共查询到20条相似文献,搜索用时 15 毫秒
1.
Human Immunodeficiency Virus Type 1 Integrase Protein Promotes Reverse Transcription through Specific Interactions with the Nucleoprotein Reverse Transcription Complex 下载免费PDF全文
Xiaoyun Wu Hongmei Liu Hongling Xiao Joan A. Conway Eric Hehl Ganjam V. Kalpana Vinayaka Prasad John C. Kappes 《Journal of virology》1999,73(3):2126
2.
Mutational Scan of the Human Immunodeficiency Virus Type 2 Integrase Protein 总被引:1,自引:1,他引:0 下载免费PDF全文
Fusinita M. I. van den Ent Arnold Vos Ronald H. A. Plasterk 《Journal of virology》1998,72(5):3916-3924
Retroviral integrase (IN) cleaves linear viral DNA specifically near the ends of the DNA (cleavage reaction) and subsequently couples the processed ends to phosphates in the target DNA (integration reaction). In vitro, IN catalyzes the disintegration reaction, which is the reverse of the integration reaction. Ideally, we would like to test the role of each amino acid in the IN protein. We mutagenized human immunodeficiency virus type 2 IN in a random way using PCR mutagenesis and generated a set of mutants in which 35% of all residues were substituted. Mutant proteins were tested for in vitro activity, e.g., site-specific cleavage of viral DNA, integration, and disintegration. Changes in 61 of the 90 proteins investigated showed no phenotypic effect. Substitutions that changed the choice of nucleophile in the cleavage reaction were found. These clustered around the active-site residues Asp-116 and Glu-152. We also found alterations of amino acids that affected cleavage and integration differentially. In addition, we analyzed the disintegration activity of the proteins and found substitutions of amino acids close to the dimer interface that enhanced intermolecular disintegration activity, whereas other catalytic activities were present at wild-type levels. This study shows the feasibility of investigating the role of virtually any amino acid in a protein the size of IN. 相似文献
3.
4.
Characterization of Recombinant Integrase of Human Immunodeficiency Virus Type 1 (Isolate Bru) 总被引:1,自引:0,他引:1
Semenova EA Gashnikova NM Il'ina TV Pronyaeva TR Pokrovsky AG 《Biochemistry. Biokhimii?a》2003,68(9):988-993
Integration of the human immunodeficiency virus type 1 (HIV-1) DNA into the human genome requires the virusencoded integrase protein. The recombinant integrase protein of HIV-1 (isolate Bru) was prepared by constructing a plasmid based on pET-15b encoding the integrase gene. Integrase of HIV-1 was purified using a bacterial expression system (Escherichia coli). The main kinetic parameters of HIV-1 integrase (K
m = (3.7 ± 0.2)·10–10 M, k
cat = (1.2 ± 0.3)·10–7 sec–1) were determined using an oligonucleotide duplex constructed on the basis of the U5-terminal sequence of proviral HIV-1 DNA as the substrate. Inhibition of integrase by aurintricarbonic acid ([I]50 = 6.3 ± 0.4 M) and dependence of integrase activity on Mg2+ and Mn2+ concentration were studied. 相似文献
5.
Effects of Mutations in Residues near the Active Site of Human Immunodeficiency Virus Type 1 Integrase on Specific Enzyme-Substrate Interactions 总被引:2,自引:5,他引:2 下载免费PDF全文
Jennifer L. Gerton Sharron Ohgi Mari Olsen Joseph DeRisi Patrick O. Brown 《Journal of virology》1998,72(6):5046-5055
The phylogenetically conserved catalytic core domain of human immunodeficiency virus type 1 (HIV-1) integrase contains elements necessary for specific recognition of viral and target DNA features. In order to identify specific amino acids that determine substrate specificity, we mutagenized phylogenetically conserved residues that were located in close proximity to the active-site residues in the crystal structure of the isolated catalytic core domain of HIV-1 integrase. Residues composing the phylogenetically conserved DD(35)E active-site motif were also mutagenized. Purified mutant proteins were evaluated for their ability to recognize the phylogenetically conserved CA/TG base pairs near the viral DNA ends and the unpaired dinucleotide at the 5′ end of the viral DNA, using disintegration substrates. Our findings suggest that specificity for the conserved A/T base pair depends on the active-site residue E152. The phenotype of IN(Q148L) suggested that Q148 may be involved in interactions with the 5′ dinucleotide of the viral DNA end. The activities of some of the proteins with mutations in residues in close proximity to the active-site aspartic and glutamic acids were salt sensitive, suggesting that these mutations disrupted interactions with DNA. 相似文献
6.
7.
8.
9.
10.
Functional Analysis of the Human Immunodeficiency Virus Type 1 Rev Protein Oligomerization Interface 总被引:2,自引:1,他引:1
Sarah L. Thomas Martin Oft Herbert Jaksche Georg Casari Peter Heger Marika Dobrovnik Dorian Bevec Joachim Hauber 《Journal of virology》1998,72(4):2935-2944
The expression of human immunodeficiency virus type 1 (HIV-1) structural proteins requires the action of the viral trans-regulatory protein Rev. Rev is a nuclear shuttle protein that directly binds to its cis-acting Rev response element (RRE) RNA target sequence. Subsequent oligomerization of Rev monomers on the RRE and interaction of Rev with a cellular cofactor(s) result in the cytoplasmic accumulation of RRE-containing viral mRNAs. Moreover, Rev by itself is exported from the nucleus to the cytoplasm. Although it has been demonstrated that Rev multimerization is critically required for Rev activity and hence for HIV-1 replication, the number of Rev monomers required to form a trans-activation-competent complex on the RRE is unknown. Here we report a systematic analysis of the putative multimerization domains within the Rev trans-activator protein. We identify the amino acid residues which are part of the proposed single hydrophobic surface patch in the Rev amino terminus that mediates intermolecular interactions. Furthermore, we show that the expression of a multimerization-deficient Rev mutant blocks HIV-1 replication in a trans-dominant (dominant-negative) fashion. 相似文献
11.
12.
13.
Antonio Bertoletti Fatim Cham Stephen McAdam Tim Rostron Sarah Rowland-Jones Sehu Sabally Tumani Corrah Koya Ariyoshi Hilton Whittle 《Journal of virology》1998,72(3):2439-2448
Knowledge of immune mechanisms responsible for the cross-protection between highly divergent viruses such as human immunodeficiency virus type 1 (HIV-1) and HIV-2 may contribute to an understanding of whether virus variability may be overcome in the design of vaccine candidates which are broadly protective across the HIV subtypes. We demonstrate that despite the significant difference in virus amino acid sequence, the majority of HIV-2-infected individuals with different HLA molecules possess a dominant cytotoxic T-cell response which is able to recognize HIV-1 Gag protein. Furthermore, HLA-B5801-positive subjects show broad cross-recognition of HIV-1 subtypes since they mounted a T-cell response that tolerated extensive amino acid substitutions within HLA-B5801-restricted HIV-1 and HIV-2 epitopes. These results suggests that HLA-B5801-positive HIV-2-infected individuals have an enhanced ability to react with HIV-1 that could play a role in cross-protection.Human immunodeficiency virus type 1 (HIV-1) and HIV-2 are related human retroviruses that show various biological and structural differences. HIV-2 is found mainly in West Africa, whereas HIV-1 is spreading throughout the world. HIV-2 is less transmissible, and HIV-2-positive patients exhibit longer clinical latency periods than individuals infected with HIV-1 (23). A recent report has also shown that the mortality in HIV-2-infected individuals is only twice as high as in the uninfected population and, in the majority of adults, survival is not affected by HIV-2 status (31).Although the two viruses are similar in genomic organization, various genetic and enzymatic differences have been found at many stages of the retroviral life cycle. They differ significantly in terms of amino acid sequence, the more conserved being the Pol and Gag sequences, which exhibit less than 60% homology (17).Despite these differences, epidemiological data and animal studies have shown some evidence of cross-protection between the two viral infections. Travers et al. reported that HIV-2-infected women had a lower incidence of HIV-1 infection than did HIV-seronegative women in a cohort of commercial sexual workers in Dakar (37), and rhesus macaques immunized with a recombinant HIV-1 poxvirus vaccine are protected against HIV-2 challenge (2). These studies, though not conclusive (1, 6), suggest that differences in the virus may not necessarily preclude the development of defensive immunity to a subsequent pathogenic infection, an old-fashioned concept pioneered by Jenner, who used cowpox to vaccinate against human smallpox.The immunological basis of cross-protection is largely unknown, and a clear understanding of the role played by the humoral or cell-mediated immune response in HIV protection is still lacking. However, mounting evidence suggests that cytotoxic T-lymphocyte (CTL) response could be the key element. Indeed, the protection afforded in animal models against simian (13) and feline (12) immunodeficiency virus infections is closely correlated with the induction of specific CTL response, and HIV-1 and HIV-2 HLA-B35-restricted cross-reactive CTLs have been postulated to confer protection against repeated HIV exposure (33).CTLs recognize short viral peptides, 8 to 11 amino acids long, that are generated by the intracellular processing of endogenously synthesized viral antigens within the infected cells, which are expressed at the cell surface in the binding groove of HLA class I molecules. The specificity of the T-cell response is determined by the interaction of the antigen-specific T-cell receptor (TCR) with the peptide-HLA complex, and this interaction, together with non-antigen-specific signals, activates the CTLs (15).The presence of cross-reactive CTLs able to lyse HIV-1- or HIV-2-infected cells should be dependent on the extent of conservation between the two viruses within the epitopes selected by particular HLA class I molecules. It is well known that amino acid substitutions within the epitopes can abrogate the CTL response by inhibiting either HLA binding or TCR recognition (32). However, a number of recent studies have shown that T cells can recognize apparently unrelated peptides (10, 41), and crystallographic data have shown physical limits to the TCR epitope specificity due to the limited size of contact between the TCR and the peptide (14), suggesting a flexibility in T-cell recognition of antigen (19).Some individuals with a particular HLA profile which is responsible for presentation of the viral antigen and for selection of the T-cell repertoire may possess a CTL response not affected by mutations within the epitope, as has been demonstrated in subjects with HLA alleles B27 (28) and B35 (33). In these cases, amino acid substitutions within the HIV-1 and -2 epitopes were tolerated by the CTLs.In this study, we have investigated the extent of cross-reacting CTLs between HIV-2 and HIV-1 in a group of HIV-2-infected subjects with different HLA class I types. We have shown that despite differences in amino acid sequence between the two viruses, the majority of HIV-2-positive subjects possess CTLs which are able to recognize HIV-1 Gag protein.Furthermore, analysis of HLA profiles and the fine specificity of the cytotoxic response demonstrated that HLA-B5801-positive subjects show broad cross-recognition of HIV-1 isolates. These subjects mounted a CTL response that tolerated extensive amino acid substitutions within an HLA-B5801-restricted HIV-1 epitope. 相似文献
14.
15.
16.
Andrea Acel Brian E. Udashkin Mark A. Wainberg Emmanuel A. Faust 《Journal of virology》1998,72(3):2062-2071
Cleavage and DNA joining reactions, carried out by human immunodeficiency virus type 1 (HIV-1) integrase, are necessary to effect the covalent insertion of HIV-1 DNA into the host genome. For the integration of HIV-1 DNA into the cellular genome to be completed, short gaps flanking the integrated proviral DNA must be repaired. It has been widely assumed that host cell DNA repair enzymes are involved. Here we report that HIV-1 integrase multimers possess an intrinsic DNA-dependent DNA polymerase activity. The activity was characterized by its dependence on Mg2+, resistance to N-ethylmaleimide, and inhibition by 3′-azido-2′,3′-dideoxythymidine-5′-triphosphate, coumermycin A1, and pyridoxal 5′-phosphate. The enzyme efficiently utilized poly(dA)-oligo(dT) or self-annealing oligonucleotides as a template primer but displayed relatively low activity with gapped calf thymus DNA and no activity with poly(dA) or poly(rA)-oligo(dT). A monoclonal antibody binding specifically to an epitope comprised of amino acids 264 to 273 near the C terminus of HIV-1 integrase severely inhibited the DNA polymerase activity. A deletion of 50 amino acids at the C terminus of integrase drastically altered the gel filtration properties of the DNA polymerase, although the level of activity was unaffected by this mutation. The DNA polymerase efficiently extended a hairpin DNA primer up to 19 nucleotides on a T20 DNA template, although addition of the last nucleotide occurred infrequently or not at all. The ability of integrase to repair gaps in DNA was also investigated. We designed a series of gapped molecules containing a single-stranded region flanked by a duplex U5 viral arm on one side and by a duplex nonviral arm on the other side. Molecules varied structurally depending on the size of the gap (one, two, five, or seven nucleotides), their content of T’s or C’s in the single-stranded region, whether the CA dinucleotide in the viral arm had been replaced with a nonviral sequence, or whether they contained 5′ AC dinucleotides as unpaired tails. The results indicated that the integrase DNA polymerase is specifically designed to repair gaps efficiently and completely, regardless of gap size, base composition, or structural features such as the internal CA dinucleotide or unpaired 5′-terminal AC dinucleotides. When the U5 arm of the gapped DNA substrate was removed, leaving a nongapped DNA template-primer, the integrase DNA polymerase failed to repair the last nucleotide in the DNA template effectively. A post-gap repair reaction did depend on the CA dinucleotide. This secondary reaction was highly regulated. Only two nucleotides beyond the gap were synthesized, and these were complementary to and dependent for their synthesis on the CA dinucleotide. We were also able to identify a specific requirement for the C terminus of integrase in the post-gap repair reaction. The results are consistent with a direct role for a heretofore unsuspected DNA polymerase function of HIV-1 integrase in the repair of short gaps flanking proviral DNA integration intermediates that arise during virus infection.Integration of human immunodeficiency virus type 1 (HIV-1) DNA is an essential step in the replicative cycle of the virus (6, 13, 16, 29, 41). The initial steps whereby HIV-1 DNA becomes covalently associated with the host DNA are mediated by the viral integrase protein. Two distinct chemical reactions are involved. In a processing step, integrase cleaves viral DNA endonucleolytically, resulting in the removal of a GT dinucleotide from the 3′ ends of the DNA (15, 48, 51). Once in the nucleus, concerted cleavage and DNA strand transfer reactions, involving viral and host DNA, enable the processed 3′ termini to become covalently joined to a host DNA target site. The intermediate produced in this manner contains unpaired 5′ ends adjacent to five-base gaps. Completion of integration requires the repair of these gaps and the joining of the 5′ ends of viral DNA to the host DNA (2). The relatively rapid kinetics of 5′-end joining in vivo has been used as a basis on which to argue in favor of a role for integrase in this step of integration (40). Although integrase can catalyze the latter reaction in vitro, albeit inefficiently (28), it has been generally assumed that host cell enzymes perform gap repair and 5′-end joining.Structural, functional, and mutational studies have defined integrase as a 32-kDa protein that can be divided into three distinct functional domains (50). The catalytic core, including amino acids 50 to 212, contains a triad of acidic amino acids (Asp 64, Asp 116, and Glu 152) that form a highly conserved D,D-35-E motif. In the three-dimensional crystal structure, these amino acids are in close proximity (10). Mutation of any one of these acidic residues severely hampers the ability of integrase to catalyze endonucleolytic cleavage and DNA strand transfer (5, 9, 12, 13, 27, 31, 32). The C terminus binds DNA nonspecifically and is required for cleavage and integration activity (47, 49, 52, 53). The amino terminus contains a zinc finger or HHCC motif, which coordinates a molar equivalent of zinc (4). This domain influences DNA binding (21, 25, 47), although it does not bind DNA on its own (26, 38).In the functional integration complex, integrase is believed to act as a multimer (11, 24, 46). Transcomplementation, in which DNA strand transfer and cleavage activities are restored by mixing nonfunctional mutants, implies that the active form of integrase is minimally a dimer (46). Integrase can exist in equilibrium between dimeric and tetrameric forms, and multimerization determinants can be identified within the integrase protein (1). Association of one molar equivalent of zinc with a soluble mutant of integrase favored the formation of the tetrameric form of the protein (54).The present study was undertaken to further characterize HIV-1 integrase by searching for novel enzymatic activities that may be associated with this viral protein. We chose specifically to look for an associated DNA polymerase activity in an attempt to elucidate the final steps in integration, namely, gap repair and 5′-end joining. 相似文献
17.
18.
19.
HIV-1的表型及其感染的细胞嗜性 总被引:2,自引:0,他引:2
HIV-1的表型分为合胞体诱导型(syncytium-inducing,SI)和非合胞体诱导型(non-syncytium-inducing,NSI)。依据所用辅助受体和感染靶细胞的不同,HIV-1又被分为R5、X4和R5X4型。R5和X4型病毒分别利用CCR5和CXCR4作为辅助受体,而R5X4型病毒可利用这两种辅助受体。在病毒的复制力、细胞嗜性以及合胞体诱导能力上,SI型与X4型病毒一致,NSI型与R5型病毒一致。在HIV-1感染过程中,疾病的发展伴随着病毒从NSI型向SI型、及R5型向X4型的转变。HIV-1的表型影响和决定着HIV-1的感染、传播及AIDS的疾病进程。HIV-1的表型和细胞嗜性主要由病毒gp120的V3区(特别是第11和25位的氨基酸)决定。V3区的氨基酸序列信息,将为预测HIV-1的表型,以及病毒感染后的疾病进程提供生物信息学的依据。 相似文献
20.
Specific and Independent Recognition of U3 and U5 att Sites by Human Immunodeficiency Virus Type 1 Integrase In Vivo 下载免费PDF全文
The retroviral attachment (att) sites at viral DNA ends are cis-acting regions essential for proviral integration. To investigate the sequence features of att important for human immunodeficiency virus type 1 (HIV-1) integration in vivo, we generated a series of 25 att mutants of HIV-1 by mutagenesis of the U3, U5, or both boundaries of att. Our results indicated that the terminal 11 or 12 bp of viral DNA are sufficient for specific recognition by HIV-1 integrase (IN) and suggested that IN might recognize each att site independently in vivo. 相似文献