2(+)-dependent component could be identified by its rapid inactivation and sensitivity to the Ca2+ channel blocker Cd2+. This current showed the same voltage dependence as the voltage-activated (Cd2(+)-sensitive) Ca2+ current and contributed 10-20% to the total beta-cell delayed outward current. The single-channel events underlying the Ca2(+)-activated component were investigated in cell-attached patches. Increase of [Ca2+]i invariably induced a dramatic increase in the open state probability of a Ca2(+)-activated K+ channel. This channel had a single-channel conductance of 70 pS [( K+]o = 5.6 mM). The Ca2(+)-independent outward current (constituting greater than 80% of the total) reflected the activation of an 8 pS [( K+]o = 5.6 mM; [K+]i = 155 mM) K+ channel. This channel was the only type observed to be associated with action potentials in cell-attached patches. It is suggested that in mouse beta-cells spike repolarization results mainly from the opening of the 8-pS delayed rectifying K+ channel.  相似文献   

5.
Kv1.4 encodes a slowly recovering transient outward current (I(to)), which inactivates by a fast N-type (intracellular ball and chain) mechanism but has slow recovery due to C-type inactivation. C-type inactivation of the NH(2)-terminal deletion mutant (fKv1.4DeltaN) was inhibited by 98 mM extracellular K(+) concentration ([K(+)](o)), whereas N-type was unaffected. In 98 mM [K(+)](o), removal of intracellular K(+) concentration ([K(+)](i)) speeded C-type inactivation but had no effect on N-type inactivation, suggesting that C-type inactivation is sensitive to K(+) binding to intracellular sites. C-type inactivation is thought to involve closure of the extracellular pore mouth. However, a valine to alanine mutation on the intracellular side of S6 (V561A) of fKv1.4DeltaN alters recovery and results in anomalous speeding of C-type inactivation with increasing [K(+)](o). Extracellular pH (pH(o)) modulated both N- and C-type inactivation through an S5-H5 linker histidine (H508) with acidosis speeding both N- and C-type inactivation. Mutation of an extracellular lysine to a tyrosine (K532Y) slowed C-type inactivation and inhibited the pH dependence of both N- and C-type inactivation. These results suggest that mutations, [K(+)], and pH modulate inactivation through membrane-spanning mechanisms involving S6.  相似文献   

6.
Changes in extracellular potassium concentration ([K+]o) modulate a variety of neuronal functions. However, whether axonal transport, which conveys materials to the appropriate destination for morphogenesis and other neuronal functions, depends on the extracellular K+ environment remains unclear. We therefore examined the effects of changes in [K+]o on axonal transport of particles visualized by video-enhanced microscopy in cultured mouse dorsal root gan-glion neurites. Increases in [K+]o (delta[K+]o > or = 2.5 mM) from control concentration (5 mM) inhibited both anterograde and retrograde axonal transport within a few minutes in a concentration-dependent manner. Conversely, removal of extracellular K+ induced the rapid facilitation of transport in both directions. These inhibitory and facilitatory responses were completely blocked by the K+ channel blocker tetraethylammonium (TEA), suggesting that the effect of changes in [K+]o involves the TEA-sensitive K+ channels. Increases in [K+]o provoked membrane depolarization in the absence and presence of TEA. Another depolarizing agent, veratridine, did not produce an effect on axonal transport. These results suggest that the extracellular K+-mediated inhibition of axonal transport does not depend on membrane depolarization. The inhibitory effect of increasing [K+]o on axonal transport was retained in calcium (Ca2+)-free extracellular medium, indicating that the inhibitory effect of extracellular K+ does not result from Ca2+ influx through voltage-dependent Ca2+ channels. In chloride (CI-)-free medium, increasing [K+]o failed to inhibit axonal transport, implying that the extracellular K+-mediated inhibition of axonal transport may be due to an increase in intracellular Cl- concentration associated with increases in the net inward movement of K+ and CI- across the membrane. Our results suggest that the extracellular K+ environment is involved in the rapid modulation of axonal transport of particles in dorsal root ganglion neurites.  相似文献   

7.
Net taurine transport across the frog retinal pigment epithelium-choroid was measured as a function of extracellular potassium concentration, [K+]o. The net rate of retina-to-choroid transport increased monotonically as [K+]o increased from 0.2 mM to 2 mM on the apical (neural retinal) side of the tissue. No further increase was observed when [k+]o was elevated to 5 mM. The [K+]o changes that modulate taurine transport approximate the light-induced [K+]o changes that occur in the extracellular space separating the photoreceptors and the apical membrane of the pigment epithelium. The taurine-potassium interaction was studied by using rubidium as a substitute for potassium and measuring active rubidium transport as a function of extracellular taurine concentration. An increase in apical taurine concentration, from 0.2 mM to 2 mM, produced a threefold increase in active rubidium transport, retina to choroid. Net taurine transport can also be altered by relatively large, 55 mM, changes in [Na+]o. Apical ouabain, 10(-4) M, inhibited active taurine, rubidium, and potassium transport; in the case of taurine, this inhibition is most likely due to a decrease in the sodium electrochemical gradient. In sum, these results suggest that the apical membrane contains a taurine, sodium co-transport mechanism whose rate is modulated, indirectly, through the sodium pump. This pump has previously been shown to be electrogenic and located on the apical membrane, and its rate is modulated, indirectly, by the taurine co-transport mechanism.  相似文献   

8.
Recovery from C-type inactivation of Kv1.3 can be accelerated by the binding of extracellular potassium to the channel in a voltage-dependent fashion. Whole-cell patch-clamp recordings of human T lymphocytes show that Ko+ can bind to open or inactivated channels. Recovery is biphasic with time constants that depend on the holding potential. Recovery is also dependent on the voltage of the depolarizing pulse that induces the inactivation, consistent with a modulatory binding site for K+ located at an effective membrane electrical field distance of 30%. This K(+)-enhanced recovery can be further potentiated by the binding of extracellular tetraethylammonium to the inactivated channel, although the tetraethylammonium does not interact directly with the K(+)-binding site. Our findings are consistent with a model in which K+ can bind and unbind slowly from a channel in the inactivated state, and inactivated channels that are bound by K+ will recover with a rate that is fast relative to unbound channels. Our data suggest that the kinetics of K+ binding to the modulatory site are slower than these recovery rates, especially at hyperpolarized voltages.  相似文献   

9.
The effects of extracellular K+ on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) were examined in mouse aorta, mouse aorta endothelial cells (MAEC), and human umbilical vein endothelial cells (HUVEC). In mouse aortic rings precontracted with prostaglandin F2alpha or norepinephrine, an increase in extracellular K+ concentration ([K+]o) from 6 to 12 mM inhibited EDR concentration dependently. In endothelial cells, an increase in [K+]o inhibited the agonist-induced [Ca2+]i increase concentration dependently. Similar to K+, Cs+ also inhibited EDR and the increase in [Ca2+]i concentration dependently. In current-clamped HUVEC, increasing [K+]o from 6 to 12 mM depolarized membrane potential from -32.8 +/- 2.7 to -8.6 +/- 4.9 mV (n = 8). In voltage-clamped HUVEC, depolarizing the holding potential from -50 to -25 mV decreased [Ca2+]i significantly from 0.95 +/- 0.03 to 0.88 +/- 0.03 microM (n = 11, P < 0.01) and further decreased [Ca2+]i to 0.47 +/- 0.04 microM by depolarizing the holding potential from -25 to 0 mV (n = 11, P < 0.001). Tetraethylammonium (1 mM) inhibited EDR and the ATP-induced [Ca2+]i increase in voltage-clamped MAEC. The intermediate-conductance Ca2+-activated K+ channel openers 1-ethyl-2-benzimidazolinone, chlorozoxazone, and zoxazolamine reversed the K+-induced inhibition of EDR and increase in [Ca2+]i. The K+-induced inhibition of EDR and increase in [Ca2+]i was abolished by the Na+-K+ pump inhibitor ouabain (10 microM). These results indicate that an increase of [K+]o in the physiological range (6-12 mM) inhibits [Ca2+]i increase in endothelial cells and diminishes EDR by depolarizing the membrane potential, decreasing K+ efflux, and activating the Na+-K+ pump, thereby modulating the release of endothelium-derived vasoactive factors from endothelial cells and vasomotor tone.  相似文献   

10.
Inhibition of transmitter release by protons (H+) was studied at the frog neuromuscular junction at various extracellular concentrations of calcium ([Ca++]o) and potassium ([K+]o) by recording miniature end-plate potential (MEPP) frequency with the intracellular microelectrode. H+ decreased K+ -stimulated MEPP frequency. A double logarithmic graph of MEPP frequency at 7.5 mM K+ vs. [H+]o yielded a straight line with negative slope. At 10 mM K+, there was a parallel shift to the right of the graph. According to the surface charge model, K+ acts solely to depolarize the prejunctional membrane in accordance with the Nernst equation. By decreasing the prejunctional negative surface charge, H+ decreases K+ -stimulated MEPP frequency by decreasing [Ca++]o at the Ca++ channel. An estimated pKa of 4.20 may represent an acidic site at the Ca++ channel associated with Ca++ influx. As [Ca++]o increased above 1 mM for pH 7.40 and 10 mM K+, MEPP frequency decreased, i.e., the inhibitory component of dual effects of Ca++ occurred. At pH 6.40, the inhibitory component was abolished, unmasking the stimulatory effect of Ca++ on MEPP frequency. Reversal of Ca++ action by H+ could not be explained by surface charge theory alone. A double logarithmic graph of MEPP frequency vs. [K+]o at 8.5-10.5 mM was linear with a slope of 4. There were parallel shifts to the right of this graph for changes in pH from 7.40 to 6.90 and in [Ca++]o from 1 to 2.5 mM. These results are explained on the hypothesis that K+ also acts at an acidic prejunctional site to increase Ca++ -dependent quantal transmitter release. This action of K+ was inhibited by H+ and raised Ca++. Based on kinetic theory, the estimated pKa of the acidic prejunctional K+ site was 6.31. Based on free energy calculations, its cation preference was H+ greater than K+ greater than Ca++.  相似文献   

11.
Mechanisms underlying Kv4 channel inactivation and recovery are presently unclear, although there is general consensus that the basic characteristics of these processes are not consistent with Shaker (Kv1) N- and P/C-type mechanisms. Kv4 channels also differ from Shaker in that they can undergo significant inactivation from pre-activated closed-states (closed-state inactivation, CSI), and that inactivation and recovery kinetics can be regulated by intracellular KChIP2 isoforms. To gain insight into the mechanisms regulating Kv4.3 CSI and recovery, we have analyzed the effects of increasing [K(+)](o) from 2 mM to 98 mM in the absence and in the presence of KChIP2b, the major KChIP2 isoform expressed in the mammalian ventricle. In the absence of KChIP2b, high [K(+)](o) promoted Kv4.3 inactivated closed-states and significantly slowed the kinetics of recovery from both macroscopic and closed-state inactivation. Coexpression of KChIP2b in 2 mM [K(+)](o) promoted non-inactivated closed-states and accelerated the kinetics of recovery from both macroscopic and CSI. In high [K(+)](o), KChIP2b eliminated or significantly reduced the slowing effects on recovery. Attenuation of CSI by the S4 charge-deletion mutant R302A, which produced significant stabilization of non-inactivated closed-states, effectively eliminated the opposing effects of high [K(+)](o) and KChIP2b on macroscopic recovery kinetics, confirming that these results were due to alterations of CSI. Elevated [K(+)](o) therefore slows Kv4.3 recovery by stabilizing inactivated closed-states, while KChIP2b accelerates recovery by destabilizing inactivated closed-states. Our results challenge underlying assumptions of presently popular Kv4 gating models and suggest that Kv4.3 possesses novel allosteric mechanisms, which are absent in Shaker, for coupling interactions between intracellular KChIP2b binding motifs and extracellular K(+)-sensitive regulatory sites.  相似文献   

12.
R C Shieh  J C Chang    J Arreola 《Biophysical journal》1998,75(5):2313-2322
Interactions of Ba2+ with K+ and molecules contributing to inward rectification were studied in the cloned inward rectifier K+ channels, Kir2.1. Extracellular Ba2+ blocked Kir2.1 channels with first-order kinetics in a Vm-dependent manner. At Vm more negative than -120 mV, the Kd-Vm relationship became less steep and the dissociation rate constants were larger, suggesting Ba2+ dissociation into the extracellular space. Both depolarization and increasing [K+]i accelerated the recovery from extracellular Ba2+ blockade. Intracellular K+ appears to relieve Ba2+ blockade by competitively slowing the Ba2+ entrance rate, instead of increasing its exit rate by knocking off action. Intracellular spermine (100 microM) reduced, whereas 1 mM [Mg2+]i only slightly reduced, the ability of intracellular K+ to repulse Ba2+ from the channel pore. Intracellular Ba2+ also blocked outward IKir2.1 in a voltage-dependent fashion. At Vm >/= +40 mV, where intrinsic inactivation is prominent, intracellular Ba2+ accelerated the inactivation rate of the outward IKir2.1 in a Vm-independent manner, suggesting interaction of Ba2+ with the intrinsic gate of Kir2.1 channels.  相似文献   

13.
Generation of the action potentials (AP) necessary to activate skeletal muscle fibers requires that inward membrane currents exceed outward currents and thereby depolarize the fibers to the voltage threshold for AP generation. Excitability therefore depends on both excitatory Na+ currents and inhibitory K+ and Cl- currents. During intensive exercise, active muscle loses K+ and extracellular K+ ([K+]o) increases. Since high [K+]o leads to depolarization and ensuing inactivation of voltage-gated Na+ channels and loss of excitability in isolated muscles, exercise-induced loss of K+ is likely to reduce muscle excitability and thereby contribute to muscle fatigue in vivo. Intensive exercise, however, also leads to muscle acidification, which recently was shown to recover excitability in isolated K(+)-depressed muscles of the rat. Here we show that in rat soleus muscles at 11 mM K+, the almost complete recovery of compound action potentials and force with muscle acidification (CO2 changed from 5 to 24%) was associated with reduced chloride conductance (1731 +/- 151 to 938 +/- 64 microS/cm2, P < 0.01) but not with changes in potassium conductance (405 +/- 20 to 455 +/- 30 microS/cm2, P < 0.16). Furthermore, acidification reduced the rheobase current by 26% at 4 mM K+ and increased the number of excitable fibers at elevated [K+]o. At 11 mM K+ and normal pH, a recovery of excitability and force similar to the observations with muscle acidification could be induced by reducing extracellular Cl- or by blocking the major muscle Cl- channel, ClC-1, with 30 microM 9-AC. It is concluded that recovery of excitability in K(+)-depressed muscles induced by muscle acidification is related to reduction in the inhibitory Cl- currents, possibly through inhibition of ClC-1 channels, and acidosis thereby reduces the Na+ current needed to generate and propagate an AP. Thus short term regulation of Cl- channels is important for maintenance of excitability in working muscle.  相似文献   

14.
L Kiss  S J Korn 《Biophysical journal》1998,74(4):1840-1849
With prolonged or repetitive activation, voltage-gated K+ channels undergo a slow (C-type) inactivation mechanism, which decreases current flow through the channel. Previous observations suggest that C-type inactivation results from a localized constriction in the outer mouth of the channel pore and that the rate of inactivation is controlled by the-rate at which K+ leaves an unidentified binding site in the pore. We have functionally identified two K+ binding sites in the conduction pathway of a chimeric K+ channel that conducts Na+ in the absence of K+. One site has a high affinity for K+ and contributes to the selectivity filter mechanism for K+ over Na+. Another site, external to the high-affinity site, has a lower affinity for K+ and is not involved in channel selectivity. Binding of K+ to the high-affinity binding site slowed inactivation. Binding of cations to the external low-affinity site did not slow inactivation directly but could slow it indirectly, apparently by trapping K+ at the high-affinity site. These data support a model whereby C-type inactivation involves a constriction at the selectivity filter, and the constriction cannot proceed when the selectivity filter is occupied by K+.  相似文献   

15.
Potassium-mediated stimulation of hepatic glycogenolysis   总被引:1,自引:0,他引:1  
Increased extracellular potassium concentrations ([K+]o) stimulated transient increases in glucose release and 45Ca2+ washout in the perfused rat liver. Stimulated glucose release had a K0.5 of about 26 mM for [K+]o, was not desensitized by successive infusion intervals of increased [K+]o, was not affected by altering the direction of perfusion, was absolutely dependent on the presence of [Ca2+]o, and was blocked by 2 mM cobalt or 10 microM verapamil. The increase in 45Ca2+ washout resulting from increased [K+]o also was blocked by 2 mM cobalt or 10 microM verapamil. Inhibitors of vascular tone (nitroprusside, atriopeptin II), arachidonic acid metabolism (indomethacin, nordihydroguaiaretic acid), and alpha- or beta-adrenergic or muscarinic nerve stimulation/secretion (phentolamine, propranolol, atropine) were unable to inhibit the [K+]o-stimulated glucose release. ATP, ADP, and AMP concentrations in tissue freeze-clamped 2 min after the onset of infusion of 50 mM K+ were not significantly different from control tissue. Glucose release from freshly isolated suspensions or primary cultured monolayers of hepatocytes or from liver slices, all of which responded to glucagon or phenylephrine, did not respond to increased [K+]o. The results indicate that glycogenolysis stimulated by depolarizing gradients of K+ is dependent on an intact perfused vasculature and may be mediated by potential-sensitive Ca2+ channels present in the vascular endothelium of the liver.  相似文献   

16.
K+ currents activated by depolarization in cardiac fibroblasts   总被引:1,自引:0,他引:1  
K(+) currents expressed in freshly dispersed rat ventricular fibroblasts have been studied using whole-cell patch-clamp recordings. Depolarizing voltage steps from a holding potential of -90 mV activated time- and voltage-dependent outward currents at membrane potentials positive to approximately -30 mV. The relatively slow activation kinetics exhibited strong dependence on the membrane potential. Selected changes in extracellular K(+) concentration ([K(+)](o)) revealed that the reversal potentials of the tail currents changed as expected for a K(+) equilibrium potential. The activation and inactivation kinetics of this K(+) current, as well as its recovery from inactivation, were well-fitted by single exponential functions. The steady-state inactivation was well described by a Boltzmann function with a half-maximal inactivation potential (V(0.5)) of -24 mV. Increasing [K(+)](o) (from 5 to 100 mM) shifted this V(0.5) in the hyperpolarizing direction by -11 mV. Inactivation was slowed by increasing [K(+)](o) to 100 mM, and the rate of recovery from inactivation was decreased after increasing [K(+)](o). Block of this K(+) current by extracellular tetraethylammonium also slowed inactivation. These [K(+)](o)-induced changes and tetraethylammonium effects suggest an important role for a C-type inactivation mechanism. This K(+) current was sensitive to dendrotoxin-I (100 nM) and rTityustoxin Kalpha (50 nM).  相似文献   

17.
Calcium-activated potassium channels in chondrocytes.   总被引:2,自引:0,他引:2  
The presence of calcium-activated potassium channels in chondrocytes of growing cartilage was tested. Results obtained with fura-2 on cultured resting chondrocytes indicate that the cells respond to an elevation of extracellular calcium concentration ([Ca2+]o) from 0.1 to 2 mM increasing the intracellular concentration of the ion ([Ca2+]i) from 117 to 187 nM. This increment may be blocked by 3 microM La3+. Patch clamp experiments in cell-attached configuration showed that, when [Ca2+]i rises, the open probability (Po) of the K+ channels increases. Increments in both Po and unitary currents of the K+ channels can be obtained after applying 2.5 microM A23187 with 2 mM [Ca2+]o. Hence, the results demonstrate that, in chondrocytes, a class of Ca(2+)-activated K+ channels is present and their activity is related to an increase of [Ca2+]i.  相似文献   

18.
P Vergani  D Hamilton  S Jarvis    M R Blatt 《The EMBO journal》1998,17(24):7190-7198
The product of the Saccharomyces cerevisiae K+-channel gene YKC1 includes two pore-loop sequences that are thought to form the hydrophilic lining of the pore. Gating of the channel is promoted by membrane depolarization and is regulated by extracellular K+ concentration ([K+]o) both in the yeast and when expressed in Xenopus oocytes. Analysis of the wild-type current now shows that: (i) [K+]o suppresses a very slowly relaxing component, accelerating activation; (ii) [K+]o slows deactivation in a dose-dependent fashion; and (iii) Rb+, Cs+ and, to a lesser extent, Na+ substitute for K+ in its action on gating. We have identified single residues, L293 and A428, at equivalent positions within the two pore loops that affect the [K+]o sensitivity. Substitution of these residues gave channels with reduced sensitivity to [K+]o in macroscopic current kinetics and voltage dependence, but had only minor effects on selectivity among alkali cations in gating and on single-channel conductance. In some mutants, activation was slowed sufficiently to confer a sigmoidicity to current rise at low [K+]o. The results indicate that these residues are involved in [K+]o sensing. Their situation close to the permeation pathway points to an interaction between gating and permeation.  相似文献   

19.
Obata T  Yamanaka Y 《Life sciences》2000,68(6):689-697
The present study examined the antioxidant effect of histidine on extracellular potassium ion concentration, [K+]o-induced depolarization enhances 1-methyl-4-phenylpyridinium ion (MPP+)-induced hydroxyl radical (*OH) generation in the rat striatum. Rats were anesthetized and sodium salicylate in Ringer's solution (0.5 nmol/M microl/min) was infused through a microdialysis probe to detect the generation of *OH as reflected by the nonenzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) in the striatum. Induction of [K+]o (20, 70 and 140 mM) significantly increased the level of 2,3-DHBA by the action of MPP+ (5 mM) in a concentration-dependent manner. However, histidine (25 mM) reduced the [K+]o-induced *OH formation. Although the level of MPP+-induced dopamine (DA) and 2,3-DHBA formation after [K+]o (70 mM) treatment increased, [K+]o failed to increase either the level of MPP+-induced DA and 2,3-DHBA in the reserpinized group. When iron (II) was administered to [K+]o (70 mM)-pretreated rats, iron (II) clearly produced a dose-dependent increase in the level of 2,3-DHBA, as compared with MPP+-only treated rats. However, in the presence of histidine (25 mM), the effect of [K+]o was abolished. These results indicated that histidine may reduce the [K+]o-induced depolarization enhanced *OH formation by the action of MPP+ in the rat striatum.  相似文献   

20.
Chen KY  Zhu PH 《生理学报》1999,(2):153-160
用蛙胫前肌小束为材料, 研究了提高胞外钾[K+]O对咖啡因挛缩的作用.[K+]O从2 mmol/L提高到10或25 mmol/L, 由3 mmol/L咖啡因引起的挛缩明显增强.以PKC/PC (PKC和PC分别为在高钾和正常钾条件下的咖啡因挛缩)表示的咖啡因挛缩增强, 依赖[K+]O和高钾作用时间.随着10 mmol/L [K+]O作用时间延长, 直至10 min, 增强逐渐增加.但是, 25 mmol/L [K+]O作用1 min时增强达到最大, 然后下降到对照.PKC/PC变化时程不能用高钾引起的去极化解释, 而与由相似[K+]O引起的胞浆自由钙变化时程相符.提示, 至少在蛙骨骼肌, 高钾引起的咖啡因挛缩增强主要是由胞浆自由钙升高引起的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号