首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spermatogonial metaphase chromosomes were examined in two dragonfly species, Somatochlora metallica (Cordulidae) and Aeshna grandis (Aeshnidae), and the behaviour of male meiotic chromosomes was studied in S. metallica. Both in S. metallica and A. grandis the male mitotic metaphase chromosomes from cells treated with colchicine consisted of two equidistantly aligned chromatids, showing no primary constriction. In meiosis the chromosomes of S. metallica males showed telokinetic activity during the first meiotic division, and kinetic activity was restricted in the middle parts of chromosomes during the second division. The kinetic behaviour of the chromosomes both in mitosis and meiosis showed that they were holocentric. One chiasma arises interstitially in each bivalent in S. metallica male meiosis. The chiasmata retain their interstitial position at metaphase I and do not terminalize. At metaphase I bivalents co-orient with homologous telomere regions towards the opposite poles. Thus genuine dyads segregate at the first anaphase. Meiosis in these male dragonflies is thus pre-reductional or conventional, not post-reductional or inverted, as has been previously proposed.  相似文献   

2.
Chromosomes were studied on the spermatogonial metaphase and on different stages of meiotic division in males of Eurydeme geblery Kol. and E. ventrale Kol. The set of male chromosomes of the above species involves six pairs of autosomes and an XY sex pair, which is commonly the case in Pentatomidae. In the spermatogenesis, division types are reductional for autosomes and equational for sex chromosomes in the first metaphase; but the situation is quite opposite in the second metaphase. The sex chromosomes of bugs undergo a "touch and go" pairing on the metaphase plate of the second spermatocyte, prior to segregating to opposite poles in the anaphase that follows. No constrictions occur along all the chromosomes at mitosis. This, combined with their behaviour at mitosis, may suggest that, likely as in other Hemiptera, the chromosomes are holokinetic. Nevertheless it is of interest to note that in meiosis the chromosomes behave as telocentric. This replacement of the holokinetic orientation by the telokinetic one in the meiosis of some organisms with diffuse centromere is supposed to depend on the phenomen called "construction of the kinetic activation".  相似文献   

3.
A checkpoint mechanism operates at the metaphase/anaphase transition to ensure that a bipolar spindle is formed and that all the chromosomes are aligned at the spindle equator before anaphase is initiated. Since mistakes in the segregation of chromosomes during meiosis have particularly disastrous consequences, it seems likely that the meiotic cell division would be characterized by a stringent metaphase/ anaphase checkpoint. To determine if the presence of an unaligned chromosome activates the checkpoint and delays anaphase onset during mammalian female meiosis, we investigated meiotic cell cycle progression in murine oocytes from XO females and control siblings. Despite the fact that the X chromosome failed to align at metaphase in a significant proportion of cells, we were unable to detect a delay in anaphase onset. Based on studies of cell cycle kinetics, the behavior and segregation of the X chromosome, and the aberrant behavior and segregation of autosomal chromosomes in oocytes from XO females, we conclude that mammalian female meiosis lacks chromosome-mediated checkpoint control. The lack of this control mechanism provides a biological explanation for the high incidence of meiotic nondisjunction in the human female. Furthermore, since available evidence suggests that a stringent checkpoint mechanism operates during male meiosis, the lack of a comparable checkpoint in females provides a reason for the difference in the error rate between oogenesis and spermatogenesis.  相似文献   

4.
Kinetochores can be thought of as having three major functions in chromosome segregation: (a) moving plateward at prometaphase; (b) participating in spindle checkpoint control; and (c) moving poleward at anaphase. Normally, kinetochores cooperate with opposed sister kinetochores (mitosis, meiosis II) or paired homologous kinetochores (meiosis I) to carry out these functions. Here we exploit three- and four-dimensional light microscopy and the maize meiotic mutant absence of first division 1 (afd1) to investigate the properties of single kinetochores. As an outcome of premature sister kinetochore separation in afd1 meiocytes, all of the chromosomes at meiosis II carry single kinetochores. Approximately 60% of the single kinetochore chromosomes align at the spindle equator during prometaphase/metaphase II, whereas acentric fragments, also generated by afd1, fail to align at the equator. Immunocytochemistry suggests that the plateward movement occurs in part because the single kinetochores separate into half kinetochore units. Single kinetochores stain positive for spindle checkpoint proteins during prometaphase, but lose their staining as tension is applied to the half kinetochores. At anaphase, approximately 6% of the kinetochores develop stable interactions with microtubules (kinetochore fibers) from both spindle poles. Our data indicate that maize meiotic kinetochores are plastic, redundant structures that can carry out each of their major functions in duplicate.  相似文献   

5.
Meiosis is a crucial process of sexual reproduction by forming haploid gametes from diploid precursor cells. It involves 2 subsequent divisions (meiosis I and meiosis II) after one initial round of DNA replication. Homologous monocentric chromosomes are separated during the first and sister chromatids during the second meiotic division. The faithful segregation of monocentric chromosomes is realized by mono-orientation of fused sister kinetochores at metaphase I and by bi-orientation of sister kinetochores at metaphase II. Conventionally this depends on a 2-step loss of cohesion, along chromosome arms during meiosis I and at sister centromeres during meiosis II.  相似文献   

6.
The pesticide trichlorfon (TCF) has been implicated in human trisomy 21, and in errors in chromosome segregation at male meiosis II in the mouse. We previously provided evidence that TCF interferes with spindle integrity and cell-cycle control during murine oogenesis. To assess the aneugenic activity of TCF in oogenesis, we presently analysed maturation, spindle assembly, and chromosome constitution in mouse oocytes maturing in vitro in the presence of 50 or 100 microg/ml TCF for 16 h or in pulse-chase experiments. TCF stimulated maturation to meiosis II at 50 microg/ml, but arrested meiosis in some oocytes at 100 microg/ml. TCF at 100 microg/ml was aneugenic causing non-disjunction of homologous chromosomes at meiosis I, a significant increase of the hyperploidy rate at metaphase II, and a significant rise in the numbers of oocytes that contained a 'diploid' set of metaphase II chromosomes (dyads). TCF elevated the rate of precocious chromatid segregation (predivision) at 50 and 100 microg/ml. Pulse-chase experiments with 100 microg/ml TCF present during the first 7 h or the last 9 h of maturation in vitro did not affect meiotic progression and induced intermediate levels of hyperploidy at metaphase II. Exposure to > or =50 microg/ml TCF throughout maturation in vitro induced severe spindle aberrations at metaphase II, and over one-third of the oocytes failed to align all chromosomes at the spindle equator (congression failure). These observations suggest that exposure to high concentrations of TCF induces non-disjunction at meiosis I of oogenesis, while lower doses may preferentially cause errors in chromosome segregation at meiosis II due to disturbances in spindle function, and chromosome congression as well as precocious separation of chromatids prior to anaphase II. The data support evidence from other studies that TCF has to be regarded as a germ cell aneugen.  相似文献   

7.
Traut W  Endl E  Scholzen T  Gerdes J  Winking H 《Chromosoma》2002,111(3):156-164
We used immunolocalization in tissue sections and cytogenetic preparations of female and male gonads to study the distribution of the proliferation marker pKi-67 during meiotic cell cycles of the house mouse, Mus musculus. During male meiosis, pKi-67 was continuously present in nuclei of all stages from the spermatogonium through spermatocytes I and II up to the earliest spermatid stage (early round spermatids) when it appeared to fade out. It was not detected in later spermatid stages or sperm. During female meiosis, pKi-67 was present in prophase I oocytes of fetal ovaries. It was absent in oocytes from newborn mice and most oocytes of primordial follicles from adults. The Ki-67 protein reappeared in oocytes of growing follicles and was continuously present up to metaphase II. Thus, pKi-67 was present in all stages of cell growth and cell division while it was absent from resting oocytes and during the main stages of spermiocytogenesis. Progression through the meiotic cell cycle was associated with extensive intranuclear relocation of pKi-67. In the zygotene and pachytene stages, most of the pKi-67 colocalized with centromeric (centric and pericentric) heterochromatin and adjacent nucleoli; the heterochromatic XY body in male pachytene, however, was free of pKi-67. At early diplotene, pKi-67 was mainly associated with nucleoli. At late diplotene, diakinesis, metaphase I and metaphase II of meiosis, pKi-67 preferentially bound to the perichromosomal layer and was almost absent from the heterochromatic centromeric regions of the chromosomes. After the second division of male meiosis, the protein reappeared at the centromeric heterochromatin and an adjacent region in the earliest spermatid stage and then faded out. The general patterns of pKi-67 distribution were comparable to those in mitotic cell cycles. With respect to the timing, it is interesting to note that relocation from the nucleolus to the perichromosomal layer takes place at the G2/M-phase transition in the mitotic cell cycle but at late diplotene of prophase I in meiosis, suggesting physiological similarity of these stages.  相似文献   

8.
9.
The Aurora kinase family has been involved both in vivo and in vitro in the stability of the metaphase plate and chromosome segregation. However, to date only one member of this family, the protein kinase Aurora B, has been implicated in the regulation of meiotic division in Caenorhabditis elegans. In this species, disruption of Aurora B results in the failure of polar body extrusion. To investigate whether Aurora A is also required in meiosis, we microinjected highly specific alpha-Aurora A antibodies in Xenopus oocytes. We demonstrated that microinjected oocytes fail to extrude the first polar body and are arrested with condensed chromosomes on a typical metaphase I plate, which has not performed its normal 90 degrees rotation. We additionally found that, although the failure of first polar body extrusion observed in alpha-Aurora A-microinjected oocytes is likely mediated by Eg5, the impairment of the metaphase plate rotation does not involve this kinesin-like protein. Surprisingly, although chromosomes remain condensed at a metaphase I stage in alpha-Aurora A-microinjected oocytes, the cytoplasmic cell cycle events progress normally through meiosis until metaphase II arrest. Moreover, these oocytes are able to undergo parthenogenetic activation. We conclude that Aurora A and Eg5 are involved in meiosis I to meiosis II transition in Xenopus oocytes.  相似文献   

10.
Changes in sperm nuclei incorporated into starfish, Asterina miniata, eggs inseminated at different stages of meiosis have been correlated with the progression of meiotic maturation. A single, uniform rate of sperm expansion characterized eggs inseminated at the completion of meiosis. In oocytes inseminated at metaphase I and II the sperm nucleus underwent an initial expansion at a rate comparable to that seen in eggs inseminated at the pronuclear stage. However, in oocytes inseminated at metaphase I, the sperm nucleus ceased expanding by meiosis II and condensed into chromosomes which persisted until the completion of meiotic maturation. Concomitant with the formation and expansion of the female pronucleus, sperm chromatin of oocytes inseminated at metaphase I enlarged and developed into male pronuclei. Condensation of the initially expanded sperm nucleus in oocytes inseminated at metaphase II was not observed. Instead, the enlarged sperm nucleus underwent a dramatic increase in expansion commensurate with that taking place with the maternal chromatin to form a female pronucleus. Fusion of the relatively large female pronucleus and a much smaller male pronucleus was observed in eggs fertilized at the completion of meiotic maturation. In oocytes inseminated at metaphase I and II, the male and female pronuclei, which were similar in size, migrated into juxtaposition, and as separate structures underwent prophase. The chromosomes in each pronucleus condensed, intermixed, and became aligned on the metaphase palate of the mitotic spindle in preparation for the first cleavage division. These observations demonstrate that the time of insemination with respect to the stage of meiotic maturation has a significant effect on sperm nuclear transformations and pronuclear morphogenesis.  相似文献   

11.
Kinetochores may perform several functions at mitosis and meiosis including: (a) directing anaphase chromosome separation, (b) regulating prometaphase alignment of the chromosomes at the spindle equator (congression), and/or (c) capturing and stabilizing microtubules. To explore these functions in vivo, autoimmune sera against the centromere/kinetochore complex are microinjected into mouse oocytes during specific phases of first or second meiosis, or first mitosis. Serum E.K. crossreacts with an 80-kD protein in mouse cells and detects the centromere/kinetochore complex in permeabilized cells or when microinjected into living oocytes. Chromosome separation at anaphase is not blocked when these antibodies are microinjected into unfertilized oocytes naturally arrested at second meiotic metaphase, into eggs at first mitotic metaphase, or into immature oocytes at first meiotic metaphase. Microtubule capture and spindle reformation occur normally in microinjected unfertilized oocytes recovering from cold or microtubule disrupting drugs; the chromosomes segregate correctly after parthenogenetic activation. Prometaphase congression is dramatically influenced when antikinetochore/centromere antibodies are introduced during interphase or in prometaphase-stage meiotic or mitotic eggs. At metaphase, these oocytes have unaligned chromosomes scattered throughout the spindle with several remaining at the poles; anaphase is aberrant and, after division, karyomeres are found in the polar body and oocyte or daughter blastomeres. Neither nonimmune sera, diffuse scleroderma sera, nor sham microinjections affect either meiosis or mitosis. These results suggest that antikinetochore/centromere antibodies produced by CREST patients interfere with chromosome congression at prometaphase in vivo.  相似文献   

12.
Summary InSaprolegnia, kinetochore microtubules persist throughout the mitotic nuclear cycle but, whilst present at leptotene, they disappear coincidently with the formation of synaptonemal complexes at pachytene and reform at metaphase I. In some other fungi chromosomal segregation is random in meiosis and non-random in mitosis. The attachment of chromosomes to persistent kinetochore microtubules in mitosis, but not meiosis, inSaprolegnia provides a plausible explanation for such behaviour. At metaphase I each bivalent is connected to the spindle by 2 laterally paired kinetochore microtubules whereas at metaphase II (as in mitosis) each univalent bears only one kinetochore microtubule, thus showing that all kinetochores are fully active at all stages of meiosis.  相似文献   

13.
Structural investigation and morphometry of meiotic chromosomes by scanning electron microscopy (in comparison to light microscopy) of all stages of condensation of meiosis I + II show remarkable differences during chromosome condensation in mitosis and meiosis I of rye (Secale cereale) with respect to initiation, mode and degree of condensation. Mitotic chromosomes condense in a linear fashion, shorten in length and increase moderately in diameter. In contrast, in meiosis I, condensation of chromosomes in length and diameter is a sigmoidal process with a retardation in zygotene and pachytene and an acceleration from diplotene to diakinesis. The basic structural components of mitotic chromosomes of rye are "parallel fibers" and "chromomeres" which become highly compacted in metaphase. Although chromosome architecture in early prophase of meiosis seems similar to mitosis in principle, there is no equivalent stage during transition to metaphase I when chromosomes condense to a much higher degree and show a characteristic "smooth" surface. No indication was found for helical winding of chromosomes either in mitosis or in meiosis. Based on measurements, we propose a mechanism for chromosome dynamics in mitosis and meiosis, which involves three individual processes: (i) aggregation of chromatin subdomains into a chromosome filament, (ii) condensation in length, which involves a progressive increase in diameter and (iii) separation of chromatids.  相似文献   

14.
BACKGROUND: The importance of mitotic spindle checkpoint control has been well established during somatic cell divisions. The metaphase-to-anaphase transition takes place only when all sister chromatids have been properly attached to the bipolar spindle and are aligned at the metaphase plate. Failure of this checkpoint may lead to unequal separation of sister chromatids. On the contrary, the existence of such a checkpoint during the first meiotic division in mammalian oocytes when homologous chromosomes are segregated has remained controversial. RESULTS: Here, we show that mouse oocytes respond to spindle damage by a transient and reversible cell cycle arrest in metaphase I with high Maturation Promoting Factor (MPF) activity. Furthermore, the mitotic checkpoint protein Mad2 is present throughout meiotic maturation and is recruited to unattached kinetochores. Overexpression of Mad2 in meiosis I leads to a cell cycle arrest in metaphase I. Expression of a dominant-negative Mad2 protein interferes with proper spindle checkpoint arrest. CONCLUSIONS: Errors in meiosis I cause missegregation of chromosomes and can result in the generation of aneuploid embryos with severe birth defects. In human oocytes, failures in spindle checkpoint control may be responsible for the generation of trisomies (e.g., Down Syndrome) due to chromosome missegregation in meiosis I. Up to now, the mechanisms ensuring correct separation of chromosomes in meiosis I remained unknown. Our study shows for the first time that a functional Mad2-dependent spindle checkpoint exists during the first meiotic division in mammalian oocytes.  相似文献   

15.
The present study was designed to investigate subcellular localization of MAD2 in rat oocytes during meiotic maturation and its relationship with kinetochores, chromosomes, and microtubules. Oocytes at germinal vesicle (GV), prometaphase I (ProM-I), metaphase I (M-I), anaphase I (A-I), telophase I (T-I), and metaphase II (M-II) were fixed and immunostained for MAD2, kinetochores, microtubules and chromosomes. The stained oocytes were examined by confocal microscopy. Some oocytes from GV to M-II stages were treated by a microtubule disassembly drug, nocodazole, or treated by a microtubule stabilizer, Taxol, before examination. Anti-MAD2 antibody was also injected into the oocytes at GV stage and the injected oocytes were cultured for 6 h for examination of chromosome alignment and spindle formation. It was found that MAD2 was at the kinetochores in the oocytes at GV and ProM-I stages. Once the oocytes reached M-I stage in which an intact spindle was formed and all chromosomes were aligned at the equator of the spindle, MAD2 disappeared. However, when oocytes from GV to M-II stages were treated by nocodazole, spindles were destroyed and MAD2 was observed in all treated oocytes. When nocodazole-treated oocytes at M-I and M-II stages were washed and cultured for spindle recovery, it was found that, once the relationship between microtubules and chromosomes was established, MAD2 disappeared in the oocytes even though some chromosomes were not aligned at the equator of the spindle. On the other hand, when oocytes were treated with Taxol, MAD2 localization was not changed and was the same as that in the control. However, immunoblotting of MAD2 indicated that MAD2 was present in the oocytes at all stages; nocodazole and Taxol treatment did not influence the quantity of MAD2 in the cytoplasm. Significantly higher proportions of anti-MAD2 antibody-injected oocytes proceeded to premature A-I stage and more oocytes had misaligned chromosomes in the spindles. The present study indicates that MAD2 is a spindle checkpoint protein in rat oocytes during meiosis. When the spindle was destroyed by nocodazole, MAD2 was reactivated in the oocytes to overlook the attachment between chromosomes and microtubules. However, in this case, MAD2 could not check unaligned chromosomes in the recovered spindles, suggesting that a normal chromosome alignment is maintained only in the oocytes without any microtubule damages during maturation.  相似文献   

16.
17.
A modified enzyme digestion technique of ovary isolation followed by staining and squash preparation has allowed us to observe female meiosis in normal maize meiotically dividing megaspore mother cells (MMCs). The first meiotic division in megasporogenesis of maize is not distinguishable from that in mi-crosporogenesis. The second female meiotic division is characterized as follows: (1) the two products of the first meiotic division do not simultaneously enter into the second meiotic division; as a rule, the chalazal-most cell enters division earlier than the micropylar one, (2) often the second of the two products does not proceed with meiosis, but degenerates, and (3) only a single haploid meiotic product of the tetrad remains alive, and this cell proceeds with three rounds of mitoses without any intervening cell wall formation to produce the eight-nucleate embryo sac. This technique has allowed us to study the effects of five meiotic mutations (aml, aml-pral, afdl, dsy *-9101, and dvl) on female meiosis in maize. The effects of the two alleles of the aml gene (aml and aml-pral) and of the afdl and dsy *-9101mutations are the same in both male and female meiosis. The aml allele prevents the entrance of MMCs into meiosis and meiosis is replaced by mitosis; the aml-pral permits MMCs to enter into meiosis, but their progress is stopped at early prophase I stages. The afdl gene is responsible for substitution of the first meiotic (reductional) division by an equational division including the segregation of sister chromatid centromeres at anaphase I. The dsy * -9101 gene exhibits abnormal chromosome pairing; paired homologous chromosomes are visible at pachytene, but only univalents are observed at diakinesis and metaphase I stages. These mutation specific patterns of abnormal meiosis are responsible for the bisexual sterility of these meiotic mutants. The abnormal divergent shape of the spindle apparatus and the resulting abnormal segregation of homologous chromosomes observed in micro-sporogenesis in plants homozygous for the dv1 mutation have not been found in meiosis of megasporogenesis. Only male sterility is induced by the dv1 gene in the homozygous condition. © 1993 Wiley-Liss, Inc.  相似文献   

18.
In mitosis, centrosomes nucleate microtubules that capture the sister kinetochores of each chromosome to facilitate chromosome congression. In contrast, during meiosis chromosome congression on the acentrosomal spindle is driven primarily by movement of chromosomes along laterally associated microtubule bundles. Previous studies have indicated that septin2 is required for chromosome congression and cytokinesis in mitosis, we therefore asked whether perturbation of septin2 would impair chromosome congression and cytokinesis in meiosis. We have investigated its expression, localization and function during mouse oocyte meiotic maturation. Septin2 was modified by SUMO-1 and its levels remained constant from GVBD to metaphase II stages. Septin2 was localized along the entire spindle at metaphase and at the midbody in cytokinesis. Disruption of septins function with an inhibitor and siRNA caused failure of the metaphase I /anaphase I transition and chromosome misalignment but inhibition of septins after the metaphase I stage did not affect cytokinesis. BubR1, a core component of the spindle checkpoint, was labeled on misaligned chromosomes and on chromosomes aligned at the metaphase plate in inhibitor-treated oocytes that were arrested in prometaphase I/metaphase I, suggesting activation of the spindle assembly checkpoint. Taken together, our results demonstrate that septin2 plays an important role in chromosome congression and meiotic cell cycle progression but not cytokinesis in mouse oocytes.  相似文献   

19.
Histone phosphorylation is dynamically regulated during cell division, for example phosphorylation of histone H3 (H3)-Ser10, H3-Thr11 and H3-Ser28. Here we analyzed maize (Zea mays L) for Thr133-phosphorylated histone H2A, which is important for spindle checkpoint control and localization of the centromere cohesion protector Shugoshin in mammals and yeast. Immunostaining results indicate that phosphorylated H2A-Thr133 signals bridged those of the centromeric H3 histone variant CENH3 by using a plant displaying yellow fluorescent protein-CENH3 signals and H2A-Thr133 is phosphorylated in different cell types. During mitosis, H2A-Thr133 phosphorylation becomes strong in metaphase and is specific to centromere regions but drops during later anaphase and telophase. Immunostaining for several maize dicentric chromosomes revealed that the inactive centromeres have lost phosphorylation of H2A-Thr133. During meiosis in maize meiocytes, H2A phosphorylation becomes strong in the early pachytene stage and increases to a maximum at metaphase I. In the maize meiotic mutant afd1 (absence of first division), sister chromatids show equational separation at metaphase I, but there are no changes in H2A-Thr-133 phosphorylation during meiosis compared with the wild type. In sgo1 mutants, sister chromatids segregate randomly during meiosis II, and phosphorylation of H2A-Thr-133 is observed on the centromere regions during meiosis II. The availability of such mutants in maize that lack sister cohesion and Shugoshin indicate that the signals for phosphorylation are not dependent on cohesion but on centromere activity.  相似文献   

20.
Chromosome number, meiotic behavior, and pollen viability were analyzed in 15 species of two genera, Vriesea and Aechmea, native to Rio Grande do Sul, Brazil. This study is the first cytogenetic analysis of these taxa. The chromosome numbers are all n = 25, consistent with the proposed base number of x = 25 for Bromeliaceae. All examined taxa displayed regular bivalent pairing and chromosome segregation at meiosis. Observed meiotic abnormalities include univalents in metaphase I; missing or extra chromosomes and precocious division of centromeres in metaphase II; laggards in telophase I and anaphase II/telophase II. The high pollen viability (>88%) reflects a regular meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号