首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new cell-to-cell transport model for Potexviruses   总被引:1,自引:0,他引:1  
In the last five years, we have gained significant insight into the role of the Potexvirus proteins in virus movement and RNA silencing. Potexviruses require three movement proteins, named triple gene block (TGB)p1, TGBp2, and TGBp3, and the viral coat protein (CP) to facilitate viral cell-to-cell and vascular transport. TGBp1 is a multifunctional protein that has RNA helicase activity, promotes translation of viral RNAs, increases plasmodesmal size exclusion limits, and suppresses RNA silencing. TGBp2 and TGBp3 are membrane-binding proteins. CP is required for genome encapsidation and forms ribonucleoprotein complexes along with TGBp1 and viral RNA. This review considers the functions of the TGB proteins, how they interact with each other and CP, and how silencing suppression might be linked to viral transport. A new model of the mechanism for Potexvirus transport is proposed.  相似文献   

2.
Most RNA viruses remodel the endomembrane network to promote virus replication, maturation, or egress. Rearrangement of cellular membranes is a crucial component of viral pathogenesis. The PVX TGBp2 protein induces vesicles of the granular type to bud from the endoplasmic reticulum network. Green fluorescent protein (GFP) was fused to the PVX TGBp2 coding sequence and inserted into the viral genome and into pRTL2 plasmids to study protein subcellular targeting in the presence and absence of virus infection. Mutations were introduced into the central domain of TGBp2, which contains a stretch of conserved amino acids. Deletion of a 10-amino-acid segment (m2 mutation) overlapping the segment of conserved residues eliminated the granular vesicle and inhibited virus movement. GFP-TGBp2m2 proteins accumulated in enlarged vesicles. Substitution of individual conserved residues in the same region similarly inhibited virus movement and caused the mutant GFP-TGBp2 fusion proteins to accumulate in enlarged vesicles. These results identify a novel element in the PVX TGBp2 protein which determines vesicle morphology. In addition, the data indicate that vesicles of the granular type induced by TGBp2 are necessary for PVX plasmodesmata transport.  相似文献   

3.
Intracellular trafficking of the nonstructural movement proteins of plant viruses plays a crucial role in sequestering and targeting viral macromolecules in and between cells. Many of the movement proteins traffic in unconventional, yet mechanistically unknown, pathways to localize to the cell periphery. Here we study trafficking strategies associated with two integral membrane movement proteins TGBp2 and TGBp3 of Potexvirus in yeast. We demonstrate that this simple eukaryote recapitulates the targeting of TGBp2 to the peripheral bodies at the cell cortex by TGBp3. We found that these viral movement proteins traffic as an ~1:1 stoichiometric protein complex that further polymerizes to form punctate structures. Many punctate structures depart from the perinuclear endoplasmic reticulum (ER) and move along the tubular ER to the cortical ER, supporting that it involves a lateral sorting event via the ER network. Furthermore, the peripheral bodies are associated with cortical ER tubules that are marked by the ER shaping protein reticulon in both yeast and plants. Thus, our data support a model in which the peripheral bodies partition into and/or stabilize at highly curved membrane environments.  相似文献   

4.
Cell-to-cell movement of Beet necrotic yellow vein virus (BNYVV) is driven by a set of three movement proteins--P42, P13, and P15--organized into a triple gene block (TGB) on viral RNA 2. The first TGB protein, P42, has been fused to the green fluorescent protein (GFP) and fusion proteins between P42 and GFP were expressed from a BNYVV RNA 3-based replicon during virus infection. GFP-P42, in which the GFP was fused to the P42 N terminus, could drive viral cell-to-cell movement when the copy of the P42 gene on RNA 2 was disabled but the C-terminal fusion P42-GFP could not. Confocal microscopy of epidermal cells of Chenopodium quinoa near the leading edge of the infection revealed that GFP-P42 localized to punctate bodies apposed to the cell wall whereas free GFP, expressed from the replicon, was distributed uniformly throughout the cytoplasm. The punctate bodies sometimes appeared to traverse the cell wall or to form pairs of disconnected bodies on each side. The punctate bodies co-localized with callose, indicating that they are associated with plasmodesmata-rich regions such as pit fields. Point mutations in P42 that inhibited its ability to drive cell-to-cell movement also inhibited GFP-P42 punctate body formation. GFP-P42 punctate body formation was dependent on expression of P13 and P15 during the infection, indicating that these proteins act together or sequentially to localize P42 to the plasmodesmata.  相似文献   

5.
Barley stripe mosaic virus (BSMV) encodes three movement proteins in an overlapping triple gene block (TGB), but little is known about the physical interactions of these proteins. We have characterized a ribonucleoprotein (RNP) complex consisting of the TGB1 protein and plus-sense BSMV RNAs from infected barley plants and have identified TGB1 complexes in planta and in vitro. Homologous TGB1 binding was disrupted by site-specific mutations in each of the first two N-terminal helicase motifs but not by mutations in two C-terminal helicase motifs. The TGB2 and TGB3 proteins were not detected in the RNP, but affinity chromatography and yeast two-hybrid experiments demonstrated that TGB1 binds to TGB3 and that TGB2 and TGB3 form heterologous interactions. These interactions required the TGB2 glycine 40 and the TGB3 isoleucine 108 residues, and BSMV mutants containing these amino acid substitution were unable to move from cell to cell. Infectivity experiments indicated that TGB1 separated on a different genomic RNA from TGB2 and TGB3 could function in limited cell-to-cell movement but that the rates of movement depended on the levels of expression of the proteins and the contexts in which they are expressed. Moreover, elevated expression of the wild-type TGB3 protein interfered with cell-to-cell movement but movement was not affected by the similar expression of a TGB3 mutant that fails to interact with TGB2. These experiments suggest that BSMV movement requires physical interactions of TGB2 and TGB3 and that substantial deviation from the TGB protein ratios expressed by the wild-type virus compromises movement.  相似文献   

6.
Cell-to-cell movement of Poa semilatent virus (genus Hordeivirus) in infected plants is mediated by three viral ‘triple gene block’ (TGB) proteins. One of those termed TGBp3 is an integral membrane protein essential for intracellular transport of other TGB proteins and viral genomic RNA to plasmodesmata. TGBp3 targeting to plasmodesmata-associated sites is believed to involve an unconventional mechanism which does not employ endoplasmic reticulum-derived transport vesicles. Previously TGBp3 has been shown to contain a composite transport signal consisting of the central hydrophilic protein region which includes a conserved pentapeptide YQDLN and the C-terminal transmembrane segment. This study demonstrates that these TGBp3 structural elements have distinct functions in protein transport. The YQDLN-containing region is essential for TGBp3 incorporation into high-molecular-mass protein complexes. In transient expression assay formation of such complexes is necessary for entering the TGBp3-specific pathway of intracellular transport and protein delivery to plasmodesmata-associated sites. In virus-infected plants TGBp3 is also found predominantly in the form of high-molecular-mass complexes. When the complex-formation function of YQDLN-containing region is disabled by a mutation, targeting to plasmodesmata-associated sites can be complemented by a heterologous peptide capable of formation multimeric complexes. The C-terminal transmembrane segment is found to be an essential signal of TGBp3 intracellular transport to peripheral sites.  相似文献   

7.
The membrane-spanning protein TGBp3 is one of the three movement proteins (MPs) of Poa semilatent virus. TGBp3 is thought to direct other viral MPs and genomic RNA to peripheral bodies located in close proximity to plasmodesmata. We used the ectopic expression of green fluorescent protein-fused TGBp3 in epidermal cells of Nicotiana benthamiana leaves to study the TGBp3 intracellular trafficking pathway. Treatment with inhibitors was used to reveal that the targeting of TGBp3 to plasmodesmata does not require a functional cytoskeleton or secretory system. In addition, the suppression of endoplasmic reticulum-derived vesicle formation by a dominant negative mutant of small GTPase Sar1 had no detectable effect on TGBp3 trafficking to peripheral bodies. Collectively, these results suggested the involvement of an unconventional pathway in the intracellular transport of TGBp3. The determinants of targeting to plasmodesmata were localized to the C-terminal region of TGBp3, including the conserved hydrophilic and terminal membrane-spanning domains.  相似文献   

8.
Hibiscus green spot virus (HGSV) is a recently discovered and so far poorly characterized bacilliform plant virus with a positive‐stranded RNA genome consisting of three RNA species. Here, we demonstrate that the proteins encoded by the ORF2 and ORF3 in HGSV RNA2 are necessary and sufficient to mediate cell‐to‐cell movement of transport‐deficient Potato virus X in Nicotiana benthamiana. These two genes represent a specialized transport module called a ‘binary movement block’ (BMB), and ORF2 and ORF3 are termed BMB1 and BMB2 genes. In agroinfiltrated epidermal cells of N. benthamiana, green fluorescent protein (GFP)‐BMB1 fusion protein was distributed diffusely in the cytoplasm and the nucleus. However, in the presence of BMB2, GFP‐BMB1 was directed to cell wall‐adjacent elongated bodies at the cell periphery, to cell wall‐embedded punctate structures co‐localizing with callose deposits at plasmodesmata, and to cells adjacent to the initially transformed cell. Thus, BMB2 can mediate the transport of BMB1 to and through plasmodesmata. In general, our observations support the idea that cell‐to‐cell trafficking of movement proteins involves an initial delivery to membrane compartments adjacent to plasmodesmata, subsequent entry of the plasmodesmata cavity and, finally, transport to adjacent cells. This process, as an alternative to tubule‐based transport, has most likely evolved independently in triple gene block (TGB), double gene block (DGB), BMB and the single gene‐coded transport system.  相似文献   

9.
The triple gene block proteins (TGBp1-3) and coat protein (CP) of potexviruses are required for cell-to-cell movement. Separate models have been proposed for intercellular movement of two of these viruses, transport of intact virions, or a ribonucleoprotein complex (RNP) comprising genomic RNA, TGBp1, and the CP. At issue therefore, is the form(s) in which RNA transport occurs and the roles of TGBp1-3 and the CP in movement. Evidence is presented that, based on microprojectile bombardment studies, TGBp1 and the CP, but not TGBp2 or TGBp3, are co-translocated between cells with viral RNA. In addition, cell-to-cell movement and encapsidation functions of the CP were shown to be separable, and the rate-limiting factor of potexvirus movement was shown not to be virion accumulation, but rather, the presence of TGBp1-3 and the CP in the infected cell. These findings are consistent with a common mode of transport for potexviruses, involving a non-virion RNP, and show that TGBp1 is the movement protein, whereas TGBp2 and TGBp3 are either involved in intracellular transport or interact with the cellular machinery/docking sites at the plasmodesmata.  相似文献   

10.
The Tomato spotted wilt virus (TSWV) encoded NSm movement protein facilitates cell-to-cell spread of the viral genome through structurally modified plasmodesmata. NSm has been utilized as bait in yeast two-hybrid interaction trap screenings. As a result, a protein of unknown function, called At-4/1, was isolated from an Arabidopsis thaliana GAL4 activation domain-tagged cDNA library. Using polyclonal antibodies against bacterially expressed At-4/1, Western blot analysis of protein extracts isolated from different plant species as well as genome database screenings showed that homologues of At-4/1 seemed to be encoded by many vascular plants. For subcellular localization studies, At-4/1 was fused to green fluorescent protein, and corresponding expression vectors were used in particle bombardment and agroinfiltration assays. Confocal laser scannings revealed that At-4/1 assembled in punctate spots at the cell periphery. The protein accumulated intracellularly in a polarized fashion, appearing in only one-half of a bombarded epidermal cell, and, moreover, moved from cell to cell, forming twin-structured bodies seemingly located at both orifices of the plasmodesmatal pore. In coexpression studies, At-4/1 colocalized with a plant virus movement protein TGBp3 known to reside in endoplasmic reticulum-derived membrane structures located in close vicinity to plasmodesmata. Thus, At-4/1 belongs to a new family of plant proteins capable of directed intra- and intercellular trafficking.  相似文献   

11.
We have recently used a green fluorescent protein (GFP) fusion to the gammab protein of Barley stripe mosaic virus (BSMV) to monitor cell-to-cell and systemic virus movement. The gammab protein is involved in expression of the triple gene block (TGB) proteins encoded by RNAbeta but is not essential for cell-to-cell movement. The GFP fusion appears not to compromise replication or movement substantially, and mutagenesis experiments demonstrated that the three most abundant TGB-encoded proteins, betab (TGB1), betac (TGB3), and betad (TGB2), are each required for cell-to-cell movement (D. M. Lawrence and A. O. Jackson, Mol. Plant Pathol. 2:65-75, 2001). We have now extended these analyses by engineering a fusion of GFP to TGB1 to examine the expression and interactions of this protein during infection. BSMV derivatives containing the TGB1 fusion were able to move from cell to cell and establish local lesions in Chenopodium amaranticolor and systemic infections of Nicotiana benthamiana and barley. In these hosts, the GFP-TGB1 fusion protein exhibited a temporal pattern of expression along the advancing edge of the infection front. Microscopic examination of the subcellular localization of the GFP-TGB1 protein indicated an association with the endoplasmic reticulum and with plasmodesmata. The subcellular localization of the TGB1 protein was altered in infections in which site-specific mutations were introduced into the six conserved regions of the helicase domain and in mutants unable to express the TGB2 and/or TGB3 proteins. These results are compatible with a model suggesting that movement requires associations of the TGB1 protein with cytoplasmic membranes that are facilitated by the TGB2 and TGB3 proteins.  相似文献   

12.
Summary. Plasmodesmata (Pd) provide a pathway for exchanging various macromolecules between neighboring plant cells. Researchers routinely characterize the mobility of the green-fluorescent protein (GFP) and GFP fusions through Pd by calculating the proportion of sites in bombarded leaves which show fluorescence in multiple cell clusters (% movement). Here, the Arrhenius equation was used to describe the temperature dependence of GFP and GFP-TGBp1 (potato virus X triple gene block protein1) movement, using % movement values, and to calculate the activation energy for protein transport. The resulting low activation energy indicates GFP and GFP-TGBp1 movement are diffusion driven. Furthermore, GFP movement is inversely proportional to the leaf surface area of expanding leaves. The increase in leaf area results mainly from cell expansion during the sink–source transition. The increasing cell size results in lower Pd density, which decreases the probability that a GFP attains an open Pd by diffusion. The decline in GFP movement as leaf area expands indicates that, in addition to GFP diffusion through Pd, attaining an open Pd by undirected diffusion might be limiting for Pd transport. In summary, this report provides a new quantitative method for studying Pd conductivity. Correspondence: Jeanmarie Verchot Lubicz, Department of Entomology and Plant Pathology, 127 Noble Research Center, Oklahoma State University, Stillwater, OK 74078, U.S.A.  相似文献   

13.
Plant viruses use movement proteins (MPs) to modify intercellular pores called plasmodesmata (PD) to cross the plant cell wall. Many viruses encode a conserved set of three MPs, known as the triple gene block (TGB), typified by Potato virus X (PVX). In this paper, using live-cell imaging of viral RNA (vRNA) and virus-encoded proteins, we show that the TGB proteins have distinct functions during movement. TGB2 and TGB3 established endoplasmic reticulum–derived membranous caps at PD orifices. These caps harbored the PVX replicase and nonencapsidated vRNA and represented PD-anchored viral replication sites. TGB1 mediated insertion of the viral coat protein into PD, probably by its interaction with the 5′ end of nascent virions, and was recruited to PD by the TGB2/3 complex. We propose a new model of plant virus movement, which we term coreplicational insertion, in which MPs function to compartmentalize replication complexes at PD for localized RNA synthesis and directional trafficking of the virus between cells.  相似文献   

14.
竹花叶病毒卫星RNA(satBaMV)是一个长度为836个核苷酸(不包括polyA)的单链正义RNA分子,可编码一20ku的卫星蛋白(P20).satBaMV的复制和包被需依赖竹花叶病毒(BaMV).P20是核酸结合蛋白,能促进satBaMV在寄主植物的长距离移动.利用细菌双杂交系统(BTH)和pull-downassays研究了P20自身、P20与BaMV蛋白以及BaMV蛋白之间的相互作用.研究表明:P20自身的相互作用是最强的;P20与甲基转移酶(MET)和衣壳蛋白(CP)之间有明显的相互作用;三基因连锁蛋白之间亦存在强的相互作用;CP与三基因连锁蛋白之间有明显的相互作用.删减分析表明,位于P20N端包括RNA结合位点在内的15个氨基酸是P20自身相互作用所必需的.N端缺失可导致P20间相互作用消失.P20的β折叠结构也是P20间相互作用所必需.此外,P20与烟草细胞色素C还原酶和β微管蛋白之间有较强的相互作用.BaMV蛋白与P20之间的同型和异型相互作用对BaMV及其卫星RNA在寄主植物中的移动起重要作用.  相似文献   

15.
Potato virus X (PVX) requires three virally encoded proteins, the triple gene block (TGB), for movement between cells. TGB1 is a multifunctional protein that suppresses host gene silencing and moves from cell to cell through plasmodesmata, while TGB2 and TGB3 are membrane-spanning proteins associated with endoplasmic reticulum-derived granular vesicles. Here, we show that TGB1 organizes the PVX "X-body," a virally induced inclusion structure, by remodeling host actin and endomembranes (endoplasmic reticulum and Golgi). Within the X-body, TGB1 forms helically arranged aggregates surrounded by a reservoir of the recruited host endomembranes. The TGB2/3 proteins reside in granular vesicles within this reservoir, in the same region as nonencapsidated viral RNA, while encapsidated virions accumulate at the outer (cytoplasmic) face of the X-body, which comprises a highly organized virus "factory." TGB1 is both necessary and sufficient to remodel host actin and endomembranes and to recruit TGB2/3 to the X-body, thus emerging as the central orchestrator of the X-body. Our results indicate that the actin/endomembrane-reorganizing properties of TGB1 function to compartmentalize the viral gene products of PVX infection.  相似文献   

16.
Barley stripe mosaic virus (BSMV) Triple Gene Block1 (TGB1) is a multifunctional movement protein with RNA‐binding, ATPase and helicase activities which mainly localizes to the plasmodesmata (PD) in infected cells. Here, we show that TGB1 localizes to the nucleus and the nucleolus, as well as the cytoplasm, and that TGB1 nuclear‐cytoplasmic trafficking is required for BSMV cell‐to‐cell movement. Prediction analyses and laser scanning confocal microscopy (LSCM) experiments verified that TGB1 possesses a nucleolar localization signal (NoLS) (amino acids 95–104) and a nuclear localization signal (NLS) (amino acids 227–238). NoLS mutations reduced BSMV cell‐to‐cell movement significantly, whereas NLS mutations almost completely abolished movement. Furthermore, neither the NoLS nor NLS mutant viruses could infect Nicotiana benthamiana systemically, although the NoLS mutant virus was able to establish systemic infections of barley. Protein interaction experiments demonstrated that TGB1 interacts directly with the glycine–arginine‐rich (GAR) domain of the nucleolar protein fibrillarin (Fib2). Moreover, in BSMV‐infected cells, Fib2 accumulation increased by about 60%–70% and co‐localized with TGB1 in the plasmodesmata. In addition, BSMV cell‐to‐cell movement in fib2 knockdown transgenic plants was reduced to less than one‐third of that of non‐transgenic plants. Fib2 also co‐localized with both TGB1 and BSMV RNA, which are the main components of the ribonucleoprotein (RNP) movement complex. Collectively, these results show that TGB1–Fib2 interactions play a direct role in cell‐to‐cell movement, and we propose that Fib2 is hijacked by BSMV TGB1 to form a BSMV RNP which functions in cell‐to‐cell movement.  相似文献   

17.
The cell-to-cell movement of Potato virus X (PVX) requires four virus-encoded proteins, the triple gene block (TGB) proteins (TGB25K, TGB12K, and TGB8K) and the coat protein. TGB12K increases the plasmodesmal size exclusion limit (SEL) and may, therefore, interact directly with components of the cell wall or with plant proteins associated with bringing about this change. A yeast two-hybrid screen using TGB12K as bait identified three TGB12K-interacting proteins (TIP1, TIP2, and TIP3). All three TIPs interacted specifically with TGB12K but not with TGB25K or TGB8K. Similarly, all three TIPs interacted with beta-1,3-glucanase, the enzyme that may regulate plasmodesmal SEL through callose degradation. Sequence analyses revealed that the TIPs encode very similar proteins and that TIP1 corresponds to the tobacco ankyrin repeat-containing protein HBP1. A TIP1::GFP fusion protein localized to the cytoplasm. Coexpression of this fusion protein with TGB12K induced cellular changes manifested as deposits of additional cytoplasm at the cell periphery. This work reports a direct link between a viral movement protein required to increase plasmodesmal SEL and a host factor that has been implicated as a key regulator of plasmodesmal SEL. We propose that the TIPs are susceptibility factors that modulate the plasmodesmal SEL.  相似文献   

18.
The green fluorescent protein (GFP) gene was fused to the potato virus X (PVX) TGBp2 gene, inserted into either the PVX infectious clone or pRTL2 plasmids, and used to study protein subcellular targeting. In protoplasts and plants inoculated with PVX-GFP:TGBp2 or transfected with pRTL2-GFP:TGBp2, fluorescence was mainly in vesicles and the endoplasmic reticulum (ER). During late stages of virus infection, fluorescence became increasingly cytosolic and nuclear. Protoplasts transfected with PVX-GFP:TGBp2 or pRTL2-GFP:TGBp2 were treated with cycloheximide and the decline of GFP fluorescence was greater in virus-infected protoplasts than in pRTL2-GFP:TGBp2-transfected protoplasts. Thus, protein instability is enhanced in virus-infected protoplasts, which may account for the cytosolic and nuclear fluorescence during late stages of infection. Immunogold labeling and electron microscopy were used to further characterize the GFP:TGBp2-induced vesicles. Label was associated with the ER and vesicles, but not the Golgi apparatus. The TGBp2-induced vesicles appeared to be ER derived. For comparison, plasmids expressing GFP fused to TGBp3 were transfected to protoplasts, bombarded to tobacco leaves, and studied in transgenic leaves. The GFP:TGBp3 proteins were associated mainly with the ER and did not cause obvious changes in the endomembrane architecture, suggesting that the vesicles reported in GFP:TGBp2 studies were induced by the PVX TGBp2 protein. In double-labeling studies using confocal microscopy, fluorescence was associated with actin filaments, but not with Golgi vesicles. We propose a model in which reorganization of the ER and increased protein degradation is linked to plasmodesmata gating.  相似文献   

19.
Plasmodesmata (Pd) are symplastic channels between neighboring plant cells and are key in plant cell-cell signaling. Viruses of proteins, nucleic acids, and a wide range of signaling macromolecules move across Pd. Protein transport Pd is regulated by development and biotic signals. Recent investigations utilizing the Arrhenius equation or Coefficient of conductivity showed that fundamental energetic measurements used to describe transport of proteins across membrane pores or the nuclear pore can also apply to protein movement across Pd. As leaves continue to expand, Pd transport of proteins declines which may result from changes in cell volume, Pd density or Pd structure.Key words: plasmodesmata, diffusion, GFP, viral transport, PVX, triple gene blockResearchers have argued for the last decade that movement of proteins and other macromolecules across Pd is regulated by development, stress and biotic signals. There are four current models describing different mechanisms of Pd transport. First is the non cell autonomous protein (NCAP) pathway that carries ribonucleoprotein complexes across Pd. NCAPs often carry RNA in a ribonucleoprotein complex to the Pd.14 This mode of transport involved targeted movement, meaning that a set of proteins must dock within the Pd to gate it open to enable transfer between cells. Proteins which are normally too large to move across Pd can gate open Pd to enable its own transfer into neighboring cells. This is contrasted by nontargetted movement, which is passive movement of proteins that are sufficiently small enough to pass between cells.5,6 The green fluorescent protein (GFP) has been described as a protein whose movement is non-targeted, meaning that it can diffuse across Pd. Reasons that we do not see continuous movement of small proteins between cells include protein compartmentalization or subcellular targeting signals. For example proteins may be synthesized and modified via the ER and Golgi networks and then transferred into vesicles and transported within cells to their destination. These proteins would not be free in the cytosol for diffusion across Pd. Alternatively, proteins which have dominant subcellular targeting signals which direct them to certain organelles such as the nucleus, peroxisome, or other destination would not be free to move across Pd.5,6 A third model represents proteins in the ER that move laterally along the membrane or through the ER lumen into neighboring cells. This transport is quite rapid and investigations are ongoing to determine how this is regulated.711 Finally, there is vesicle transport which deliver cargo to Pd.12,13 The origin of these vesicles is still under investigation. Much more research has been accomplished toward defining non-targeted movement and the NCAP pathway while the ER and vesicle transport pathways are only recently described and very little is known about the regulatory mechanisms underlying these pathways.Pd permeability is governed in part by architecture, but also by key regulatory factors that determine Pd conductivity. Factors such as mysoin VIII, actin and calreticulin were identified in Pd which likely regulate expansion and contraction.1419 In addition calcium, ATP and plant hormones can downregulate Pd permeability during development and stress.20,21 The tools for measuring Pd permeability has been to study the transport of fluorescently tagged proteins, fluorescent dextran beads, GFP or GFP fusions following microinjection or biolistic delivery to the cytoplasm of one cell.2226 Then video imaging or captured still images at select time intervals are used to characterize Pd transport. Until recently researchers quantified movement by the frequency they observed a certain type of movement. Therefore our ability to describe Pd permeability has been limited.Evidence that ATP impacts Pd conductivity has led investigations to explore the energy requirements for macromolecular transport across Pd. By understanding the energy requirements for transport of various proteins and nucleic acids we can better characterize passive or active transport processes. Toward this end two recent studies detailed quantitative approaches that can be employed to describe the developmental and energy requirements cell-to-cell transport of cytosolic proteins. Both papers used biolistic bombardment to deliver plasmids expressing GFP or GFP fusions to tobacco leaf epidermal cells and then captured still images of GFP fluorescence in neighboring cells. We employed the Arrhenius equation to characterize transport of GFP or GFP fused to the Potato virus X (PVX) TGBp1 movement protein. PVX TGBp1 was selected to compare with GFP alone since it is known to gate open Pd and has ATPase activity.45 We predicted that the abilities of GFP alone and GFP-TGBp1 to move across Pd might be different and were surprised to learn that the energy for transport of both proteins was similar. This project established the principle that GFP and GFP-TGBp1 transport is temperature dependent showing a linear relationship between protein movement and the temperatures at which leaves were incubated.Green fluorescent sites on bombarded leaves were scored for the movement or no movement. Movement is defined as evidence of fluorescence in 2 or more cells at 24 h and no movement is when fluorescence is in single cells. These were then presented as a percentage of the total. So by digitizing the representation of movement we were able to represent a linear relationship between movement and temperature. Representing movement in this way also enabled us to represent movement values on a logarithm scale necessary for a classic Arrhenius plot. The activation energy (Ea) was calculated by fitting the data to the Arrhenius equation:% movement = A exp(-Ea/RT); and the Ea for GFP and GFP-TGBp1 was approximately 38 kJ/mol and 29 kJ/mol. These low activation energies are comparable to the reported 30 kJ/mol calculated for temperature dependence of protein transport through the cytosol. Evidence that GFP movement across Pd requires slightly more energy than through the cytoplasm suggests there may be some resistance within the pore. The lower energy for GFP-TGBp1 suggests that movement is facilitated, which likely reflects Pd gating by TGBp1, enabling greater transfer between cells.Liarzi and Epel define a new coefficient of conductivity of Pd.42 This study also concluded that cell-to-cell transport of GFP in nontransgenic or transgenic N. benthamiana plants expressing the Tobacco mosaic virus (TMV) movement protein (MP) is temperature dependent. The method was to measure the exponential decay, which is a measure of the impedance to diffusion driven cell-to-cell movement of fluorescence. The exponential decay factor? was determined by calculating the ratio of GFP fluorescence in bombarded cell 0 and neighboring cells. This was presented as a measure of fluorescence transfer from cell 0 to cell 1 to cell 2. A coefficient for conductivity C(Pd), 1/? for GFP was reflective of diffusion. Interestingly the (TMV) MP did not increase conductivity of GFP between neighboring leaf epidermal cells indicating that movement was already maximal. Considering prior reports that the TMV MP shows preferential spread into mesophyll rather than epidermal tissues during virus infection, it is possible that preferential spread into mesophyll cells would prevent experimental efforts to achieve improved conductivity of GFP between epidermal cells.27,28 In which case the absence of a trans effect of TMV MP on GFP conductivity in the epidermis may not be surprising. In fact, prior investigations of TMV MP gating activities were conducted in mesophyll cells.29,30 The best explanation for the combined studies is that cytosolic GFP can diffuse across Pd , however viral proteins which gate Pd enable their own low energy transfer into neighboring cells without allowing other proteins to flood into neighboring cells. Therefore viral movement proteins, such as PVX TGBp1 and TMV MP, which gate Pd provide themselves with an energetic advantage for transport into neighboring cells which is essential for rapid dissemination of virus into further tissues.These studies provide an interesting contrast between PVX TGBp1 and TMV MP. Both proteins gate open Pd for virus cell-to-cell transport, but there seems to be differences in how these proteins function in epidermal cells. This is likely due to their different roles in promoting virus cell-to-cell movement. PVX TGBp1 protein is also a suppressor of RNA silencing. We recently proposed a model in which TGBp1 rapidly moves from cell-to-cell ahead of virus infection, to suppress the cell''s RNA degradation machinery, as a means to promote infection.31 The TMV MP on the other hand is reported to bind viral RNA for transfer into neighboring cells.32,33 Therefore, the different observations of PVX TGBp1 and TMV MP transport between epidermal cells likely reflect their functional differences. Both proteins are required for virus cell-to-cell movement, but their exact roles in virus movement are not identical.As mentioned earlier, Pd permeability is downregulated during plant development. Research tracking GFP diffusion through Pd in embryonic cells, in young emerging leaves, and in fully expanded leaves showed that fluorescence is highly mobile between cells in young tissues but is restricted during maturation. Viral movement proteins such as Cucumber mosaic virus 3a, and PVX TGBp1 remain highly mobile in mature leaves because they gate open Pd under conditions that normally restrict movement of GFP.34,35 Schoenknecht et al., undertook a straightforward investigation of leaf maturation describing Pd transport in relationship to leaf area expansion. The outcome of this study was evidence that GFP movement between cells declines as leaves expand.It is reasonable to consider that simultaneous changes in gene expression and physiology is reflected in a downward trend in Pd conductivity and an increased requirement for Pd gating to enable selected transport of macromolecules between cells. In Arabidopsis embryos there is an obvious transition between developmental stages which are also represented by a decline in the ability for GFP to diffuse across Pd.36,37 A detailed analysis of Pd structure in source and sink tissues revealed that Pd are simple single channeled structures in sink tissues while source tissues contain predominantly “H” shaped branching Pd structures. The change in Pd structure has been correlated with changes in conductivity and is often correlated with changes in sink to source metabolism.38,39 The sink-to-source transition in leaf development is typically monitored using phloem loading of carboxyfluorescein diacetate. Leaves where CF dye unloads are defined as sink leaves and leaves that were restricted in dye unloading were defined as source leaves. Then biolistic bombardment of GFP expressing plasmids to sink and source leaves revealed that GFP readily diffuses across Pd in sink leaves but is more often restricted in source leaves.26,34,4042Leaf development is typically defined as a transition from juvenile to adult which is represented by homeotic transformations as well as vegetative phase changes.43,44 Source and sink regions of a leaf have been shown to correlate with changes in Pd structure and conductivity during leaf expansion. However, in our study we found that N. tabacum leaves identified as source during week 2 or 3 would continue to expand over an 8 week period to twice or three times the leaf area which provides a real indication that the source designation may not entirely reflect final leaf maturation or completion of leaf development.45> For example, as cells transition from sink to source physiology it is suggested that the frequency of single channeled Pd declines while the frequency of branched Pd increases.39 It is possible that even after leaves transition into photosynthetic sources that Pd architecture continues to change and there is a further decline in the proportion of single channel to branched channels. Therefore either the change in cell volume or Pd architecture or both can slow-down diffusion of GFP between cells.Researchers often point to the ER continuity between cells as a driving force for Pd formation and function. During cell division the cell wall is laid down and forms around the ER creating Pd channels.46 However, it is also worth noting that the actin cytoskeleton is also present in Pd and is central to organ and reproductive development.19,47 Actin and actin binding proteins are necessary for a number of plant processes determining the cell division plane, cell polarity, cell elongation, cytoplasmic streaming, transporting mRNAs and proteins, and defense.4851 Overexpression of ACT1 in Arabidopsis leaves can lead to changes in epidermal leaf shape and cause dwarfism in plants.52 Actin binding proteins are also necessary for organizing and remodeling the F-actin network which drives normal development of specific cell types and organs.53 Actin filament bundling and remodeling are also seen in nonhost defense responses.54 We do not know the effects of overexpressing certain actin homologues or actin remodeling on Pd formation or conductivity. Because the F-actin network is also central to Pd trafficking of proteins and macromolecules between cells it is worth considering F-actin as an early factor contributing to Pd formation which may be necessary to ensure cell-to-cell communication when cell polarity and elongation as well as defense machinery are being established.In summary, the novel quantitative tools developed for measuring protein movement across Pd reveal the temperature dependence of protein trafficking. Both the use of Arrhenius equation and C(Pd) provide new opportunities to measure the energy requirements for protein transport. These tools will enable researchers to quantify effects of environmental and developmental conditions on Pd conductivity, as well as comparing differences in Pd conductivity between plant species or induced by genetic mutations.  相似文献   

20.
Barley stripe mosaic virus (BSMV) spreads from cell to cell through the coordinated actions of three triple gene block (TGB) proteins (TGB1, TGB2, and TGB3) arranged in overlapping open reading frames (ORFs). Our previous studies (D. M. Lawrence and A. O. Jackson, J. Virol. 75:8712-8723, 2001; D. M. Lawrence and A. O. Jackson, Mol. Plant Pathol. 2:65-75, 2001) have shown that each of these proteins is required for cell-to-cell movement in monocot and dicot hosts. We recently found (H.-S. Lim, J. N. Bragg, U. Ganesan, D. M. Lawrence, J. Yu, M. Isogai, J. Hammond, and A. O. Jackson, J. Virol. 82:4991-5006, 2008) that TGB1 engages in homologous interactions leading to the formation of a ribonucleoprotein complex containing viral genomic and messenger RNAs, and we have also demonstrated that TGB3 functions in heterologous interactions with TGB1 and TGB2. We have now used Agrobacterium tumefaciens-mediated protein expression in Nicotiana benthamiana leaf cells and site-specific mutagenesis to determine how TGB protein interactions influence their subcellular localization and virus spread. Confocal microscopy revealed that the TGB3 protein localizes at the cell wall (CW) in close association with plasmodesmata and that the deletion or mutagenesis of a single amino acid at the immediate C terminus can affect CW targeting. TGB3 also directed the localization of TGB2 from the endoplasmic reticulum to the CW, and this targeting was shown to be dependent on interactions between the TGB2 and TGB3 proteins. The optimal localization of the TGB1 protein at the CW also required TGB2 and TGB3 interactions, but in this context, site-specific TGB1 helicase motif mutants varied in their localization patterns. The results suggest that the ability of TGB1 to engage in homologous binding interactions is not essential for targeting to the CW. However, the relative expression levels of TGB2 and TGB3 influenced the cytosolic and CW distributions of TGB1 and TGB2. Moreover, in both cases, localization at the CW was optimal at the 10:1 TGB2-to-TGB3 ratios occurring in virus infections, and mutations reducing CW localization had corresponding effects on BSMV movement phenotypes. These data support a model whereby TGB protein interactions function in the subcellular targeting of movement protein complexes and the ability of BSMV to move from cell to cell.Plants use macromolecular trafficking pathways through plasmodesmata (PD) as a means to regulate developmental processes and physiological functions, and they also rely on these channels as avenues to communicate and mount defense responses to pathogen challenge (2, 37, 55). Local and systemic plant virus invasion depends on the abilities of viruses to use these pathways to spread from initially infected cells to the vascular tissue and distal regions of the plant. To this end, viruses infecting plants have evolved movement proteins (MPs) that coopt host trafficking pathways to target virus genomes to the PD and to facilitate the cell-to-cell transit of infectious entities (4, 13, 36, 48, 55). Virus MPs vary in size, number, and genome organization, but they share a number of functional characteristics including localization to PD, an ability to increase the size exclusion limits of PD, and RNA binding activities (3, 7, 8, 24, 27, 58).Viruses containing triple gene block (TGB) MPs have been the subjects of a number of investigations (4, 6, 39, 53, 54). Interestingly, viruses with a range of diverse genome structures encode MPs in a TGB, but these proteins fall into two major TGB classes that have substantial differences in protein structure and variations in their physical, functional, and cellular interactions (19, 30, 39, 45, 48). For example, the hordeivirus-like TGB1 proteins contain substantial N-terminal extensions that are lacking in the potexvirus-like TGB1 proteins, but the two classes of proteins share a conserved helicase domain at their C termini (39). The available evidence also indicates that hordeivirus-like and potexvirus-like TGB1 proteins share common biochemical features, including RNA binding abilities (3, 13, 23, 35, 44, 56), RNA helicase activities (22), associated NTPase activities (3, 13, 23, 33, 35, 44), and the capacity to form homologous interactions (29, 30, 45). However, the potexvirus-like TGB1 proteins localize at the CW when expressed autonomously and also facilitate increases in PD size exclusion limits, whereas the hordeivirus-like TGB1 proteins lack both these activities (39, 53). Major differences are also evident in the organizations of the potexvirus-like and hordeivirus-like TGB3 proteins, which share no discernible relatedness, differ in the numbers of their transmembrane domains, and indeed appear to have a polyphyletic origin (39).In both TGB classes, the movement strategy employs the coordinated actions of all three proteins. However, the coat protein is dispensable for one or more phases of movement of benyvirus, hordeivirus, pecluvirus, and pomovirus, encoding hordeivirus-like (class I) MPs, but is absolutely required for cell-to-cell movement of potexvirus-like (class II) MPs encoded by allexivirus, carlavirus, foveavirus, and potexvirus (6, 19, 39, 54). These variations clearly demonstrate that the two classes of TGB proteins have profound differences in their functional properties and in their associations with other virus and host proteins. Hence, comparative analyses of the functional and biological properties of the two classes of proteins in their common hosts may reveal important activities relevant to viral pathogenesis. To provide more information about the hordeivirus-like movement mechanisms, we are investigating the TGB interactions of Barley stripe mosaic virus (BSMV).BSMV is the type member of the genus Hordeivirus, which includes Poa semilatent virus (PSLV), Lychnis ringspot virus, and Anthoxanthum latent blanching virus (6, 19). Hordeiviruses have positive-sense, single-stranded RNA genomes consisting of three segments, designated α, β, and γ. The RNAβ segment encodes the coat protein, which is translated directly from genomic RNAβ (gRNAβ), and the TGB proteins, which are expressed from two subgenomic RNAs (sgRNAs), designated sgRNAβ1 and sgRNAβ2 (60). The coat protein is dispensable for the systemic movement of BSMV (41), and mutational analyses indicate that the TGB1, TGB2, and TGB3 proteins are each essential for cell-to-cell movement in monocot and dicot hosts (28). The BSMV TGB1 (58-kDa) protein is expressed from sgRNAβ1 at higher levels than the smaller hydrophobic TGB2 (14-kDa) and TGB3 (17-kDa) proteins, which are coexpressed from the bicistronic sgRNAβ2 during replication (14, 60). BSMV TGB1 has binding activity for both single-stranded and double-stranded RNAs (13) and forms nucleoprotein complexes with each of the BSMV gRNAs and sgRNAs (30). The hordeivirus-like TGB1 proteins differ from the potexvirus-like TGB1 proteins in having longer N-terminal domains with positively charged amino acids, but both classes of proteins have conserved C-terminal NTPase/helicase domains (13, 39, 49). In BSMV, mutations of conserved amino acids within the TGB1 helicase motif abrogate cell-to-cell movement and alter subcellular localization in infected protoplasts (27). Plants infected with a BSMV β-green fluorescent protein-TGB1 (β-GFP-TGB1) reporter virus also exhibited paired foci on both sides of the CW, and the plasma membranes of infected protoplasts developed punctate foci (27). TGB1 and TGB2 are also essential for plasma membrane targeting because β-GFP-TGB1 reporter derivatives that were unable to express TGB2 or TGB3 fluoresce at perinuclear membranes of protoplasts (27). Particle bombardment studies with the related hordeivirus PSLV also suggested that the expression of TGB3 is required to shift the localization of TGB2 from the endoplasmic reticulum (ER) to the peripheral membranes (50), and transgenically expressed PSLV TGB3 appears to be associated with PD due to its colocalization with callose markers (17).We have recently shown that TGB2 and TGB3 interact physically and have identified single amino acids in each protein that are required for these interactions (19, 30). TGB3 also interacts with TGB1, and we have proposed that these interactions facilitate the transport of ribonucleoprotein (RNP) complexes to the PD (30). However, the effects of TGB protein interactions on subcellular localization have not been defined. Moreover, because of possible convergent evolution of the hordeivirus-like and potexvirus-like TGB-containing viruses (39), the mechanisms of action resulting in transport may differ among different genera or even among different virus species within a genus. To obtain more refined information about these processes, we have now expressed fluorescent TGB fusion proteins transiently in Nicotiana benthamiana leaf cells by Agrobacterium tumefaciens infiltration and have assessed the subcellular localization patterns of BSMV wild-type (wt) and mutant TGB derivatives that differ in their interactions. We also have carried out reverse genetic experiments with selected BSMV TGB mutants to provide a biological context for the localization patterns appearing during ectopic Agrobacterium expression. These findings are elaborated in a model for TGB interactions required for the cell-to-cell movement of BSMV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号